

## MH - CET : 2017 M&THEM&TICS



## OFFICIAL PAPER CODE: 11

1

**Rao IIT Academy** 



|          | Rao IIT Academy / MH - CET - 2017 / Mathematics / QP / CODE - 11                                                                                                 |                                                  |                                                        |                                                      |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|--|--|
| 6.       | If $\int \frac{1}{(x^2+4)(x^2+4)}$                                                                                                                               | $\frac{1}{x+9}dx = A\tan^{-1}$                   | $-1\frac{x}{2} + B\tan^{-1}\left(\frac{x}{3}\right) +$ | C then $A - B =$                                     |  |  |
|          | $(A)\frac{1}{6}$                                                                                                                                                 | (B) $\frac{1}{30}$                               | $(C) = \frac{1}{30}$                                   | $(D) = \frac{1}{6}$                                  |  |  |
| 7.       | If $lpha$ and $eta$ are roots                                                                                                                                    | of the equation $x^2$                            | $x^2+5 x -6=0$ then the                                | e value of $ \tan^{-1} \alpha - \tan^{-1} \beta $ is |  |  |
|          | (A) $\frac{\pi}{2}$                                                                                                                                              | (B) ()                                           | (C) π                                                  | (D) $\frac{\pi}{4}$                                  |  |  |
| 8.       | If $x = a\left(t - \frac{1}{t}\right)$                                                                                                                           | $, y = a\left(t + \frac{1}{t}\right) \mathbf{v}$ | where $t$ be the parameter t                           | then $\frac{dy}{dx} = ?$                             |  |  |
|          | (A) $\frac{y}{x}$                                                                                                                                                | (B) $\frac{-x}{y}$                               | (C) $\frac{x}{y}$                                      | $(D)\frac{-y}{x}$                                    |  |  |
| 9.       | The point on the $2x + y - 5 = 0$ is                                                                                                                             | e curve $y = \sqrt{x}$                           | -1 where the tanger                                    | nt is perpendicular to the line                      |  |  |
|          | (A)(2,-1)                                                                                                                                                        | (B) $(10, 3)$                                    | (C)(2,1)                                               | (D)(5,-2)                                            |  |  |
| 10.      | If $\int \sqrt{\frac{x-5}{x-7}} dx =$                                                                                                                            | $=A\sqrt{x^2 - 12x + 1}$                         | $35 + \log x - 6 + \sqrt{x^2}$                         | X - 12x + 35  + C then $A =$                         |  |  |
|          | (A) <u>-1</u>                                                                                                                                                    | (B) $\frac{1}{2}$                                | $(C) - \frac{1}{2}$                                    | (D)1                                                 |  |  |
| 11.      | The number of prir                                                                                                                                               | cipal solutions of t                             | $\tan 2\theta = 1$ is                                  | 2                                                    |  |  |
|          | (A) One                                                                                                                                                          | (B) Two                                          | (C) Three                                              | (D) Four                                             |  |  |
| 12.      | The objective function $z = 4x_1 + 5x_2$ , subject to $2x_1 + x_2 \ge 7$ , $2x_1 + 3x_2 \le 15$ , $x_2 \le 3$ , $x_1, x_2 \ge 0$ has minimum value at the point. |                                                  |                                                        |                                                      |  |  |
|          | (A) On x-axis                                                                                                                                                    |                                                  | (B) On y-axis                                          |                                                      |  |  |
|          | (C) At the origin (D) On the line parallel to x-axis                                                                                                             |                                                  |                                                        |                                                      |  |  |
|          |                                                                                                                                                                  |                                                  |                                                        |                                                      |  |  |
| <u> </u> | Space for rough use                                                                                                                                              |                                                  |                                                        |                                                      |  |  |
|          |                                                                                                                                                                  |                                                  |                                                        |                                                      |  |  |
|          |                                                                                                                                                                  |                                                  |                                                        |                                                      |  |  |
|          |                                                                                                                                                                  |                                                  |                                                        |                                                      |  |  |
|          |                                                                                                                                                                  |                                                  |                                                        |                                                      |  |  |
|          |                                                                                                                                                                  |                                                  |                                                        |                                                      |  |  |
|          | Rao IIT Academy                                                                                                                                                  |                                                  | 2                                                      | Website : www.raoiit.com                             |  |  |

