PART - A

I. Answer all questions

1. Define bijective function.
2. Find the principal value of $\sin ^{-1}\left(\frac{-1}{2}\right)$
3. If a matrix has 13 elements, what are the possible orders it can have?
4. Evaluate $\left|\begin{array}{ccc}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|$
5. Define right hand derivative of a function $f(x)$ at $x=a$.
6. If $y=(2 x+1)^{3}$ then find $\frac{d y}{d x}$
7. Evaluate $\int_{2}^{3} \frac{1}{x} d x$.
8. Find the vector $P Q$ joining the points $P(2,3,0)$ and $Q(-1,-2,-4)$.
9. Find the intercepts cut off plane $2 x+y-z=5$.
10. Define constraints of a LPP.

PART - B

II. Answer any 10 questions

11. Show that $\mathrm{f}: \quad$, defined as $\mathrm{f}(\mathrm{x})={ }^{x^{2}}$ is neither one-one nor onto.
12. P.T $\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}, \forall x \in R$
13. If $\sin \left[\sin ^{-1}\left(\frac{1}{5}\right)+\cos ^{-1} x\right]=1$, find x.
14. P.T"If any two rows(columns) of a determinant are interchanged, the sign of determinant changes".
15. Find the derivative of
16. Differentiate $x^{x^{\sin x}, x>0}$ w.r.t x .
17. Find the slope of normal to curve $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$ at $\theta=\frac{\pi}{4}$
18. Evaluate $\int_{0}^{\frac{2}{3}} \frac{d x}{4+9 x^{2}}$
19. Integrate $\frac{\cos \sqrt{x}}{\sqrt{x}}$ w.r.t x
20. Verify that the function $\mathrm{y}=\mathrm{a} \cos \mathrm{x}+\mathrm{b} \sin \mathrm{x}$ where ${ }^{a, b \in R}$ is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}+y=0$.

$$
\vec{a}=\hat{i}-2 j+3 k \quad \vec{b}=-2 \hat{i}+3 j-4 k \quad \text { and } \vec{c}=\hat{i}-3 j+5 k \text { are coplanar }
$$

22. Find $|\vec{a}|$ and $|\vec{b}|$, if $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=8$ and $|\vec{a}|=8|\vec{b}|$.
23. Find the angle between pair of lines $\frac{x+3}{3}=\frac{y-1}{5}=\frac{z+3}{4}$ and $\frac{x+1}{1}=\frac{y-4}{1}=\frac{z-5}{2}$.
24. Determine $\mathrm{P}\left(\frac{E}{F}\right)$.A coin is tossed 3 times where E : head on third toss and F : heads on first two toss.

PART- C

III. Answer any 10 questions
25. Let $\mathrm{f}:{ }^{x \rightarrow y}$ and $\mathrm{g}:{ }^{y \rightarrow z}$ be two invertible functions. then show that gof is also invertible with $(g o f)^{-1}=f^{-1} o g^{-1}$
26. Solve: $\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}$
27. If $x\left[\begin{array}{l}2 \\ 3\end{array}\right]+y\left[\begin{array}{c}-1 \\ 1\end{array}\right]=\left[\begin{array}{c}10 \\ 5\end{array}\right]$ then find the values of x and y.
28. If $x^{y}=y^{x}$ fhen find $\frac{d y}{d x}$.
29. P.T the function f is given by $f(x)=^{\log (\cos x)}$ is strictly decreasing on $\left(0, \frac{\pi}{2}\right)$ and strictly increasing on $\left(\frac{\pi}{2}, \pi\right)$.
30. Find two positive numbers whose sum is 16 and sum of whose cubes is minimum
31. Evaluate $\int \frac{4 x+1}{\sqrt{2 x^{2}+x-3}} d x$
32. Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1+\cos ^{2} x} d x$
33. Find the area of circle $x^{x^{2}+y^{2}=a^{2}}$ by integration method.
34. Find the general solution of differential equation $\frac{d y}{d x}=\sin ^{-1} x$
35. $\vec{a} \vec{b} \quad \vec{c} \quad \vec{a}+\vec{b}+\vec{c}=0 \quad \vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$
35. If , and are unit vectors such that . find the value of
36. P.T ${ }^{[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]}$
37. Find the vector equation of plane passing through the points $R(2.5 .-3), S(-2,-3,5)$ and $\mathrm{T}(5,3,-3)$.
38. Probability that A speaks truth is $4 / 5$. A coin is tossed. A reports that a head appears. Find the probability that it is actually head.

