JGi SRI BHAGAWAN MAHAVEER JAIN COLLEGE
Vishweshwarapuram, Bangalore.
Mock Exam 1 - Feb. 2016

Course: II PUC
Subject: Mathematics
Max. Marks: 100
Duration: 3:15 Hrs.

Instructions :

(i) The question paper has five parts namely A, B, C, D and E. Answer all the parts.
(ii) Use the graph sheet for the question on linear programming in PART E.

PART - A

I Answer ALL the questions:

1. Show that $*: \mathrm{R} \rightarrow \mathrm{R}$ defined by $(a, b)=a+4 b^{2}$ is a binary operation.
2. Find the principal value of $y=\tan ^{-1}(-1)$
3. Define a skew-symmetric matrix.
4. If A is a matrix of order 3×3 than find $|\operatorname{adj} \mathrm{A}|$ where $|\mathrm{A}|=2$
5. If $y=\sin ^{3} x+\cos ^{6} x$ find $\frac{d y}{d x}$.
6. Evaluate $\int \sec ^{2}(7-4 x) d x$
7. Define the term "corner points" of LPP.
8. If \vec{a} and \vec{b} are any two vector such that $\vec{a} \cdot \vec{b}=|\vec{a} \times \vec{b}|$ Find the angle between \vec{a} and \vec{b}.
9. Show that the planes $2 x-y+4 z=5$ and $5 x-2.5 y+10 z=6$ are parallel.
10. If $\mathrm{P}(\mathrm{A})=0.8$. $\mathrm{P}(\mathrm{B})=0.5$ and $\mathrm{P}(\mathrm{B} / \mathrm{A})=0.4$ find $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$

PART - B

II Answer any TEN questions:

$10 \times 2=20$
11. If $\mathrm{f} ; \mathrm{R} \rightarrow \mathrm{R}$ given by $f(x)=\left(3-x^{3}\right)^{1 / 3}$. Find $f \circ f(x)$
12. Prove that $\cos ^{-1}(-x)=\pi-\cos ^{-1}(x) \quad x \in[-1,1]$
13. Solve: $2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)$
14. For the matrix $\mathrm{A}=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]$ find the values of a and b such that $A^{2}+a A+b I=0$.
15. If $y=\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right)$ Find $\frac{d y}{d x}$ where $\left(0<x<\frac{1}{\sqrt{2}}\right)$
16. Find the derivative of $\cos \left[\log x+e^{x}\right]$ where $x>0$.
17. Find the approximate change in surface of a cube of side x meters caused by increasing the side by 1%.
18. Evaluate $\int_{0}^{2 / 3} \frac{d x}{4+9 x^{2}}$
19. Integrate $\frac{\cos (\sqrt{x})}{\sqrt{x}}$ with respect to x.
20. Form the differential equation of the family of parabolas having vertex at origin and axis along positive direction of X - axis.
21. Evaluate $\hat{i} \cdot(\hat{j} \times \hat{k})+\hat{j} \cdot(\hat{i} \times \hat{k})+\hat{k} \cdot(\hat{j} \times \hat{i})$.
22. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \quad \vec{b}=2 \hat{i}-\hat{j}+3 \hat{k} \quad \vec{c}=\hat{i}-2 \hat{j}+\hat{k}$. Find the unit vector parallel to the vector $2 \vec{a}-\vec{b}+3 \vec{c}$
23. Find the distance of the point $(2,5,-3)$ from the plane $\vec{r} \cdot(6 \hat{i}-3 \hat{j}+2 \hat{k})=4$
24. Given two independent event A and B such that $\mathrm{P}(\mathrm{A})=0.3 \mathrm{P}(\mathrm{B})=0.6$. Find (i) $\mathrm{P}(\mathrm{A}$ and not B$)$ (ii) P (neither A nor B).