## Rao IIT Academy / MH - CET - 2017 / Mathematics / QP / CODE - 11

| $\square$ | Rao IIT Academy                                                                                                                                                                                                                           |                                         | 3                                                                           | Website : www.raoiit.com           |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------|------------------------------------|--|
|           |                                                                                                                                                                                                                                           |                                         | ~                                                                           |                                    |  |
|           |                                                                                                                                                                                                                                           |                                         |                                                                             |                                    |  |
|           |                                                                                                                                                                                                                                           | Space                                   | for rough use                                                               |                                    |  |
|           |                                                                                                                                                                                                                                           |                                         |                                                                             |                                    |  |
|           | (C) At least one of the                                                                                                                                                                                                                   | e corner points                         | (D) None of the                                                             | e corner points                    |  |
|           | (A) At least two of the                                                                                                                                                                                                                   |                                         | er the convex set attains its optimum value at<br>(B) All the corner points |                                    |  |
| 19.       |                                                                                                                                                                                                                                           |                                         |                                                                             |                                    |  |
|           | $\int_{0} [x] dx =$                                                                                                                                                                                                                       | (B) 0                                   | (C) 2                                                                       | (D) 1                              |  |
| 18.       | u.u                                                                                                                                                                                                                                       | , where $[x]$ is §                      |                                                                             |                                    |  |
|           | $(C) \frac{d^2y}{dx^2} - y = 0$                                                                                                                                                                                                           |                                         | (D) $\frac{d^2y}{dx^2} - \frac{dy}{dx}$                                     | = 0                                |  |
|           | (A) $x\frac{d^2y}{dx^2} - \frac{dy}{dx} = 0$                                                                                                                                                                                              |                                         | (B) $x \frac{d^2y}{dx^2} + \frac{d}{dx}$                                    | $\frac{y}{x} = 0$                  |  |
| 17.       |                                                                                                                                                                                                                                           | tion of all parabolas wl                |                                                                             |                                    |  |
|           |                                                                                                                                                                                                                                           |                                         |                                                                             | (D) $\sim p \lor (q \land c)$      |  |
| 16.       | If c denotes the contradiction then dual of the compound statement $\sim p \land (q \lor c)$ is                                                                                                                                           |                                         |                                                                             |                                    |  |
|           | $(A)\frac{\pi}{4} + \frac{1}{2}$                                                                                                                                                                                                          | (B) $\frac{\pi}{4} = \frac{1}{2}$       | (C) $\frac{1}{2} - \frac{\pi}{4}$                                           | (D) $-\frac{\pi}{4} - \frac{1}{2}$ |  |
| 15.       | $\int_0^1 x \tan^{-1} x dx =$                                                                                                                                                                                                             |                                         |                                                                             |                                    |  |
|           | (A) <i>e</i>                                                                                                                                                                                                                              | (B) $\frac{1}{e}$                       | (C) $e^{2}$                                                                 | $(D)\frac{1}{e^2}$                 |  |
| 14.       |                                                                                                                                                                                                                                           | of $f(x) = \frac{\log x}{x} (x \neq 1)$ |                                                                             | 1                                  |  |
|           | (A) 1                                                                                                                                                                                                                                     | . ,                                     |                                                                             |                                    |  |
|           | A(2, 1, 4), B(-1, 3, (A))                                                                                                                                                                                                                 | (B) 4 (b) $z_1 + z_2 = z_2$             | (C) 5                                                                       | (D) 10                             |  |
| 13.       | If $z_1$ and $z_2$ are z co-ordinates of the points of trisection of the segment joining the points $A(2, 1, 4) = B(-1, 2, 6)$ there $z_1 = 1$ and $z_2$ are z co-ordinates of the points of trisection of the segment joining the points |                                         |                                                                             |                                    |  |



