Max.Marks: 100

Section - A

I. Answer all the following questions:

1. Let * be an operation defined on the set Q of rational numbers by $\mathrm{a} * \mathrm{~b}=\frac{a b}{4}$. Find the identity element.
2. Find the value of $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$.
3. Construct 2×2 matrix $A=\left[a_{i j}\right]$ whose elements are given by $\frac{1}{2}|-3 i+j|$.
4. Find the value of x for which $\left|\begin{array}{ll}3 & x \\ x & 1\end{array}\right|=\left|\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right|$.
5. Find the derivative of $\log _{7}\left(\cos ^{x}\right)$ w.r.t s.
6. Find the anti derivative of $\mathrm{e}^{\mathrm{x}}\left(\frac{x-1}{x^{2}}\right) \mathrm{dx}$.
7. Define negative of a vector.
8. Find the intercepts cut off by the plane $2 x+y-z=5$.
9. Define optimal solution of LPP.
10. If $P(A)=\frac{3}{5}, P(B)=\frac{1}{5}$, find $P(A \cap B)$ if A and B are independent events.
II. Answer any ten of the following:
11. Prove that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijective then gof : $A \rightarrow C$ is also bijective.
12. Write the simplest from of $\tan ^{-1}\left[\frac{\sqrt{1+x^{2}}-1}{x}\right]$
13. Find $\tan \left[\frac{1}{2}\left(\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)+\cos ^{-1}\left(\frac{1-y^{2}}{1+y^{2}}\right)\right)\right],|x| 1 \mid, \mathrm{y}>0$ and $\mathrm{xy}<1$.
14. Find the values of k if area of triangle is 4 sq. units and vertices are $(-2,0),(0,4)(0, k)$.
15. Differentiate $\frac{\sqrt{\left(x^{2}-5 x+8\right)\left(x^{2}+7 x+9\right)}}{x+3}$ w.r.t x by logarithmic differentiation.
16. Find the slope of the tangent to the curve $y=\frac{x-1}{x-2}, x \neq 2$ at $\mathrm{x}=10$.
17. Using differentials, find the approximate value of $\sqrt{49.05}$.
18. Find $\int \frac{1}{\sin x \cos ^{3} x} d x$.
19. Evaluate $\int \frac{1}{e^{x}+e^{-x}} d x$.
20. Find the order and degree, if the differential equation is $\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\left(\frac{d y}{d x}\right)^{2}+\sin \left(\frac{d y}{d x}\right)+1=0$.
21. Find a unit vector perpendicular to each of the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ where $\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$
22. Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=0$ and $x+y-z-$ $2=0$ and the point (2, 21).
23. If \propto, β, γ are the angles made by a vector with the coordinate axes. Show that $\cos 2 \propto+\cos \beta+\cos 2 \gamma=1$.
24. Find the probability distribution of the number of tails in simultaneous tosses of three coins.

Section-C

III. Answer any ten of the following:
25. Show that the relation R in the set Z of integers given by $R=\{(a, b): 2$ divides $a-b\}$ is an equivalence relation.
26. Find the value of x , if $\tan ^{-1}\left(\frac{x-1}{x-2}\right)+\tan ^{-1}\left(\frac{x+1}{x+2}\right)=\frac{\pi}{4}$
27. Using elementary transformation, find the inverse of the matrix $A=\left[\begin{array}{cc}1 & -2 \\ 2 & 1\end{array}\right]$.
28. Verify mean value theorem if $f(x)=x^{3}-5 x^{2}-3 x$, in the interval $[1,3]$. Find all $C \in(1,3)$ for which $f^{\prime}(\mathrm{c})=0$
29. If $\mathrm{x}=\operatorname{acos}^{3} \theta$ and $\mathrm{y}=\operatorname{a}^{3} \sin ^{3} \theta$, prove that $\frac{d y}{d x}=-\sqrt[3]{\frac{y}{x}}$
30. Find local maximum and local minimum values of the function f given by $f(x)=3 x^{4}+4 x^{3}-12 x^{2}+12$.
31. Evaluate $\int\left(\frac{1+\log x}{x}\right)^{2} d x$.
32. Integrate $\frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+2\right)}$ with respect to x .
33. Find the area bounded by the parabola $y^{2}=4 x$ and the line $y=2 x$.
34. Find the distance between the lines I_{1} and I_{2} given by $\vec{r}=\hat{i}+2 \hat{j}-4 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})$ and $\vec{r}=3 \hat{i}+3 \hat{j}-5 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+6 \hat{k})$.
35. Show that the position vector of the point, which divides the line joining the points A and B having the position vectors \vec{a} and \vec{b} internally in the ratio $\mathrm{m}: \mathrm{n}$ is $\frac{m \vec{b}+n \vec{a}}{m+n}$.
36. Form the differential equation of the family of circles touching the y-axis at origin.

