QUESTION BOOKLET – 2017 Subject : Paper I : Mathematics	Amangana Ama
Roll No.	Question Booklet Sr. No.
	4006874
Answer Sheet No.	(Write this number on your Answer Sheet)
	Subject : Paper I : Mathematics Roll No.

This is to certify that, the entries of Roll Number and Answer Sheet Number have been correctly written and verified.

Candidate's Signature

Invigilator's Signature

Instructions to Candidates

- This question booklet contains 50 Objective Type Questions (Single Best Response Type) in the subject of Mathematics.
- The question paper and OMR (Optical Mark Reader) Answer Sheet are issued to examinees separately at the beginning of the examination session.
- 3. Choice and sequence for attempting questions will be as per the convenience of the candidate.
- 4. Candidate should carefully read the instructions printed on the Question Booklet and Answer Sheet and make the correct entries on the Answer Sheet. As Answer Sheets are designed to suit the OPTICAL MARK READER (OMR) SYSTEM, special care should be taken to mark appropriate entries/answers correctly. Special care should be taken to fill QUESTION BOOKLET VERSION, SERIAL No. and Roll No. accurately. The correctness of entries has to be cross-checked by the invigilators. The candidate must sign on the Answer Sheet and Question Booklet.
- 5. Read each question carefully.
- 6. Determine the correct answer from out of the four available options given for each question.
- 8. Each answer with correct response shall be awarded two (2) marks. There is no Negative Marking. If the examinee has marked two or more answers or has done scratching and overwriting in the Answer Sheet in response to any question, or has marked the circles inappropriately e.g. half circle, dot, tick mark, cross etc, mark/s shall NOT be awarded for such answer/s, as these may not be read by the scanner. Answer sheet of each candidate will be evaluated by computerized scanning method only (Optical Mark Reader) and there will not be any manual checking during evaluation or verification.
- Use of whitener or any other material to erase/hide the circle once filled is not permitted. Avoid overwriting and/or striking of answers once marked.
- Rough work should be done only on the blank space provided in the Question Booklet. Rough work should not be done on the Answer Sheet.
- 11. The required mathematical tables (Log etc.) are provided within the question booklet.
- 12. Immediately after the prescribed examination time is over, the Answer Sheet is to be returned to the Invigilator. Confirm that both the Candidate and Invigilator have signed on question booklet and answer sheet.
- 13. No candidate is allowed to leave the examination hall till the examination session is over.

		-3-		44
0	MATHE	MATICS		
1. The number of p A) One	rincipal solutions of ta B) Two	$n2\theta = 1$ is C) Three	D) Four	
$x_2 \le 3, x_1, x_2 \ge$ A) On x-axis	0 has minimum value	at the point B) On y-axis	$x_2 \ge 7, 2x_1 + 3x_2 \le 15,$	
			f the segment joining the	
A) 14. The maximum v	B) 4 alue of $f(x) = \frac{\log x}{x}$ (2)	(C) 5 x $\neq 0$, x $\neq 1$) is	D) 10	
A) e	$\frac{1}{e}$	C) e ²	D) $\frac{1}{e^2}$	
5. $\int_0^1 x \tan^{-1} x dx =$		neult a since		
A) $\frac{\pi}{4} + \frac{1}{2}$	$(B) \frac{\pi}{4} - \frac{1}{2}$	C) $\frac{1}{2} - \frac{\pi}{4}$	D) $-\frac{\pi}{4}-\frac{1}{2}$	
6. The statement part A $(p \lor q) \lor \neg p$	ttern ($\sim p \land q$) is logica B) $(p \lor q) \land \sim p$	Ily equivalent to C) $(p \land q) \rightarrow p$	D) $(p \lor q) \rightarrow p$	

to grad whr q (3,2) y=4, n= = FFF T T T T F FF T hag hvg. rin $1 + \log n = 0$ $\log n = -1$ F logn + _(ne ne

7. If
$$g(x)$$
 is the inverse function of $f(x)$ and $f'(x) = \frac{1}{1+x^4}$ then $g'(x)$ is
(A) $1 + [g(x)]^4$ B) $1 - [g(x)]^4$ C) $1 + [f(x)]^4$ D) $\frac{1}{1 + [g(x)]^4}$
8. The inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{bmatrix}$ is
(A) $-\frac{1}{3} \begin{bmatrix} -3 & 0 & 0 \\ 3 & 1 & 0 \\ 9 & 2 & -3 \end{bmatrix}$ (B) $-\frac{1}{3} \begin{bmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix}$
(C) $-\frac{1}{3} \begin{bmatrix} 3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix}$ D) $-\frac{1}{3} \begin{bmatrix} -3 & 0 & 0 \\ -9 & -2 & 3 \end{bmatrix}$
9. If $\int \frac{1}{\sqrt{9 - 16x^2}} dx = \alpha \sin^{-1}(\beta x) + c \ \tan \alpha + \frac{1}{\beta} =$
(A) 1 B) $\frac{7}{12}$ (C) $\frac{19}{12}$ D) $\frac{9}{12}$