PART - D

IV. Answer any six questions
$6 \times 5=30$
39. IF f: $R-\left\{\frac{7}{5}\right\} \rightarrow R-\left\{\frac{3}{5}\right\}$ is given by $\mathrm{f}(\mathrm{x})=\frac{3 x+4}{5 x-7}$ and g: $R-\left\{\frac{3}{5}\right\} \rightarrow R-\left\{\frac{7}{5}\right\}$ defined by $\mathrm{g}(\mathrm{x})=$ $\frac{7 x+4}{5 x-3}$ then S.T fog $={ }^{I_{A}}$ and gof $={ }^{I_{B}}$.
40. If $\mathrm{A}=\left[\begin{array}{c}1 \\ -4 \\ 3\end{array}\right], \mathrm{B}=\left[\begin{array}{lll}-1 & 2 & 1\end{array}\right]$, then verify that $(A B)^{!}=B^{!} A^{!}$
41. The cost of 4 kg onion, 3 kg wheat and 2 kg of rice is Rs. 60 , the cost of 2 kg onion , 4 kg wheat and 6 kg of rice is Rs. 90 . the cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs. 70 . find the cost of each item per kg by matrix method.
42. If $y=A e^{m x}+B e^{n x}$ show that: $\frac{d^{2} y}{d x^{2}}-(m+n) \frac{d y}{d x}+m n y=0$.
43. The radius of a circle is increasing at the rate of $0.7 \mathrm{~cm} / \mathrm{sec}$ what is the rate of increasing of its circumference and also rate of increase of area when $r=10 \mathrm{cms}$?
44. Find the integration of $\frac{1}{\sqrt{a^{2}+x^{2}}}$ w.r.t x and hence evaluate $\int \sqrt{x^{2}+2 x+5} d x$.
45. Find the area region in the first quadrant enclosed by x-axis, the line $x=\sqrt{3} y$ and circle $x^{2}+y^{2}=4$
46. Find general solution of the differential equation $x \frac{d y}{d x}+2 y=x^{2} \log x$
47. Derive the equation of the plane perpendicular to a given vector and passing through a given point in vector and certesian form.
48. Find the probability distribution of number of doublets in 3 throws of a pair of dice.

PART - E

V. Answer any one question

49.

a. Prove that $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$ and hence evaluate: $\int_{0}^{4}|x-1| d x$
b. If x, y, z are different and $\left|\begin{array}{lll}x & x^{2} & 1+x^{3} \\ y & y^{2} & 1+y^{3} \\ z & z^{2} & 1+z^{3}\end{array}\right|=0$ then show that $1+x y z=0$.
50.
a. Solve the LPP graphically, Minimize and maximize $z=x+2 y$

$$
x+2 y \geq 100,2 x-y \leq 0,2 x+y \leq 200 \quad x, y \geq 0
$$

Subjected to constraints :
b. Find all points of discontinuity of f, where f is defined by

$$
f(x)=\left\{\begin{array}{ccc}
|x|+3 & \text { if } & x \leq-3 \\
-2 x & \text { if } & -3<x<3 \\
6 x+2 & \text { if } & x \geq 3
\end{array}\right\}
$$