PART- C

III Answer any TEN questions:
$10 \times 3=30$
25. Find fog and gof if $f: R \rightarrow R$ and $\mathrm{g}: R \rightarrow R$ defined by $f(x)=8 x^{3}$ and $g(x)=x^{1 / 3}$ show that fog \# gof
26. Solve:- $\tan ^{-1}(2 x)+\tan ^{-1} 3 x=\frac{\pi}{4}$
27. Using elementary transformation find the inverse of the matrix $A=\left[\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right]$
28. If $x=a\left[\operatorname{cost}+\log \tan \left(\frac{t}{2}\right)\right] y=a \sin t$.find $\frac{d y}{d x}$.
29. Verify Rolle's theorem for the function $f(x)=x^{2}+2 x-8 \quad \mathrm{x} \in[-4,2]$
30. Find the equation of the tangent to the curve $y=x^{2}-2 x+7$ which is parallel to the line $2 x-y+9=0$
31. Evaluate $\int \frac{4 x+1}{\sqrt{2 x^{2}+x-3}} d x$.
32. Evaluate $\int_{4}^{9} \frac{\sqrt{x}}{\left(30-x^{3 / 2}\right)^{2}} d x$
33. Find the area of the region bounded by two parabolas $y=x^{2}$ and $x^{2}=y$ using method of integration.
34. Find the general solution of the differential equation $\frac{d y}{d x}=e^{x+y}$
35. Find the cosine of the angle between the vectors $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}$, and $\vec{b}=3 \hat{i}-2 \hat{j}+\hat{k}$.
36. The two adjacent sides of a parallelogram are $\vec{a}=2 i-4 \hat{j}+5 k$ and $\vec{b}=2 i-4 j+5 k$. Find the unit vector parallel to its diagonals. Also find its area.
37. Find the co-ordinates of the point where the line passes through $(5,1,6)$ and $(3,4,1)$ crosses the YZ - plane.
38. One card is drawn at random from a well shuffled deck of 52 cards in which E : The card draws is a king or queen F: The card drawn is a queen or jack. Are E and Fare independent.

PART-D

IV Answer any SIX questions:

$6 \times 5=30$
39. Consider $f: R^{+} \rightarrow[-5, \infty)$ given by $f(x)=9 x^{2}+6 x-5$ show that f is invertible with $f^{-1}(y)=\frac{\sqrt{y+6}-1}{3}$
40. If $A=\left[\begin{array}{c}1 \\ -4 \\ 3\end{array}\right]$ and $B=\left[\begin{array}{lll}-1 & 2 & 1\end{array}\right]$ verify $(A B)^{\mid}=B^{\mid} A^{\mid}$
41. Solve by matrix method $x-y+2 z=7 ; 3 x+4 y-5 z=5 ; 2 x-y+3 z=12$.
42. If $e^{y}(x+1)=1$ show that $\frac{d^{2} y}{d x^{2}}=\left(\frac{d y}{d x}\right)^{2}$
43. A ladder 5 m long leaning against a smooth vertical wall. The bottom of the ladder is pulled along the ground away from the wall at the rate of $2 \mathrm{cms} / \mathrm{sec}$. How fast is its height on the wall decreasing when the foot of the ladder is 4 mts away from the wall?
44. Find the integral of $\frac{1}{x^{2}+a^{2}}$ with respect to x and hence Evaluate $\int \frac{3 x^{2}}{x^{6}+1} d x$
45. Find the area of the region in the first quadrant enclosed by x-axis, the line $x=\sqrt{3} y$ and the circle $x^{2}+y^{2}=4$
46. Find the general solution of the differential equation $x \frac{d y}{d x}+2 y=x^{2} \log x$.
47. Derive the formula to find the shortest distances between two skew-lines $\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}=\vec{a}_{2}+\mu \vec{b}_{2}$ in vector form.
48. A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{1}{100}$. What is the probability that he will win a prize at least once exactly once.

PART - E

V Answer any ONE question:

49. (a) Minimize and Maximize $z=x+2 y$ subject to the constraints $x+2 y \geq 100,2 x-y \leq 0$

$$
\begin{equation*}
2 x+y \leq 200, x, y \geq 0 \tag{6}
\end{equation*}
$$

b) Prove that $\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$
50. a) Prove that $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$ and hence Evaluate $\int_{\pi / 6}^{\pi / 3} \frac{d x}{1+\sqrt{\tan x}}$
b) Find all points of discontinuity of f where f is defined by $f(x)= \begin{cases}\frac{x}{1 x 1} \text { if } x<0 \\ -1 & \text { if } x \geq 0\end{cases}$