SPACE FOR ROUGH WORK

44

SEAL

314 d= 34 16+9 $d = \frac{1}{a}$ 6+2 LE 4 × 12 B=1 G 213 d= 3 4+3 3-43 9+16 11 d=1 2G Mr . 13 $\left(\frac{x}{a}\right)$ Jun-1 13. 6. 8+9 19 4+9 4343 233

-5-

10. O(0, 0), A(1, 2), B(3, 4) are the vertices of $\triangle OAB$. The joint equation of the altitude and median drawn from O is

- A) $x^2 + 7xy y^2 = 0$ B) $x^{2} + 7xy + y^{2} = 0$ D) $3x^{2} + xy - 2y^{2} = 0$ C) $3x^2 - xy - 2y^2 = 0$
- 11. If the function $f(x) = \left[\tan \left(\frac{\pi}{4} + x \right)^{-1/x} \text{ for } x \neq 0 \right]$ for x = 0= K

is continuous at x = 0 then K = ?A) e B) e⁻¹ D) e-2 C) e²

- 12. For a invertible matrix A if A(adj A) = $\begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$ then |A| =B) -100 A) 100 C) 10 D) -10

44

2n+2g

SPACE FOR ROUGH WORK

 $\tan(2m) = k^2$

- Jin'v - 1 cas' 1 1

V = log (coper v) +

car'v -1 in car'v

Y=V

n

44 14. In \triangle ABC if $\sin^2 A + \sin^2 B = \sin^2 C$ and l(AB) = 10 then the maximum value of the area of \triangle ABC is A) 50 B) $10\sqrt{2}$ C) 25 D) $25\sqrt{2}$ 15. If x = f(t) and y = g(t) are differentiable functions of t then $\frac{d^2 y}{dx^2}$ is A) $\frac{f'(t).g''(t) - g'(t).f''(t)}{[f'(t)]^3}$ B) $\frac{f'(t).g''(t) - g'(t).f''(t)}{[f'(t)]^2}$ C) $\frac{g'(t).f''(t) - f'(t).g''(t)}{[f'(t)]^3}$ D) $\frac{g'(t).f''(t) + f'(t).g''(t)}{[f'(t)]^3}$

16. The equation of line equally inclined to co-ordinate axes and passing through (-3, 2, -5) is

A)
$$\frac{x+3}{1} = \frac{y-2}{1} = \frac{z+5}{1}$$

B) $\frac{x+3}{-1} = \frac{y-2}{1} - \frac{5+z}{-1}$
C) $\frac{x+3}{-1} = \frac{y-2}{-1} - \frac{z+5}{-1}$
D) $\frac{x+3}{-1} = \frac{y-2}{-1} - \frac{z+5}{-1}$

D) -1 1 -1-1 1 1 SEAL 17. If $\int_{0}^{\pi/2} \log \cos x \, dx = \frac{\pi}{2} \log \left(\frac{1}{2}\right)$ then $\int_{0}^{\pi/2} \log \sec x \, dx =$ A) $\frac{\pi}{2} \log(\frac{1}{2})$ B) $1 - \frac{\pi}{2} \log(\frac{1}{2})$ C) $1 + \frac{\pi}{2} \log(\frac{1}{2})$ D) $\frac{\pi}{2} \log 2$ SPACE FOR ROUGH WORK A= 101 1= = 5 122 = 100 Jah $\lambda^2 = \lambda^2 = \sqrt{50}$ J_{Σ} J_{Σ} J_{Σ} SJ_{Σ} dude t' - dude J' dy = 0mt udri v? dudrig

