	Course:	II PUC
SRI BHAGAWAN MAHAVEER JAIN COLLEGE Vishweshwarapuram, Bangalore.	Subject:	Mathematics
Mock Exam 1 - Feb.2016	Max. Marks:	100
	Duration:	3:15 Hrs.

Instructions :

(i) The question paper has five parts namely A, B, C, D and E. Answer all the parts.
(ii) Use the graph sheet for the question on linear programming in PART E.

PART – A

I Answer ALL the questions:

- 1. Show that *: $\mathbf{R} \to \mathbf{R}$ defined by $(a,b) = a + 4b^2$ is a binary operation.
- 2. Find the principal value of $y = \tan^{-1}(-1)$
- 3. Define a skew-symmetric matrix.
- 4. If A is a matrix of order 3 x 3 than find |adjA| where |A| = 2
- 5. If $y = \sin^3 x + \cos^6 x \operatorname{find} \frac{dy}{dx}$.
- 6. Evaluate $\int \sec^2(7-4x) dx$
- 7. Define the term "corner points" of LPP.
- 8. If \vec{a} and \vec{b} are any two vector such that $\vec{a} \cdot \vec{b} = \left| \vec{a} \times \vec{b} \right|$ Find the angle between \vec{a} and \vec{b} .
- 9. Show that the planes 2x y + 4z = 5 and 5x 2.5y + 10z = 6 are parallel.
- 10. If P(A) = 0.8. P(B) = 0.5 and P(B/A) = 0.4 find $P(A \cap B)$

PART – B

II Answer any TEN questions:

11. If f;R \rightarrow R given by $f(x) = (3 - x^3)^{\frac{1}{3}}$. Find fof (x)

12. Prove that
$$\cos^{-1}(-x) = \pi - \cos^{-1}(x)$$
 $x \in [-1,1]$

- 13. Solve: $2\tan^{-1}(\cos x) = \tan^{-1}(2\cos ecx)$
- 14. For the matrix $A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$ find the values of a and b such that $A^2 + aA + bI = 0$.

15. If
$$y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right)$$
 Find $\frac{dy}{dx}$ where $\left(0 < x < \frac{1}{\sqrt{2}}\right)$

- 16. Find the derivative of $\cos \left[\log x + e^x \right]$ where x > 0.
- 17. Find the approximate change in surface of a cube of side x meters caused by increasing the side by 1%.
- 18. Evaluate $\int_{0}^{2/3} \frac{dx}{4+9x^{2}}$ 19. Integrate $\frac{\cos(\sqrt{x})}{\sqrt{x}}$ with respect to x.
- 20. Form the differential equation of the family of parabolas having vertex at origin and axis along positive direction of X- axis.

21. Evaluate
$$\hat{i} \cdot \left(\hat{j} \times \hat{k}\right) + \hat{j} \cdot \left(\hat{i} \times \hat{k}\right) + \hat{k} \cdot \left(\hat{j} \times \hat{i}\right)$$
.

22. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} - \hat{j} + 3\hat{k}$ $\vec{c} = \hat{i} - 2\hat{j} + \hat{k}$. Find the unit vector parallel to the vector $2\vec{a} - \vec{b} + 3\vec{c}$

$10 \ge 2 = 20$

10 x1=10

- 23. Find the distance of the point (2,5,-3) from the plane $\vec{r} \cdot \left(\hat{6i-3j+2k}\right) = 4$
- 24. Given two independent event A and B such that P(A) = 0.3 P(B) = 0.6. Find (i) P(A and not B) (ii) P(neither A nor B).

