JAIN COLLEGE, Bangalore
Mock Paper-1 January - 2016
II PUC - Mathematics (35)
Time: 3 Hours 15 Minutes
Max. Marks: 100

PART A

I. Answer all questions

1. Show that $*: R \rightarrow R$ given by $(a, b)=a+4 b^{2}$ is a binary operation.
2. Find the principle value of $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
3. Define Skew symmetric matrix.
4. If A is an invertible matrix of order 2 and $|A|=15$.find $\operatorname{det}\left(A^{-1}\right)$
5. If $y=\sin ^{3} x+\cos ^{6} x$ then find $\frac{d y}{d x}$
6. Find the anti derivative of $(a x+b)^{2}$ with respect to x
7. Find the unit vector in the direction of the vector $\vec{a}=\hat{i}+\hat{j}+2 \widehat{k}$
8. The Cartesian equation of a line is $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$ Write its vector form .
9. Define the term "corner points " of LPP.
10. If $\mathrm{P}(\mathrm{A})=0.8$ and $\mathrm{P}(\mathrm{B})=0.5, \quad P(B / A)=0.4$. Find $P(A \cap B)$

PART B

II. Answer any ten
$10 \times 2=20$
11. Show that the function $f: N \rightarrow N$ given by $\mathrm{f}(1)=\mathrm{f}(2)=1$ and $\mathrm{f}(\mathrm{x})=\mathrm{x}-1$, for every $\mathrm{x}>2$, is onto but not one-one.
12. Prove that $3 \sin ^{-1} x=\sin ^{-1}\left[3 x-4 x^{3}\right], \mathrm{x} \in[-1 / 2,1 / 2]$
13. Find the value of $\cos \left(\sec ^{-1} x+\operatorname{cosec}^{-1} x\right)$
14. Without expansion Prove that $\left|\begin{array}{lll}1 & b c & a(b+c) \\ 1 & c a & b(c+a) \\ 1 & a b & a(a+b)\end{array}\right|=0$
15. If $y=\log _{7}(\log x)$.Prove that $\frac{d y}{d x}=\frac{1}{x \log _{7}(\log x)}$
16. If $y=\sec ^{-1}\left[\frac{1}{2 x^{2}-1}\right]$. find $\frac{d y}{d x}$
17. Find the local maximum of the function $g(x)=x^{3}-3 x$.
18. Evaluate $\int \log (\sin x) \cdot \cot x \cdot d x$
19. Evaluate $\int \tan ^{-1} x . d x$
20. Form the differential equation representing the family of curves $\mathrm{y}=\mathrm{mx},[\mathrm{m}$ is constant].
21. Evaluate $\hat{i} .(\hat{j} \times \hat{k})+\hat{j}(\hat{i} \times \hat{k})+\hat{k}(\hat{j} \times \hat{i})$
22. Find the area of the parallelogram whose adjacent sides are $\vec{a}=3 \hat{i}+\widehat{j}+4 \widehat{k}, \vec{b}=\hat{i}-\widehat{j}+\widehat{k}$
23. Find the vector equation of the line passing through the points $(-1,0,2)$ and $(3,4,6)$.
24. Find the conditional probability of obtaining a sum greater than 9 ,given that the black die resulted in a 5 .