			-7-		44
18.	A boy tosses fair coi	n 3 times. If he g	ets₹2X for X heads	then his expected gain ec	quals to₹
	A) 1	B) $\frac{3}{2}$	C) 3	D) 4	
19.	Which of the follow	ving statement p	oattern is a tautology	1?	
	A) $p \lor (q \rightarrow p)$		B) $\sim q \rightarrow \sim p$)	
	C) $(q \rightarrow p) \vee (\sim p)$	\leftrightarrow q)	D) p∧~p		
20.	If the angle betwee	n the planes $\bar{\mathbf{r}}$.	$(m\hat{i} - \hat{j} + 2\hat{k}) + 3 = 0$	and $\mathbf{r}.(2\hat{\mathbf{i}}-\mathbf{m}\hat{\mathbf{j}}-\hat{\mathbf{k}})-\hat{\mathbf{s}}$	5 = 0 is
	$\frac{\pi}{3}$ then m =		,		
	A) 2	B) ± 3	Ø 3	D) -2	
21.	If the origin and the	points P(2, 3, 4	4), Q(1, 2, 3) and R(x, y, z) are co-planar the	en
	A) $x - 2y - z = 0$		B) x + 2y +	z = 0	
	C) x - 2y + z = 0		D) 2x - 2y +	-z = 0	
22.	If lines represented	by equation px	$^2 - qy^2 = 0$ are distin	net then	
	A) pq > 0	B) pq < 0	$\int pq = 0$	D) $p + q = 0$	
23	Let PORS be a d	uadrilateral If N	M and N are the mid	points of the sides PO	and RS

25. If vector \overline{r} with d.c.s. l, m, n is equally inclined to the co-ordinate axes, then the total number of such vectors is

-8-

44

SEAL

A) 4 B) 6 C) 8 D) 2 26. If $\int \frac{1}{(x^2+4)(x^2+9)} dx = A \tan^{-1} \frac{x}{2} + B \tan^{-1} \left(\frac{x}{3}\right) + C$ then A - B =A) $\frac{1}{6}$ B) $\frac{1}{30}$ C) $-\frac{1}{30}$ D) $-\frac{1}{6}$ 27. If α and β are roots of the equation $x^2 + 5|x| - 6 = 0$ then the value of $|\tan^{-1} \alpha - \tan^{-1} \beta|$ is A) $\frac{\pi}{2}$ B) 0 C) π D) $\frac{\pi}{4}$ 28. If $x = a(t - \frac{1}{t})$, $y = a(t + \frac{1}{t})$ where t be the parameter then $\frac{dy}{dx} = ?$

30. If
$$\int \sqrt{\frac{x-5}{x-7}} dx = A\sqrt{x^2 - 12x + 35} + \log |x-6 + \sqrt{x^2 - 12x + 35}| + C$$
 then A =
A) -1 B) $\frac{1}{2}$ C) $-\frac{1}{2}$ D) 1
31. Ar.v. X ~ B (n, p). If values of mean and variance of X are 18 and 12 respectively then total number of possible values of X are
A) 54 B) 55 C) 12 D) 18
32. The area of the region bounded by the lines $y = 2x + 1$, $y = 3x + 1$ and $x = 4$ is
A) 16 sq. unit B) $\frac{121}{3}$ sq. unit C) $\frac{121}{6}$ sq. unit D) 8 sq. unit
33. A box contains 6 pens, 2 of which are defective. Two pens are taken randomly from the box. If r.v. X : Number of defective pens obtained, then standard deviation of X =
A) $\pm \frac{4}{3\sqrt{5}}$ B) $\frac{8}{3}$ C) $\frac{16}{45}$ D) $\frac{4}{3\sqrt{5}}$

34. If the volume of spherical ball is increasing at the rate of 4π cc/sec then the rate of change of its surface area when the volume is 288π cc is

A)
$$\frac{4}{3}\pi$$
 cm²/sec
B) $\frac{2}{3}\pi$ cm²/sec
D) 2π cm²/sec

Tin= It

 $dV = 5\pi$ - 3nd 2 222 +n 2 72 5 \$×16 3/ S=416,2 th 216 Br 16 20 ¥= 5 153 X l = S r S= 8Th da det dy = GTT de

44
35. If
$$f(x) = \log(\sec^2 x)^{\cot^2 x}$$
 for $x \neq 0$
 $= K$ for $x = 0$
is continuous at $x = 0$ then K is
A) e^{-1} B) 1 C) e D) 0
36. If c denotes the contradiction then dual of the compound statement $-p \land (q \lor c)$ is
A) $\sim p \lor (q \land t)$ B) $\sim p \land (q \lor t)$ C) $p \lor (-q \lor t)$ $p \checkmark -p \lor (q \land c)$
37. The differential equation of all parabolas whose axis is y-axis is
A) $x \frac{d^2 y}{dx^2} - \frac{dy}{dx} = 0$ B) $x \frac{d^2 y}{dx^2} + \frac{dy}{dx} = 0$
C) $\frac{d^2 y}{dx^2} - y = 0$ $p \checkmark \frac{d^2 y}{dx^2} - \frac{dy}{dx} = 0$

