PART A

I. Answer all the questions:

1. Let * be a binary operation defined on the set of rational numbers defined by $a * b=7 a b+7$. Verify whether * is a binary operation.
2. Find the principal value of $\sec ^{-1}(-\sqrt{2})$
3. Define identity matrix.
4. Find K if the matrix $\left[\begin{array}{ll}K & 4 \\ 3 & 2\end{array}\right]$ has no inverse.
5. Find the derivative of $\tan x^{\circ}\{x$ degree $\}$
6. Find the anti derivative of $\left(2 \cos ^{2} 3 x-1\right) \mathrm{dx}$
7. Find the value of λ for the vector $\vec{a}=2 \hat{i}-3 \lambda \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}-2 \hat{k}$ are perpendicular to each other.
8. What is the equation of the plane that cuts the co-ordinate axes at $(a, 0,0)(0, b, 0)$ and $(0,0, c)$.
9. Define objective function of LPP.
10. If $P(A \cap B)=0.32$ and $P(A)=0.8$. Find $P(B / A)$

PART B

II. Answer any 10 questions:
11. If $f: R \rightarrow R$ given by $\mathrm{f}(\mathrm{x})=\left(3-\mathrm{x}^{3}\right)^{1 / 3}$. Then find (fof) (x).
12. Write the simple form of $\tan ^{-1}\left[\sqrt{\frac{1+\cos 2 x}{1-\cos 2 x}}\right]$
13. If $\cos e c\left[\tan ^{-1}\left(\frac{1}{7}\right)+\cot ^{-1} x\right]=1$, find x
14. Find the area of the triangle whose vertices are (3,8), ($-4,2$) and $(5,1)$ using determinants.
15. If $x=\cos ^{-1}\left(2 t^{2}-1\right)$ and $y=\sin ^{-1}\left(4 t^{3}-3 t\right)$ prove that $\frac{d y}{d x}=-\frac{3}{2}$
16. Prove that $f(x)=x^{3}-3 x^{2}+4 x, \quad x \in R$ is strictly increasing on R .
17. Find the points at which the tangent to the curve $y=x^{3}-3 x^{2}-9 x+7$ is parallel to x -axis.
18. Evaluate $\int \frac{\cot (1+\log x)}{x} d x$
19. $\int x \sin ^{3}\left(x^{2}\right) \cos x^{2} d x$
20. Find the order and degree of $\left[\frac{d^{3} y}{d x^{3}}+y^{2}\right]^{3 / 2}=e^{y^{111}}$
21. Prove that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$
22. Find the shortest distance between $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$ and $\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$
23. If α, β, γ are the angles made by a vector with co-ordinate axes then prove that $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2$.
24. Two dice are thrown. Find the probability of getting an odd number on the first die and a multiple of 3 on the other.

PART C

III. Answer any 10 questions:
25. Verify whether $f(x)=\frac{x-2}{x-3}$ is one-one and onto or not give reason.
26. Solve $\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}$
27. Express $A=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]$ as sum of symmetric and skew symmetric matrix.
28. If $\sqrt{1+x}+\sqrt{1+y}=0$ P.T $\frac{d y}{d x}=\frac{-1}{(1+x)^{2}}$
29. If $x=a^{\sqrt{\tan ^{-1} t}} \quad y=a^{\sqrt{\cot ^{-1} t}}$ P.T $\frac{d y}{d x}=\frac{-y}{x}$
30. Verify mean value theorem for the function $f(x)=x^{2}-4 x-3$ in the interval $[1,4]$
31. Evaluate $\int e^{x}\left(\frac{1+\sin x}{1+\cos x}\right) d x$
32. Find $\int \frac{x}{(x+1)(x+2)} d x$
33. Find the area of the region bounded by $y^{2}=9 x, x=2$ and $x=4$.
34. Prove that $x^{2} \frac{d y}{d x}=x^{2}-2 y^{2}+x y$ is a homogeneous differential equation.
35. Find a vector perpendicular to each of the vectors $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}+5 \hat{j}-2 \hat{k}$ which has magnitude 10 units.
36. If $\vec{a}=-4 \hat{i}-6 \hat{j}-\lambda \hat{k}$

$$
\begin{aligned}
& \vec{b}=-\hat{i}+4 \hat{j}+3 \hat{k} \\
& \vec{c}=-8 \hat{i}-\hat{j}+3 \hat{k} \text { are coplanar. Find } \lambda .
\end{aligned}
$$