PART C

III. Answer any ten

$\mathbf{1 0 \times 3 = 3 0}$
25. Show that the relation R in the set of all integers Z defined by $R=\{(a, b): 2 \operatorname{divides}(a-b)\}$ is an equivalence relation.
26. Prove that $\sin ^{-1} \frac{5}{13}+\cos ^{-1} \frac{3}{5}=\operatorname{Tan}^{-1} \frac{63}{16}$
27. If A and B are square matrices of same order then Show that $(A B)^{-1}=B^{-1} A^{-1}$
28. If $y^{x}=x^{y}=a^{b}$. find $\frac{d y}{d x}$
29. Prove that the function ' f ' given by $f(x)=\log (\cos x)$ is strictly decreasing on $\left(0, \frac{\pi}{2}\right)$ strictly increasing on $\left(\frac{\pi}{2}, \pi\right)$
30. Find the equation of the tangent to the curve $y=x^{2}-2 x+7$ which is parallel to the line $2 x-y+9=0$
31. Evaluate $\int \frac{4 x+1}{\sqrt{2 x^{2}+x-3}} d x$
32. Evaluate $\int \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x$
33. Find the area of the region bounded by $y^{2}=9 x, x=2, x=4$ and X-axis in I quadrant.
34. Form the differential equation of the family of circles touching y axis at origin.
35. Show that the four points with position vectors $4 \widehat{i}+8 \widehat{j}+12 \widehat{k}, 2 \widehat{i}+4 \widehat{j}+6 \widehat{k}, 3 \widehat{i}+5 \widehat{j}+4 \widehat{k}$ and $5 \widehat{i}+8 \widehat{j}+5 \widehat{k}$ are coplanar.
36. The scalar product of the vector $\hat{i}+\hat{j}+\hat{k}$ with unit vector along the sum of the vectors $2 \widehat{i}+4 \hat{j}-\hat{k}$ and $\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to one. Find the value of λ
37. Find the vector equation of the plane passing through the points $R(2,5,-3), S(-2,-3,5), T(5,3,-3)$.
38. An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 truck drivers. The probability of and accident are $0.01,0.03,0.15$ respectively. one of the insured person meets with an accident. What is the probability that he is a scooter driver?

PART D

IV. Answer any six

$$
6 \times 5=30
$$

39. Let $y=\left\{n^{2}, n \in N\right\}$ and consider $f: N \rightarrow N$ as $f(n)=n^{2}$, show that f invertible.Find inverse of ' f '.
40. If $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 2 & 0 & 3 \\ 3 & -1 & 2\end{array}\right], B=\left[\begin{array}{cc}1 & 3 \\ 0 & 2 \\ -1 & 4\end{array}\right], C=\left[\begin{array}{cccc}1 & 2 & 3 & -4 \\ 2 & 0 & -2 & 1\end{array}\right]$ then Prove that $(A B) C=A(B C)$
41. Solve by matrix method $2 x+3 y+3 z=5, x-2 y+z=-4,3 x-y-2 z=3$.
42. If $y=A e^{m x}+B e^{n x}$, Show that $\frac{d^{2} y}{d x^{2}}-(m+n) \frac{d y}{d x}+m n y=0$
43. A particle moves along the curve $6 y=x^{3}+2$.Find the points on the curve at which the y-coordinate is changing 8 times as fast as the x -coordinate.
44. Find the integral of $\sqrt{x^{2}+a^{2}}$ with respect to x . and hence evaluate $\int \sqrt{x^{2}+4 x+6} . \mathrm{dx}$.
45. Find the area bounded by the curves $(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$ using integration method
46. Find the equation of a curve passing through the point $(0,1)$. if the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-co-ordinate and the product of x-coordinate and y-co-ordinate of that point.
47. Derive the equation of a plane in normal form (both in vector and Cartesian form).
48. Find the mean of binomial distribution $B(4,1 / 3)$

PART E

V. Answer any one
$10 \times 1=10$
49. a)Prove that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$ hence evaluate $\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x$
b)If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are different and $\left|\begin{array}{lll}x & x^{2} & 1+x^{3} \\ y & y^{2} & 1+y^{3} \\ z & z^{2} & 1+z^{3}\end{array}\right|=0$ Show that $1+x y z=0$
50. a) A diet is to contain atleast 80 units of vitamin A and 100 units of minerals. Two foods F1 and F2 are available .food F1 costs Rs 4 per unit and food F2 costs Rs 6 per unit. one unit of food F1 contains 3 units of vitamin A and 4 units of minerals. one unit of food F2 contains 6 units of vitamin A and 3 units of minerals . formulate this as a linear programming problem. Find the minimum cost for diet that consists of mixture of these two foods and also meets the minimal nutritional requirements.
b) Define a continuity of a function at a point.Find all the points of discontinuity of f defined by $f(x)=|x|-|x+1|$