37 . Find the cartesian and vector equation of the line that passes through the points ($3,-2,-5$) and $(3,-2,6)$
38. Box - I contains 2 gold coins, while another Box-II contains 1 gold and 1 silver coin A person chooses a box at random and takes out a coin. If the coin is of gold, what is the probability that the other coin in the box is also of gold?

Section - D

IV. Answer any six of the following:
39. Let $\mathrm{f} N \rightarrow R$ defined by $f(x)=4 x^{2}+12 x+15$, prove that $f: N \rightarrow S$, where S is the range of the function, is invertible. Also find the inverse of f.
40. If $A=\left[\begin{array}{ccc}2 & 0 & 1 \\ 0 & -3 & 0 \\ 0 & 0 & 4\end{array}\right]$, verify $A^{3}-3 A^{2}-10 A+24 I=0$, where O is zero matrix of order 3×3.
41. Solve the system of linear equation by matrix method: $2 x-3 y+5 z=11 ; 3 x+2 y-4 y=-5$; $x+y-2 z=-3$.
42. If $\mathrm{y}=\left(\sin ^{-1} \mathrm{x}\right)^{2}$. Show that $\left(1-\mathrm{x}^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=2$.
43. Sand is pouring from a pipe at the rate of $12 \mathrm{~cm}^{3} / \mathrm{sec}$. The falling sand forms a cone on the ground in such a way that the height of the cone is always one - sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm ?
44. Find the area of the region enclosed between the two circles $x^{2}+y^{2}=4$ and $(x-2)^{2}+y^{2}=4$
45. Find the integral of $\frac{1}{\sqrt{a^{2}-x^{2}}}$ w.r.t x and hence evaluate $\int \frac{d x}{\sqrt{7-6 x-x^{2}}}$.
46. Find the general solution of the differential equation $e^{x} \cdot \tan y d x+\left(1-e^{x}\right) \cdot \sec ^{2} y \cdot d y=0$.
47. Derive the equation of a plane perpendicular to a given vector and passing through a given point both in vector and cartesian form.
48. A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{1}{100}$.

What is the probability that he will win a prize atleast once and exactly once.

Section-E

V. Answer any one of the following:
49. a) Prove that $\int_{-a}^{a} f(x) \cdot d x=\left\{\begin{array}{cc}2 \int_{0}^{a} f(x) d x, \text { if } f(x) \text { is an even function } \\ 0, & \text { if } \mathrm{f}(\mathrm{x}) \text { is an odd function }\end{array}\right.$ and evaluate $\int_{-1}^{1} \operatorname{Sin}^{5} x \cos ^{4} x d x$.
b) Prove that $\left[\begin{array}{ccc}x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y\end{array}\right]=2(x+y+z)^{3}$
50. a) Minimize and maximize $z=5 x+10 y$ subject to the constrains $x+2 y \leq 120 ; x+y \geq 60 ; x-2 y \geq 0$ and $x \geq 0, y \geq 0$ by graphical method.
b) Determine the value of k , if $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ccc}x^{2} \sin \frac{1}{x} & \text {, if } & x \neq 0 \\ k & \text {, if } & x=0\end{array}\right.$

