JAIN COLLEGE, Bangalore
Mock Paper January - 2017
I PUC - Mathematics (35)

PART A
I. Answer all ten of the following questions
$10 \times 1=10$

1. Define an empty set
2. If $\left(\frac{x+1}{2}, 7\right)=(6,7)$ find x
3. Convert $\left(\frac{7 \pi}{6}\right)^{c}$ into degrees .
4. Evaluate $\mathrm{i}^{24}+\left(\frac{1}{i}\right)^{26}$.
5. Is $3!+4!=7!$?
6. What is the $20^{\text {th }}$ term of the sequence defined by $a_{n}=(n-1)(2-n)(3+n)$?
7. Find the slope of a line $3 x-4 y+10=0$
8. Find the derivative of $2 x-\frac{3}{4}$.
9. Write the negation of "Intersection of two disjoint sets is not an empty set"
10. A dice is rolled. Describe the event "a number less than 7" occurs.

PART B

II. Answer any ten of the following questions
11. Let A and B be two sets such that $n(A)=3$ and $n(B)=2$. If $(5, a),(6, b),(7, a)$ are in $A \times B$ then find the sets A and B, where a, b are distinct elements.
12. If $U=\{1,2,3,4,5,6,7,8,9\}, A=\{2,4,6,8\}$ and $B=\{2,3,5,7\}$ verify $(A \cap B)^{1}=A^{1} \cup B^{1}$
13. If X and Y are two sets such that $X U Y$ has 50 elements, X has 28 elements and Y has 32 elements. How many elements does $\mathrm{X} \cap \mathrm{Y}$ have?
14. Find the value of $\operatorname{Sin} \frac{31 \pi}{3}$
15. Prove that : $\cos 3 x=4 \cos ^{3} x-3 \cos x$
16. Show that $(-1,2,1),(1,-2,5),(4,-7,8)$ and $(2,-3,4)$ are the vertices of a parallelogram.
17. Solve the inequality $(2 x-5)>(1-5 x)$ and represent the solution graphically on the number line
18. Write the converse and contrapositive of "If a parallelogram is a square, then it is a rhombus".
19. Find the angle between the lines $y-\vee x-5=0$ and $v y-x+6=0$.
20. Evaluate $\lim _{x \rightarrow-2} \frac{\frac{2}{x}+\frac{1}{2}}{x+2}$
21. Represent the complex number $z=-1+i$ in polar form
22. By using the concept of equation of the line prove that the three points $(3,0),(-2,-2)$ and $(8,2)$ are collinear.
23. Write the mean of the given data $6,7,10,12,13,4,6,12$
24. Given $P(A)=\frac{2}{3}$ and $P(B)=\frac{1}{5}$ find $P(A$ or $B)$, if A and B are mutually exclusive.

PART C

III. Answer any ten of the following questions

$10 \times 3=30$
25. There are 200 individuals with a skin disorder. 120 has been exposed to the chemical $A, 50$ to chemical B and 30 to both chemical A and B. Find the number of individuals exposed to i) chemical A but not to chemical B ii)Chemical A or chemical B
26. Let $A=\{1,2\}, B=\{1,2,3,4\}$, and $C=\{5,6\}$. Verify that $A X(B \cap C)=(A \times B) \cap(A \times C)$
27. Find the general solution of $\sec ^{2} 2 x=1-\tan 2 x$.
28. Express $\frac{-1+i}{\sqrt{2}}$ in the polar form
29. Solve the equation $x^{2}+\frac{x}{\sqrt{2}}+2=0$
30. In how many ways can 5 girls and 3 boys be seated in a row so that no two boys are together.
31. Find the middle term in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$
32. Find the sum of the sequence: $7,77,777,7777$, \qquad
33. The sum of first three terms of a G.P. is $13 / 12$ and their product if -1 . Find the common ratio and the terms.
34. Find the equation of parabola with vertex at the origin, axis along x-axis and passing through the point $(2,3)$ also find its focus.
35. Differentiate: $\left(\frac{x+1}{x}\right)$ from first principle.
36. A fair coin 1 marked on one face and 6 on the other and a fair die are both tossed. Find the probability that the sum of numbers that turn up is i) 3 ii)12.
37. By the method of contradiction, check the validity of the statement: "If $a, b \in Z$ such that $a b$ is odd, then both ' a ' and ' b ' are odd".
38. A committee of two persons is selected from two men and two women. What is the probability that the committee will have (i) no man (ii) two men

PART D

IV. Answer any six of the following questions

$$
6 \times 5=30
$$

39. Define modulus function. Draw the graph of modulus function, write down its domain and range
40. Prove that $\frac{\cos 4 x+\cos 3 x+\cos 2 x}{\sin 4 x+\sin 3 x+\sin 2 x}=\cot 3 x$
41. Prove that $10^{2 n-1}+1$ is divisible by $11, \forall n \in N$ by the principle of mathematical Induction.
42. Solve the inequalities: $2 x+3 y<12, \quad x \geq 2, \quad y \geq 2$ graphically
43. Find " a " if $17^{\text {th }}$ and $18^{\text {th }}$ terms of the expansion $(2+a)^{50}$ are equal
44. A committee of seven has to be formed from 9 boys and 4 girls. In how many ways this can be done when the committee consists of (1) exactly 3 girls, (2) at least 3 girls and (3) at most 3 girls.
45. Derive a formula for the perpendicular distance of a point $\left(x_{1}, y_{1}\right)$ from the line $A x+B y+C=0$.
46. Prove that $\cos ^{2} x+\cos ^{2}\left(x+\frac{\pi}{3}\right)+\cos ^{2}\left(x-\frac{\pi}{3}\right)=\frac{3}{2}$
47. Prove that, $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ where x is an radian and hence evaluate: $\lim _{x \rightarrow 0} \frac{\operatorname{sinax}}{\sin b x}$
48. Find the mean deviation about the median age for the age distribution of 100 persons given below

Age	$16-20$	$21-25$	$26-30$	$31-35$	$36-40$	$41-45$	$46-50$	$51-55$
Number	5	6	12	14	26	12	16	9

PART E
V. Answer any one of the following questions.
$1 \times 10=10$
49. (a) Prove geometrically that $\cos (A+B)=\cos A \cos B-\sin A \sin B$
(b) Find the derivative of $f(x)=2 x^{2}+3 x-5$, also prove that $f^{\prime}(0)+3 f^{\prime}(-1)=0$
50. (a) Define parabola as a set of all points in the plane and derive its equation in the form $y^{2}=4 a x, a>0$ and hence also find the focus and vertex.
(b) Find the sum to ' n ' terms of the series $1^{2}+\left(1^{2}+2^{2}\right)+\left(1^{2}+2^{2}+3^{2}\right) \ldots$. .