JAIN COLLEGE, Bangalore
Mock Paper - 2 January - 2016
II PUC - Mathematics (35)

PART A

I. Answer all

1. Define objective function.
2. Find the value of $\tan ^{-1} \sqrt{3}-\sec ^{-1}(-2)$.
3. Construct a 2×3 matrix whose elements are given by $a_{i j}=l i-j l$.
4. If A is an invertible matrix of order 2 and $I A I=15$ then find $\operatorname{det}\left(A^{-1}\right)$.
5. Find the derivative of $\cos \left(x^{2}\right)$ with respect to x.
6. Evaluate $\int(1-x) \sqrt{x} d x$.
7. Find the vector joining the points $A(2,4,1)$ and $B(-1,3,2)$.
8. For what value of λ is the vector $\frac{2}{3} \hat{\imath}-\lambda \hat{\jmath}+\frac{2}{3} \widehat{k}$ a unit vector.
9. Define optimal solution.
10. The probability of obtaining an even prine number on each die, when a pair of die is rolled is PART B
II. Answer any 10
$10 \times 1=10$
11. Define binary operation on a set. verify whether the operation * defined on Z by $a * b=a b+1$ is binary or not.
12. Prove that $\tan ^{-1} x+\cot ^{-1} x=\frac{\Pi}{2}, \forall x \in R$.
13. Find the value of $\sin ^{-1}\left(\sin \frac{3 \pi}{4}\right)$
14. Using determinants find k if $A(1,3) B(0,0) D(K, 0)$ are the vertices of a triangle $A B D$ such that the area of the triangle is 3 sq.units
15. Differentiate $x^{\text {sint }}, x>0$ w.r.t x
16. Examine the continuity of the function $f(x)=2 x^{2}-1$ at $x=3$
17. If the radius of a sphere is measured as 7 cm with an error of 0.02 m , then find the approximate error in calculating its volume.
18. $\int \frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x} \mathrm{dx}$
19. Evaluate $\int_{0}^{1} \frac{d x}{\sqrt{1+x}-\sqrt{x}}$
20. Find the degree of the differential equation $y^{I I}+\left(y^{I}\right)^{2}+2 y=0$
21. Find the area of the parallelogram whose adjacent sides are given by the vectors
$\vec{a}=3 \hat{\imath}+\hat{\jmath}+4 \hat{k}$ and $\vec{b}=\hat{\imath}-\hat{\jmath}+\hat{k}$
22. Find the distance of a point $(2,5,-7)$ from the plane $\vec{r} .(6 \hat{\imath}-3 \hat{\jmath}+2 \hat{k})=4$
23. Find the angle between the two planes $2 x+y-2 z=5$ and $3 x-6 y-2 z=7$ using vector method.
24. Determine $P(E / F)$. A coin is tossed three times where E : head on $3^{\text {rd }}$ toss, F : heads on first two toss