JAIN COLLEGE, J C Road Bangalore

Mock Paper -2, February - 2015

Part - A

I. Answer all ten

1. Give an example of a relation which is symmetric and transitive but not reflexive.
2. Write the domain of $f(x)=\sec ^{-1} x$.
3. What is the number of possible square matrices of order 3 with each entry 0 or 1 ?
4. If A is an invertible matrix of order 2 and $|A|=15$ then find $\operatorname{det}\left(A^{-1}\right)$.
5. If $y=e^{\cos x}$ find $d y / d x$.
6. Evaluate $\int(a x+b)^{2} d x$.
7. Find the value of x and y so that the vectors $2 \hat{i}+3 \hat{j}$ and $x \hat{i}+y \hat{j}$ are equal.
8. Find the distance of the plane $2 x-3 y+4 z-6=0$ from the origin.
9. Define objective function of a linear programming problem.

$$
P(A \cap B)=1 / 6
$$

10. If $P(A)=1 / 2, p(B)=1 / 3$ and show that A and B are independent events.

Part - B

II. Answer any 10 questions
11. Define binary operation on a set. Verify whether the operation * defined on $Z, b y a * b=$ $a b+1$ is binary or not?
12. Find the value of

$$
\cot \left[\tan ^{-1}(a)+\cot ^{-1}(a)\right]
$$

$$
\cos ^{-1}(-x)=\pi-\cos ^{-1} x, \quad x \in[-1,1]
$$

13. Prove that
14. Show that the points $A(a, b+c), B(b, c+a), C(c, a+b)$ are collinear.
15. If $\sin ^{2} x+\cos ^{2} y=1$ find $\frac{d y}{d x}$
16. If ${ }^{y=\left(\sin ^{-1} x\right)^{x}}$ find $\frac{d y}{d x}$
17. Find the approximate change in volume V of a cube of side ' x ' meters caused by increasing the side by 1%.
18. Evaluate $\int x^{2} e^{x^{3}} d x$
19. Find $\int_{0}^{\frac{\pi}{2}} \cos 2 x d x$
20. Form the differential equation representing the family of curves $y=m x$ where m is arbitrary constant.

$$
\hat{i}-2 \hat{j}+3 \hat{k} \text { and } 3 \hat{i}-2 \hat{j}+\hat{k}
$$

21. Find the angle between 2 vectors
22. Find the area of the parallelogram whose adjacent sides are the vectors $3 \hat{i}+\hat{j}+4 \hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$
23. Find the distance of the point $(2,3,-5)$ from the plane
24. The random variable x has a probability distribution $P(x)$ of the following from where k is some number $p(x)=\left\{\begin{array}{l}k \text { if } x=0 \\ 2 k \text { if } x=1 \\ 3 k \text { if } x=2 \\ 0 \text { otherwise }\end{array}\right.$ Determine the value of k .
PART - C

III. Answer any 10 questions

$10 \times 3=30$
25. Show that if $f: A \rightarrow B$ and $g: B \rightarrow C$ Are one - one then $g \circ f: A \rightarrow C$ Is one-one
26. Prove that $\sin ^{-1} \frac{12}{13}+\cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{63}{16}=\pi$
27. Find the values of x, y and z in matrix $\left[\begin{array}{cc}x+y & 2 \\ 5+z & x y\end{array}\right]=\left[\begin{array}{ll}6 & 2 \\ 5 & 8\end{array}\right]$
28. If $y=\tan ^{-1}\left[\frac{\sin x}{1+\cos x}\right]$ prove that $\frac{d y}{d x}=\frac{1}{2}$
29. Verify Rolle's theorem for the function $f(x)=x^{2}+2 x-8, x \in[-4,2]$
20. Find the point on the $y=x^{3}-11 x+5$ At $y=x-11$
30. Find the point on the curve At which the tangent is
31. Evaluate $\int \frac{(1+\log x)^{2}}{x} d x$
32. Evaluate $\int e^{x}\left(\frac{1+\sin x}{1+\cos x}\right) d x$
33. Find the area bounded by parabola $y^{2}=4 x$. the line $y=2 x$
34. Form the differential equation representing the family of curves $y=a \sin (x+b)$. Where a and b arbitrary constant.
35. If $\vec{a}=2 \hat{i}-3 j+4 k \quad \vec{b}=\hat{i}+2 j-3 k$ and $\vec{c}=3 \hat{i}+4 j-k$ Then find $\vec{a} \cdot(\vec{b} X \vec{c})$ and $(\vec{a} X \vec{b}) \cdot \vec{c}$.
36. If $\vec{a}=-4 \hat{i}-6 j-\lambda k \quad \vec{b}=-\hat{i}+4 j+3 k$ and $\vec{c}=-8 \hat{i}-j+3 k$ are coplanar. Find ${ }^{\lambda}$.