|           | Rao I                                                                                                                                                                     | IT Academy / MH - CET -                                    | 2017 / Mathematics / QP /     | CODE - 11                        |  |  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------|----------------------------------|--|--|
| 26.       | A $r.v.X \sim B(n, p)$ . If values of mean and variance of X are 18 and 12 respectively then total number of possible values of X are                                     |                                                            |                               |                                  |  |  |
|           | (A) 54                                                                                                                                                                    | (B) 55                                                     | (C) 12                        | (D) 18                           |  |  |
| 27.       | The area of the region bounded by the lines $y=2x+1, y=3x+1$ and $x=4$ is                                                                                                 |                                                            |                               |                                  |  |  |
|           | (A) 16 sq. unit                                                                                                                                                           | (B) $\frac{121}{3}$ sq. unit                               | (C) $\frac{121}{6}$ sq. unit  | (D) 8 sq. unit                   |  |  |
| 28.       | A box contains 6 pens, 2 of which are defective. Two pens are taken randomly from the box. If r.v. X: Number of defective pens obtained, then standard deviation of $X =$ |                                                            |                               |                                  |  |  |
|           | $(A) \pm \frac{4}{3\sqrt{5}}$                                                                                                                                             | (B) $\frac{8}{3}$                                          | (C) $\frac{16}{45}$           | $(D)\frac{5}{3\sqrt{5}}$         |  |  |
| 29.       |                                                                                                                                                                           | herical ball is increasing<br>the volume is $288\pi$ cc is | g at the rate of $4\pi$ cc/se | c then the rate of change of its |  |  |
|           | $(A)\frac{4}{3}\pi  cm^2/\sec$                                                                                                                                            | (B) $\frac{2}{3}\pi  cm^2/\sec$                            | (C) $4\pi cm^2/\sec$          | (D) $2\pi cm^2/\sec$             |  |  |
| 30.       | If $f(x) = \log(\sec^2 x)$<br>= K                                                                                                                                         | $(x)^{\cot 2}x$ for $x \neq 0$<br>for $x = 0$              | is continuous at x =0 the     | en K is                          |  |  |
|           | (A) $e^{-1}$                                                                                                                                                              | (B) 1                                                      | (C) e                         | (D) ()                           |  |  |
| 31.       | (A) $x - 2y - z = 0$ (B) $x + 2y + z = 0$                                                                                                                                 |                                                            |                               |                                  |  |  |
|           |                                                                                                                                                                           |                                                            |                               |                                  |  |  |
|           | (C) $x - 2y + z = 0$ (D) $2x - 2y + z = 0$                                                                                                                                |                                                            |                               |                                  |  |  |
| 32.       |                                                                                                                                                                           | by equation $px^2 - qy^2$                                  |                               |                                  |  |  |
|           | (A) $pq > 0$                                                                                                                                                              | (B) $pq < 0$                                               | (C) $pq = 0$                  | (D) $p + q = 0$                  |  |  |
|           |                                                                                                                                                                           |                                                            |                               |                                  |  |  |
|           |                                                                                                                                                                           |                                                            |                               |                                  |  |  |
|           |                                                                                                                                                                           |                                                            |                               |                                  |  |  |
|           | Space for rough use                                                                                                                                                       |                                                            |                               |                                  |  |  |
|           |                                                                                                                                                                           |                                                            |                               |                                  |  |  |
|           |                                                                                                                                                                           |                                                            |                               |                                  |  |  |
|           |                                                                                                                                                                           |                                                            |                               |                                  |  |  |
|           |                                                                                                                                                                           |                                                            |                               |                                  |  |  |
|           |                                                                                                                                                                           |                                                            |                               |                                  |  |  |
|           |                                                                                                                                                                           |                                                            |                               |                                  |  |  |
| $\square$ | Rao IIT Academy                                                                                                                                                           |                                                            | 5 We                          | ebsite : www.raoiit.com          |  |  |

| Rao IIT Academy / MH - CET - 2017 / Mathematics / QP / CODE - 11 |                                                                               |                                                                                                    |                                                                  |                                                           |  |  |
|------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------|--|--|
| 33.                                                              | Let $\Box PQRS$ be a contract then $\overline{PS} + \overline{QR} =$          | quadrilateral. If M a                                                                              | nd N are the midpoint                                            | s of the sides PQ and RS respectively                     |  |  |
|                                                                  | (A) $3\overline{MN}$                                                          | (B) $4\overline{MN}$                                                                               | (C) $2\overline{MN}$                                             | (D) $2\overline{NM}$                                      |  |  |
| 34.                                                              | If slopes of lines rep                                                        | presented by $Kx^2$ +                                                                              | $-5xy + y^2 = 0$ differ                                          | by 1 then $K =$                                           |  |  |
|                                                                  | (A) 2                                                                         | (B) 3                                                                                              | (C) 6                                                            | (D) 8                                                     |  |  |
| 35.                                                              | If vector $ar{r}$ with d.c such vectors is                                    | s. l, m, n is equally                                                                              | inclined to the co-ord                                           | linate axes, then the total number of                     |  |  |
|                                                                  | (A) 4                                                                         | (B) 6                                                                                              | (C) 8                                                            | (D) 2                                                     |  |  |
| 36.                                                              | The particular solut                                                          | tion of the differenti                                                                             | al equation $xdy+2yd$                                            | lx=0, when $x=2,y=1$ is                                   |  |  |
|                                                                  | (A) $xy = 4$                                                                  | (B) $x^2y = 4$                                                                                     | (C) $xy^2 = 4$                                                   | (D) $x^2 y^2 = 4$                                         |  |  |
| 37.                                                              |                                                                               |                                                                                                    | $B=(-1,3,2)$ and $C$ values of $\lambda$ and $\mu$ respectively. | $=(\lambda,5,\mu)$ . If the median through A ectively are |  |  |
|                                                                  | (A) 10, 7                                                                     | (B) 9, 10                                                                                          | (C) 7, 9                                                         | (D)7,10                                                   |  |  |
| 38.                                                              | For the following d<br>$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | istribution         function           4         5         6           0.62         0.85         1 | F(x) of a.r.v. X                                                 |                                                           |  |  |
|                                                                  | (A) 0.48                                                                      | (B) 0.37                                                                                           | (C) 0.27                                                         | (D) 1.47                                                  |  |  |
| 39.                                                              | The lines $\frac{x-1}{2} =$                                                   | $\frac{y+1}{2} = \frac{z-1}{4}$ and                                                                | $1\frac{x-3}{1} = \frac{y-k}{1} = \frac{z}{1}$                   | - intersect each other at point                           |  |  |
|                                                                  |                                                                               | (B) (-2, -4, -5)                                                                                   | (C) (2,4,-5)                                                     | (D) (2, -4, -5)                                           |  |  |
|                                                                  |                                                                               |                                                                                                    |                                                                  |                                                           |  |  |
|                                                                  |                                                                               |                                                                                                    |                                                                  |                                                           |  |  |
|                                                                  |                                                                               |                                                                                                    |                                                                  |                                                           |  |  |
| <u> </u>                                                         |                                                                               | S                                                                                                  | pace for rough use                                               |                                                           |  |  |
|                                                                  |                                                                               |                                                                                                    |                                                                  |                                                           |  |  |
|                                                                  |                                                                               |                                                                                                    |                                                                  |                                                           |  |  |
|                                                                  |                                                                               |                                                                                                    |                                                                  |                                                           |  |  |
|                                                                  |                                                                               |                                                                                                    |                                                                  |                                                           |  |  |
|                                                                  |                                                                               |                                                                                                    |                                                                  |                                                           |  |  |
|                                                                  | Rao IIT Academy                                                               |                                                                                                    | (6)                                                              | Website : www.raoiit.com                                  |  |  |
|                                                                  | Kau III Academy                                                               |                                                                                                    |                                                                  | website. www.iaoiit.com                                   |  |  |