37. Find the distance between parallel lines $\vec{r}=\hat{i}+2 \hat{j}-4 \hat{k}+m(2 \hat{i}+3 \hat{j}+6 \hat{k})$ and $\vec{r}=3 \hat{i}+3 \hat{j}-5 \hat{k}+n(2 \hat{i}+3 \hat{j}+6 \hat{k})$
38. Given that 2 numbers appearing on throwing two dice are different. Find the probability of the event "the sum of numbers on the dice is 4 ".

PART D

IV. Answer any 6 questions:

$$
6 \times 5=30
$$

39. Let R^{+}be the set of all non-negative real numbers. Prove that $f: R^{+} \rightarrow[4, \infty]$ defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+$ 4 is invertible. Also write the inverse of f.
40. If $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 2 & 0 & 3 \\ 3 & -1 & 2\end{array}\right] B=\left[\begin{array}{cc}1 & 3 \\ 0 & 2 \\ -1 & 4\end{array}\right] C=\left[\begin{array}{cccc}1 & 2 & 3 & -4 \\ 2 & 0 & -2 & 1\end{array}\right]$ then prove that $\mathrm{A}(\mathrm{BC})=(\mathrm{AB}) \mathrm{C}$
41. Using matrix method solve the following equations
$2 x-3 y+5 z=11$
$3 x+2 y-4 z=-5$
$x+y-2 z=-3$
42. If $y=5 \cos (\log x)+7 \sin (\log x)$. Prove that $x^{2} y_{2}+x y_{1}=0$
43. A man of height 2 meters walks at a uniform speed of $5 \mathrm{~km} / \mathrm{hr}$ away from a lamp post which is 6 meters height. Find the rate at which the length of his shadow increases.
44. Find the integral of $\frac{1}{\sqrt{x^{2}+a^{2}}}$ w.r.t x and hence evaluate $\int \frac{1}{\sqrt{x^{2}+2 x+4}} d x$
45. Find the area of the region enclosed by the parabola $x^{2}=4 y$ and the line $x=4 y-2$ and x-axis.
46. Derive the equation of the line in space passing through a point and parallel to a vector both in the vector and Cartesian form.
47. Solve the differential equation $x \log x \frac{d y}{d x}+y=\frac{2}{x} \log x$
48. If a fair coin is tossed 8 times. Find the probability of (i) at least five heads and (ii) at most five heads.

PART E

V. Answer any 1 question:
49. a) Prove $\int_{0}^{2 a} f(x) d x=\int_{0}^{a} f(x) d x+\int_{0}^{a} f(2 a-x) d x$ then prove
$\left\{\begin{array}{c}2 a \\ \int_{0} f(x) d x=2 \int_{0}^{a} f(x) d x \text { when } f(2 a-x)=f(x) \\ { }^{0} 0 \quad \text { whenf }(2 a-x)=-f(x)\end{array}\right.$
b) Prove that $\left|\begin{array}{ccc}1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1\end{array}\right|=\left(x^{3}-1\right)^{2}$
50. a) Solve the following L.P.P.

Minimize and maximize $z=3 x+9 y$ subject to the constraints

$$
\begin{gathered}
x+3 y \leq 60 \\
x+y \geq 10 \\
x \leq y
\end{gathered}
$$

$x \geq 0, y \geq 0$
b) Determine the value of k if $f(x)=\left\{\begin{array}{lll}\frac{k \cos x}{\pi-2 x} & \text { if } & x \neq \frac{\pi}{2} \\ 3 & \text { if } & x=\frac{\pi}{2}\end{array}\right.$

