JGi SRI BHAGAWAN MAHAVEER JAIN COLLEGE
Vishweshwarapuram, Bangalore.
Mock Exam - Feb. 2017

Course: I PUC
Subject: Mathematics
Max. Marks: 100
Duration: 3:00

Instructions

The question paper has five parts namely A, B, C, D, and E
Answer all parts, write question numbers correctly
Use the graph sheet wherever necessary.
PART-A
I Answer all the questions:

1. If $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right)$, find the value of x
2. Write the interval $[-23,5)$ in set builder form
3. Express 15° into radian measure
4. Find the modulus of $6-3 i$
5. Find the value of x if, $\frac{1}{8!}+\frac{1}{9!}=\frac{x}{10!}$
6. Find the $10^{\text {th }}$ term,$a_{n}=\frac{\mathrm{n}-3}{4}$
7. Find the equation of a line passing through the point $(-4,3)$ with slope 1
8. Evaluate $\lim _{x \rightarrow 1} \frac{x^{2}+1}{x+100}$
9. Write the negation of the statement " 2 is a prime number"
10. Write the sample space of the experiment "A coin is tossed three times"

PART-B

II Answer any Ten questions
11. If X and Y are two sets such that $X \cup Y$ Has 18 elements, X has 8 elements and Y has 15 elements. How many does $\mathrm{X} \cap \mathrm{Y}$ has?
12. Let $A=\{1,2\}$ and $B=\{3,4\}$. Find $A \times B$ and also find the number of relations from A to B ?
13. Find the range of $f(x)=2-3 x, \quad x \in R, \quad x>0$
14. In a circle of diameter 40 cm , the length of a chord is 20 cm . find the length of the minor arc of the chord.
15. Prove that $\sin ^{2} \frac{\pi}{6}+\cos ^{2} \frac{\pi}{3}-\tan ^{2} \frac{\pi}{4}=\frac{1}{2}$
16. Express $-i+1$ in polar form.
17. If $\left(\frac{1+i}{1-i}\right)^{m}=1$, then find the least positiveintegral value of m.
18. Solve $3 x-5<2 x+1$ and show the graph of the solution on number line.
19. How many 4 digit numbers are there with no digit repeated?
20. Find the equation of the line with x and y intercept are given by 2 and 3 respectively.
21. Show that the points $(-2,3,5),(1,2,3)$ and $(7,0,-1)$ are collinear.
22. Evaluate $\lim _{(x-\pi) \rightarrow 0} \frac{\sin (\pi-x)}{\pi(\pi-x)}$
23. Write the converse and contrapositive for the statement "Something is cold implies it has low temperature",
24. If $\frac{2}{11}$ is the probability of an event, what is the probability of the event 'not A",

PART-C

III Answer any TEN questions

25. In a committee, 50 speak French, 20 speak Spanish and 10 speak both Spanish and French. How many speak atleast one of these two language.
26. If $f(x)=x^{2}$ and $g(x)=2 x+1$ be two real functions, find $(f+g)(x),(f-g)(x)$ and $(f g)(x)$
27. If $\cos x=\frac{-3}{5}$, x lie in $3^{\text {rd }}$ quadrant, find the value of $\sin x$ and $\tan x$.
28. If $x-i y=\sqrt{\frac{a-i b}{c-i d}}$, provethat $\left(x^{2}+y^{2}\right)^{2}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$
29. Convert $-1-\mathrm{i} \sqrt{3}$ into polar form.
30. Find the value of n such that ${ }^{\mathrm{P}_{5}}=42 \mathrm{n}_{\mathrm{P}_{3}}, \mathrm{n}>4$
31. Find the coefficient of $x^{6} y^{3}$ in the expansion of $(x+2 y)^{9}$
32. Insert three numbers between 1 and 256 so that the resulting sequence is a G .P.
33. If the sum of a certain number of terms of the A.P. $25,22,19, \ldots \ldots \ldots$ is 116 , find the last term.
34. Find the coordinates of focus, equation of directrix and latus rectum of parabola $x^{2}=-6 y$.
35. Find the derivative of $\sin x$ with respect to x from first principles.
36. Prove by method of contradiction that " $\sqrt{2}$ is irrational "
37. One card is drawn from a well shuffled pack of 52 cards. If each outcome is equally likely, find the probability that the card will be a) not a diamond, b) not a black card.
38. Coefficient of variation of two distributions are 60 and 70, and their standard deviations are 21 and 16 respectively. What are their arithmetic means?

PART-D

IV Answer any SIX questions $6 \times 5=30$
39. Define Greatest integer function. Draw the graph of it. Also write its domain and range.
40. Prove that, $\frac{\cos 4 x+\cos 3 x+\cos 2 x}{\sin 4 x+\sin 3 x+\sin 2 x}=\cot 3 x$
41. Prove by Mathematical induction for all $n \in N, 1^{3}+2^{3}+3^{3}+\ldots \ldots \ldots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}$
42. Solve the following system of inequalities graphically, $x+2 y \leq 10, x+y \geq 1, x-y \leq 0$, $x, y \geq 0$
43. In an examination, a question paper consists of 12 questions divided into two parts that is Part A and Part B containing 5 and 7 questions respectively. A student is required to attempt 8 questions in all, selecting atleast 3 from each Part. In how many ways can a student select the questions?
44. State and prove binomial theorem for positive integers.
45. Derive the expression for angle between two lines in terms of their slopes.
46. Derive section formula for internal division in three dimensions
47. Prove geometrically that $\lim _{\mathrm{x} \rightarrow 0}\left(\frac{\tan \mathrm{x}}{\mathrm{x}}\right)=1$, where x is in radians.
48. Find the mean deviation about median for the following data.

x_{i}	10	30	50	70	90
f_{i}	4	24	28	16	8

PART-E
V Answer any ONE question
$1 \times 10=10$
49. (a) Prove geometrically that $\cos (x+y)=\cos x \cos y-\sin x \sin y$ and hence deduce $\cos 2 \mathrm{x}=2 \cos ^{2} \mathrm{x}-1$
(6M)
(b) Find the sum to n terms of the series, whose $n^{\text {th }}$ term is $n(n+1)(n+4)$
50. (a) Define ellipse as a set of points. Derive its equation in the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(b) Find the derivative of $\frac{2}{x+1}-\frac{x^{2}}{3 x-1}$ with respect to x