## Rao IIT Academy / MH - CET - 2017 / Mathematics / QP / CODE - 11

|     | Rao IIT Academy                                                                                    |                                                                              | 7 Wel                                                          | bsite : www.raoiit.com                                 |
|-----|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|
|     |                                                                                                    |                                                                              |                                                                |                                                        |
|     |                                                                                                    |                                                                              |                                                                |                                                        |
|     |                                                                                                    | Space fo                                                                     | or rough use                                                   |                                                        |
|     |                                                                                                    |                                                                              |                                                                |                                                        |
|     |                                                                                                    |                                                                              |                                                                |                                                        |
|     | (A)2                                                                                               | (B) ±3                                                                       | (C) 3                                                          | (D)-2                                                  |
| 45. | If the angle between t $m =$                                                                       |                                                                              |                                                                | $(\hat{-}m\hat{j}-\hat{k})-5=0$ is $rac{\pi}{3}$ then |
| 44. | Which of the followin<br>(A) $p \lor (q \to p)$<br>(C) $(q \to p) \lor (\sim p \leftrightarrow p)$ | ag statement pattern is a $\leftrightarrow q)$                               | (B) $\sim q \rightarrow \sim p$<br>(D) $p \wedge \sim p$       |                                                        |
|     | (A)1                                                                                               | 2                                                                            | (C) 3                                                          | (D) 4                                                  |
| 43. | A boy tosses fair coin                                                                             | 3 times. If he gets Rs. 2                                                    | X for X heads then his e                                       | xpected gain equals to Rs                              |
|     | $(A)\frac{\pi}{2}\log\left(\frac{1}{2}\right)$                                                     | $(B) \ 1 - \frac{\pi}{2} \log\left(\frac{1}{2}\right)$                       | $(C) 1 + \frac{\pi}{2} \log\left(\frac{1}{2}\right)$           | $(D)\frac{\pi}{2}\log 2$                               |
| 42. | If $\int_0^{\frac{\pi}{2}} \log \cos x  dx =$                                                      | $= \frac{\pi}{2} \log\left(\frac{1}{2}\right)$ then $\int_0^{\frac{\pi}{2}}$ | $\log \sec x  dx =$                                            |                                                        |
|     | (C) $\frac{1}{x+3} = \frac{y-2}{1} =$                                                              | 1                                                                            | (D) $\frac{1}{x+3} = \frac{1}{2-3}$                            | 1                                                      |
| 41. | The equation of line e<br>(A) $\frac{x+3}{1} = \frac{y-2}{1} =$                                    | 1 5                                                                          | dinate axes and passing<br>(B) $\frac{x+3}{1} = \frac{y-2}{1}$ |                                                        |
|     | 0                                                                                                  | 1                                                                            | $(C)\frac{\sec^6 x}{6} + c$                                    | 9                                                      |
| 40. | $\int \frac{\sec^8 x}{\csc x} dx =$                                                                | _                                                                            | c.                                                             | <u>^</u>                                               |
|     | (                                                                                                  |                                                                              |                                                                |                                                        |

