JAIN COLLEGE

463/465, 18th Main Road, SS Royal, 80 Feet Road
Rajarajeshwari Nagar, Bangalore - 560098

SUBJECTMATHEMATICS

II PUC MOCK - I

Timings Allowed: 3 Hrs 15 Minutes
Total Marks: 100
Instructions: i) The question paper has 5 parts. A, B, C, D, E. Answer all the parts.
ii) Part A carries 10 marks. Part B carries 20 marks, Part C and Part D carries 30 marks and Part E carries 10 marks.
iii) Write the question number properly as indicated in the question paper.

I ANSWER ALL
$1 \mathrm{X10}=10$

1. Give an example which is transitive but neither reflexive nor symmetric
2. Find the value of $\cos ^{-1}\left(\cos ^{7 \pi} 6\right)$
3. Find x if $\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}=\begin{array}{cc}x & 3 \\ 2 x & 5\end{array}$
4. A Matrix has 18 elements, What are the possible orders can it have?
5. Find derivative of $\cos \bar{x}$
6. Write anti derivative of $\mathrm{e}^{2 \mathrm{x}}$ w.r.t x
7. Define colliear vectors
8. If a line has direction ratios $-18,12,-4$, then what are its direction cosines?
9. Define Optimum function
10. If $p(B)=0.5, p(A \cap B)=0.32$. Find $p(A / B)$

PART B

II ANSWER ANY TEN.
$2 \times 10=20$
11. Show that the relation R in the set $\{1,2,3\}$ given by $R=((1,2),(2,1)\}$ is symmetric but neither reflexive nor transitive
12. Write in its simplest form $\tan ^{-1} \frac{\cos x-\sin x}{\cos x+\sin x}, 0<x<180$
13. If $\sin \sin ^{-1} 1_{5}+\cos ^{-1} \mathrm{x}=1$. Find x
14. IF each element of a row (column) of a determinant is multiplied by a scalar ' k ' , then its value gets multiplied by k
15. Discuss the continuity of function $f(x)=x^{3}+x^{2}-1$
16. Find the derivative of $x^{y}+y^{x}=1$
17. $e^{x} \sin x d x$
18. Find local maxima of the function $f(x)=x^{3}-3 x$
19. $\frac{1}{\sin ^{2} x \cos ^{2} x} d x$
20. Find order and degree of D.E $x y \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}{ }^{2}+y \frac{d y}{d x}=0$
21. Verify that vectors $(2,-1,1),(1,-3,-5)(3,-4,-4)$ form vectors of a right angled triangle
22. Find the value of k, if the points $(1,2),(k,-4),(5,6)$ are collinear.
23. Find the distance of a point $(2,5,-3)$ from the plane $r .6 l-3 \jmath+2 k=4$
24. Bag I contains 3 red and 4 black balls while another Bag II contains 5 red and 6 black balls . One ball is drawn at random from one of the Bags and it is found to be Red. Find the probability that it was drawn from Bag II

PART C

III ANSWER ANY TEN.
$10 \times 3=30$

$$
\frac{n+1}{2} \quad n \text { is odd }
$$

25. $\mathrm{F}: \mathrm{N} \rightarrow \mathrm{N}$ be defined by $\mathrm{f}(\mathrm{n})=f x=\frac{n}{2}, \quad n$ is even $\forall n \in N$

IS f bijective? Justify
26. Prove that $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y} ; x y<1$
27. Express the matrix $\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}$ as the sum of symmetric and a skew symmetric matrix
28. Verify Mean value theorem for $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-5 \mathrm{x}^{2}-3 \mathrm{x}$ in [13]
29. If $y=\cos ^{-1} \frac{2 x}{1+x^{2}} \quad ;-1<x<1$ Find $\frac{d y}{d x}$
30. Find the intervals in which $\mathrm{f}(\mathrm{x})=4 \mathrm{x}^{3}-6 \mathrm{x}^{2}-72 \mathrm{x}+30$ is (i)Strictly increasing (II)strictly decreasing
31. $\frac{1}{x+x \log x} d x$
32. $\frac{e^{x} 1+x}{\cos ^{2} x e^{x}} d x$
33. Find the area bounded by $y=3 x+2$ and x axis and the ordinates $x=-1$ and $x=1$
34. Form the D.E representing the family of Ellipse having foci on x axis and centre at origin
35. If $a=5 \imath-\jmath-3 k, b=\imath+3 \jmath-5 k$, Show that $a+b$ and $a-b$ are perpendicular
36. $a=2 \imath+2 \jmath+3 k, b=2 \jmath+k-\imath$,
$c=3 l+\jmath$ such that $a+\alpha b$ is perpendicular to c find α,
37. Find mean number of heads in three tosses of a fair coin
38. Find the vector and Cartesian equation of the lines that passes through the origin and $(5,-2,3)$

PART D

IV ANSWER ANY SIX

6X5=30
39. $F: N \rightarrow R$ be a function defined by $f(x)=4 x^{2}+12 x+15$. Show that $f: N \rightarrow S, S$ is range of f, is invertible. Find inverse of f
40. If $A=\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}, B=\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}, C=\begin{array}{cc}-2 & 5 \\ 3 & 4\end{array}$ Verify $A(B C)=(A B) C$
41. Solve by Matrix method $3 x-2 y+3 z=8,2 x+y-z=1,4 x-3 y+2 z=4$
42. If $Y=3 e^{2 x}+2 e^{3 x}$, Prove that $y^{I I}-5 y^{I}+6 y=0$
43. The length x of a rectangle is decreasing at the rate of $3 \mathrm{~cm} /$ minute and the width y is increasing at the rate of $2 \mathrm{~cm} /$ minute. When $x=10 \mathrm{~cm}$ and $y=6 \mathrm{~cm}$, find the rate of change of (a) the perimeter (b)the area of the rectangle
44. Find integral of $\overline{x^{2}-a^{2}} d x$, hence evaluate $\overline{x^{2}-4} d x$
45. Solve the differential equation $\left(1+x^{2}\right) d y+2 x y d x=\cot x d x(x \neq 0)$
46. Find the area of triangle whose sides have the equation $y=2 x+1, y=3 x+1$ and $x=4$
47. Derive the equation of the plane passing through 3-non -collinear points.
48. A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is $1 / 100$. What is the probability that he win a prize (i) at least once (ii)exactly once (iii) at least twice

PART E

V Answer any ONE

$1 \times 10=10$
49. (I)Prove that ${ }_{a}^{b} f x d x={ }_{a}^{b} f a+b-x d x$ hence find ${ }_{\pi}^{\pi}{ }_{6}^{\pi} \frac{d x}{1+\overline{\tan x}}$
(II)Prove that $\begin{array}{ccc}a^{2} & a b & a c \\ a b & b^{2}+1 & b c \\ a c & c b & c^{2}+1\end{array}=1+\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}$
50. (i)There are two types of fertilisers F_{1} and $F_{2} . F_{1}$ consists of 10% of nitrogen and 6% phosphoric acid and F_{2} consists of 5% of nitrogen and 10% phosphoric acid. After testing the soil conditions, a farmer finds that she needs at least 14 kg of nitrogen and 14 kg of phosphoric acid for her crop. If F_{1} costs Rs. $6 / \mathrm{kg}$ and F_{2} costs Rs.5/kg, Find how much of each type of fertilisers should be used so that nutrient requirement are me at a minimum cost. What is the minimum cost?
(ii) Find the value of k if $\mathrm{f}(\mathrm{x})=f x=\begin{array}{r}3, \\ k x^{2},\end{array}, x \leq 2$ is continuous at $\mathrm{x}=2$