 dx^2

-11-40. If the inverse of the matrix $\begin{bmatrix} \alpha & 14 & -1 \\ 2 & 3 & 1 \\ 6 & 2 & 3 \end{bmatrix}$ does not exist then the value of α is D) -2 C) 0 B) -1 A) 1 41. If f(x) = x for $x \le 0$ = 0 for x > 0 then f(x) at x = 0 is B) Not continuous but differentiable A) Continuous but not differentiable D) Not continuous and not differentiable C) Continuous and differentiable 42. The equation of the plane through (-1, 1, 2), whose normal makes equal acute angles with co-ordinate axes is B) $\overline{\mathbf{r}}.(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})=6$ A) $\overline{\mathbf{r}}.(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})=2$ D) $\overline{r}.(\hat{i}-\hat{j}+\hat{k})=3$ C) $\overline{r}.(3\hat{i}-3\hat{j}+3\hat{k}) = 2$

43. Probability that a person will develop immunity after vaccination is 0.8. If 8 people are given the vaccine then probability that all develop immunity is =

44

D) ${}^{8}C_{6} (0.2)^{6} (0.8)^{2}$ B) (0.8)⁸ C) 1 A) (0.2)⁸ 44. If the distance of points $2\hat{i} + 3\hat{j} + \lambda\hat{k}$ from the plane $r \cdot (3\hat{i} + 2\hat{j} + 6\hat{k}) = 13$ is 5 units then $\lambda = 13$ 17

A)
$$6, -\frac{17}{3}$$
 B) $6, \frac{17}{3}$ C) $-6, -\frac{17}{3}$ D) $-6, \frac{17}{3}$

7d - 16 - 1 (4 - 18

4						-	12-	Sanata Sa
45.	The val	ue of	\cos^{-1}	$\left(\cot\left(\frac{\pi}{2}\right)\right)$	$\left(\frac{1}{2}\right) + c$	os ⁻¹ (si	$\operatorname{in}\left(\frac{2\pi}{3}\right)$ is	
	A) $\frac{2\pi}{3}$			B) 7	π 3		C) $\frac{\pi}{2}$	D) π
46.	The par		r soluti	ion of t	he diffe	erential	equation xdy +	2ydx = 0, when $x = 2$, $y = 1$ is
	A) xy :	= 4		B) x	$x^2y = 4$		C) $xy^2 = 4$	D) $x^2y^2 = 4$
	ΔABC	has v A is	vertices	s at A =	$\equiv (2, 3, 1)$ ned to t	, 5), B he axes	$\equiv (-1, 3, 2)$ and	D) $x^2y^2 = 4$ $C \equiv (\lambda, 5, \mu)$. If the median s of λ and μ respectively are D) 7, 10
47.	\triangle ABC through A) 10,	has v hAis 7	equall	s at A ∎ y inclir B) 9	$\equiv (2, 3, 1)$ ned to t (2, 3, 1)	, 5), B he axes	\equiv (-1, 3, 2) and s, then the value	$C \equiv (\lambda, 5, \mu)$. If the median s of λ and μ respectively are
47.	\triangle ABC through A) 10,	has v hAis 7	equall	s at A ∎ y inclir B) 9	$\equiv (2, 3, 1)$ ned to t (2, 3, 1)	, 5), B he axes	$\equiv (-1, 3, 2) \text{ and}$ s, then the value C) 7, 9	$C \equiv (\lambda, 5, \mu)$. If the median s of λ and μ respectively are
47.	\triangle ABC through A) 10, For the	has w A is 7 follow	vertices equally wing di 2	s at A y inclin B) 9 istribut 3	$\equiv (2, 3, 1)$ ned to t (2, 3, 1)	, 5), B he axes notion I	$\equiv (-1, 3, 2) \text{ and}$ s, then the value C) 7, 9 F(x) of a r.v. X	$C \equiv (\lambda, 5, \mu)$. If the median s of λ and μ respectively are
47.	\triangle ABC through A) 10, For the	has v A is 7 follo 1 0.2	vertices equally wing di 2 0.37	s at A y inclin B) 9 istribut 3	$\equiv (2, 3)$ ned to t), 10 tion fur 4	, 5), B he axes notion I	$\equiv (-1, 3, 2) \text{ and}$ s, then the value C) 7, 9 F(x) of a r.v. X	$C \equiv (\lambda, 5, \mu)$. If the median s of λ and μ respectively are