$$
\vec{r}=\hat{i}+2 j-4 k+m(2 \hat{i}+3 j+6 k)
$$

37. Find the distance between parallel lines and $\vec{r}=3 \hat{i}+3 j-5 k+n(2 \hat{i}+3 j+6 k)$
38. Two cards are drawn successively with replacement from a well shuffled deck of 52 cards. Find the probability distribution of the number of aces.

Part - D
IV. Answer any 6 questions
$6 \times 5=30$
39. Consider $f: R \rightarrow R$ defined by $f(x)=4 x+3$ show that f is invertible. Find the inverse of f .
40. If $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 3 \\ -4 & 5 & 6 \\ 7 & 8 & 0\end{array}\right], \mathrm{B}=\left[\begin{array}{ccc}2 & 3 & 4 \\ 5 & -3 & 0 \\ 4 & 5 & -3\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{ccc}2 & 3 & 1 \\ 4 & 5 & 6 \\ -1 & 2 & 3\end{array}\right]$ Prove that $\mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{AB}+\mathrm{AC}$
41. Solve the system of linear equations by matrix method
$x-y+2 z=7,3 x+4 y-5 z=-5$ and $2 x-y+3 z=12$
42. If

$$
y=3 \cos (\log x)+4 \sin (\log x) \quad x^{2} y_{2}+x y_{1}+y=0
$$

show that
43. A man of height 2 meters walk at a uniform speed of $5 \mathrm{~km} / \mathrm{hr}$ away from a lamp post which is 6 meters height. Find the rate at which the length of his shadow increases.
44. Find the integral of $\sqrt{x^{2}+a^{2}}$ With respect to ' x ' and evaluate $\int \sqrt{4 x^{2}+9} d x$

$$
4 x^{2}+4 y^{2}=9 \quad x^{2}=4 y
$$

45. Find the area of the circle which is interior to the parabola
46. Solve the differential equation $x \log x \frac{d y}{d x}+y=\frac{2}{x} \log x$
47. Derive equation of line passing through 2 given points both in vector and cartesian form.
48. Find the mean of binomial distribution $B(4,1 / 3)$

Part - E

V. Answer any 1 question

49. (a) Prove that $\int_{0}^{2 a} f(x) d x=\left\{\begin{array}{ccc}2 \int_{0}^{a} f(x) d x & \text { if } & f(2 a-x)=f(x) \\ 0 & \text { if } & f(2 a-x)=-f(x)\end{array}\right\} \quad$ and hence evaluate $\int_{0}^{\pi} \frac{x d x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x}$
(b) Prove that $\left|\begin{array}{ccc}1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1\end{array}\right|=\left(1-x^{3}\right)^{2}$
50. (a) One kind of cake requires 200 g of flour and 25 g of fat and another kind of cake requires 100 g of flour and 50 g of fat. Find the maximum number of cakes which can be made from 5 kg of flour and 1 kg of fat assuming that there is no shortage of other ingredients used in making the cakes. Formulate the LPP and solve it graphically .
(b) Find the value of k so that the function ' f ' given by $f(x)=\left\{\begin{array}{lll}k x+1 & \text { if } & x \leq \pi \\ \cos x & \text { if } & x>\pi\end{array}\right\}$ is continuous $x=\pi$.
at