PART-C

III Answer any TEN questions:

- 25. Find fog and gof if $f: R \to R$ and g: $R \to R$ defined by $f(x) = 8x^3$ and $g(x) = x^{1/3}$ show that fog # gof
- 26. Solve:- $\tan^{-1}(2x) + \tan^{-1} 3x = \frac{\pi}{4}$
- 27. Using elementary transformation find the inverse of the matrix $A = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$
- 28. If $x = a \left[\cosh t \log \tan \left(\frac{t}{2} \right) \right] y = a \sin t$.find $\frac{dy}{dx}$.
- 29. Verify Rolle's theorem for the function $f(x) = x^2 + 2x 8$ $x \in [-4, 2]$
- 30. Find the equation of the tangent to the curve $y = x^2 2x + 7$ which is parallel to the line 2x y + 9 = 0
- 31. Evaluate $\int \frac{4x+1}{\sqrt{2x^2+x-3}} dx$.
- 32. Evaluate $\int_{4}^{9} \frac{\sqrt{x}}{(30 x^{3/2})^2} dx$
- 33. Find the area of the region bounded by two parabolas $y = x^2$ and $x^2 = y$ using method of integration.
- 34. Find the general solution of the differential equation $\frac{dy}{dx} = e^{x+y}$
- 35. Find the cosine of the angle between the vectors $\vec{a} = \hat{i} 2\hat{j} + 3\hat{k}$, and $\vec{b} = 3\hat{i} 2\hat{j} + \hat{k}$.
- 36. The two adjacent sides of a parallelogram are $\vec{a} = 2\hat{i} 4\hat{j} + 5\hat{k}$ and $\vec{b} = 2\hat{i} 4\hat{j} + 5\hat{k}$. Find the unit vector parallel to its diagonals. Also find its area.
- 37. Find the co-ordinates of the point where the line passes through (5,1,6) and (3,4,1) crosses the YZ plane.
- 38. One card is drawn at random from a well shuffled deck of 52 cards in which E: The card draws is a king or queen F: The card drawn is a queen or jack. Are E and Fare independent.

PART-D

IV Answer any SIX questions:

39. Consider $f: \mathbb{R}^+ \to [-5, \infty)$ given by $f(x) = 9x^2 + 6x - 5$ show that f is invertible with

$$f^{-1}(y) = \frac{\sqrt{y+6-1}}{3}$$
40. If A = $\begin{bmatrix} 1\\ -4\\ 3 \end{bmatrix}$ and B = [-1 2 1] verify (AB)[|]= B[|] A

41. Solve by matrix method x - y + 2z = 7; 3x + 4y - 5z = 5; 2x - y + 3z = 12.

42. If
$$e^{y}(x+1) = 1$$
 show that $\frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^2$

10 x 3 =30

$$6 \ge 5 = 30$$

II PUC (Mathematics) Mock Exam 1 - Feb.2016

- 43. A ladder 5 m long leaning against a smooth vertical wall. The bottom of the ladder is pulled along the ground away from the wall at the rate of 2 cms/ sec. How fast is its height on the wall decreasing when the foot of the ladder is 4 mts away from the wall?
- 44. Find the integral of $\frac{1}{x^2 + a^2}$ with respect to x and hence Evaluate $\int \frac{3x^2}{x^6 + 1} dx$
- 45. Find the area of the region in the first quadrant enclosed by x axis, the line $x = \sqrt{3}y$ and the circle $x^2 + y^2 = 4$
- 46. Find the general solution of the differential equation $x \frac{dy}{dx} + 2y = x^2 \log x$.
- 47. Derive the formula to find the shortest distances between two skew-lines $\vec{r} = \vec{a_1} + \lambda \vec{b_1}$ and $\vec{r} = \vec{a_2} + \mu \vec{b_2}$ in vector form.
- 48. A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{1}{100}$. What is the probability that he will win a prize at least once exactly once.

PART – E

V Answer any ONE question:

49. (a) Minimize and Maximize z = x + 2y subject to the constraints $x + 2y \ge 100$, $2x - y \le 0$ $2x + y \le 200$, $x, y \ge 0$ [6]

b) Prove that
$$\begin{vmatrix} 1+a & 1 & 1\\ 1 & 1+b & 1\\ 1 & 1 & 1+c \end{vmatrix} = abc \left(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$$
 [4]

50. a) Prove that
$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
 and hence Evaluate $\int_{\pi/6}^{\pi/3} \frac{dx}{1+\sqrt{\tan x}}$ [6]

b) Find all points of discontinuity of f where f is defined by
$$f(x) = \begin{cases} \frac{x}{1x1} & \text{if } x < 0\\ -1 & \text{if } x \ge 0 \end{cases}$$
 [4]

 $1 \ge 10 = 10$