PART C

III. Answer any 10
$10 \times 3=30$
25. If * is a binary operation defined on $A=N \times N$, by $(a, b)^{*}(c, d)=(a+c, b+d)$, Prove that * is both commutative and associative. Find the identity element if exist.
26. Find the vaue of x , if $\tan ^{-1}\left(\frac{x-1}{x-2}\right)+\tan ^{-1}\left(\frac{x+1}{x+2}\right)=\frac{\pi}{4}$
27. Express $\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]$ as the sum of a symmetric and skew symmetric matrices
28. Verify mean value theorem for $f(x)=x^{2}-4 x-3$ in the interval [a, b] where $a=1$ and $b=4$
29. Find the absolute Maximum and absolute minimum value of the function $f(x)=\sin x+\cos x, x \in[0, \pi]$
30. Find the equation of the tangent and normal to the curve $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at $(0,5)$
31. Evaluate $\int_{4}^{9} \frac{\sqrt{x}}{\left(30-x^{\frac{3}{2}}\right)^{2}} \mathrm{dx}$
32. Evaluate $\int \frac{x}{(x+1)(x+2)} d x$
33. Find the area of the circle $x^{2}+y^{2}=a^{2}$ by integration method.
34. In a bank, principle p increases continuously at the rate of 5% per year. Find the principle in terms of the time t.
35. Find a vector perpendicular to each of the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ where $\vec{a}=3 \hat{\imath}+2 \hat{\jmath}+2 \hat{k}$ and $\vec{b}=\hat{\imath}+2 \hat{\jmath}-2 \hat{k}$
36. Find the area of the triangle $A B C$ where position vectors of A, B and C are $\hat{\imath}-\hat{\jmath}+2 \hat{k}, 2 \hat{\jmath}+\hat{k}$ and $\hat{\jmath}+3 \hat{k}$ respectively.
37. find the distance between the parallel lines $\vec{r}=\hat{\imath}+2 \hat{\jmath}-4 \widehat{k}+\lambda(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k}) \quad$ and $\vec{r}=3 \hat{\imath}+$ $3 \hat{\jmath}-5 \hat{k}+\mu(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k})$
38. Consider the experiment of tossing two fair coins simultaneously, find the probability that both are head given that at least one of them is a head.

PART D

IV. Answer any six

$$
6 \times 5=30
$$

39. Let $f: R \rightarrow R$ be defined as $f(x)=10 x+7$. Find the function $g: R \rightarrow R$ such that $g \circ f=f \circ g=I_{R}$
40. Let $A=\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}6 & 8 \\ 7 & 9\end{array}\right]$ verify that $(A B)^{-1}=B^{-1} A^{-1}$.
41. Solve the following equations by matrix method $x-y+z=4,2 x+y-3 z=0, x+y+z=2$
42. If $\mathrm{y}=\sin ^{-1} \mathrm{x}$, show that $\left(1-\mathrm{x}^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=0$
43. Sand is pouring from a pipe at the rate of $12 \mathrm{~cm}^{3} / \mathrm{sec}$. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm .
44. Find the integral of $\frac{1}{\sqrt{x^{2}-a^{2}}}$ with respect to x and hence evaluate $\int \frac{1}{\sqrt{x^{2}+2 x+2}} \mathrm{dx}$
45. Using integration method, find area of the region bounded by the triangle whose vertices are $(1,0)$, $(2,2)$ and $(3,1)$.
46. Solve the differential equation $y d x-\left(x+2 y^{2}\right) d y=0$
47. Derive the condition for the co-planarity of two lines in space both in vector and Cartesian form
48. Find the probability of getting at most two sixes in six throws of a single die.

PART -E
V. Answer any ONE question

$$
1 \times 10=10
$$

49. (a) Maximise and minimize $Z=3 x+9 y$ subjected to the constraints.
$x+3 y \leq 60, x+y \geq 10, x \leq y$, and $x \geq 0, y \geq 0$ graphically.
(b) Show that $\left|\begin{array}{ccc}1+a^{2}-b^{2} & 2 a b & -2 b \\ 2 a b & 1-a^{2}+b^{2} & 2 a \\ 2 b & -2 a & 1-a^{2}-b^{2}\end{array}\right|=\left(1+a^{2}+b^{2}\right)^{3}$
50. (a) Prove that $\int_{-a}^{a} f(x) d x=\left\{\begin{array}{cc}2 \int_{0}^{a} f(x) d x & \text { if } f(x) \text { is even and } \\ 0 & \text { if } f(x) \text { is odd }\end{array}\right.$

And Evaluate $\int_{-1}^{1} \sin ^{5} x \cos ^{4} x d x$
(b) Find all the points of discontinuity of $f(x)$, where f is defined by

$$
\mathrm{f}(\mathrm{x})= \begin{cases}x^{3}-3 & \text { if } x \geq 2 \\ x^{2}+1 & \text { if } x<2\end{cases}
$$

