Mathematics Single Correct Questions +2 | -0 $\pi/4$ $\int_{\Omega} x \cdot \sec^2 x \, dx =$ 1. $(\mathsf{A}) \quad \frac{\pi}{4} + \log \sqrt{2}$ (B) $\frac{\pi}{4} - \log\sqrt{2}$ (C) $1 + \log \sqrt{2}$ $\text{(D)} \quad 1-\frac{1}{2}\log 2$ In $\triangle ABC$, with usual notations, if a,b,c are in A.P. then $a\cos^2\left(\frac{C}{2}\right) + c\cos^2\left(\frac{A}{2}\right) =$ 2. (A) $3\frac{a}{2}$ (B) $3\frac{c}{2}$ (C) $3\frac{b}{2}$ (D) $\frac{3abc}{2}$ If $X = e^{\theta} (\sin \theta - \cos \theta), y = e^{\theta} (\sin \theta + \cos \theta) \operatorname{then} \frac{dy}{dx}$ at $\theta =$ $\frac{\pi}{4}$ is 3. (A) 1 (B) 0 $\frac{1}{\sqrt{2}}$ (C) $\sqrt{2}$ (D) The number of solutions of $\sin x + \sin 3x + \sin 5x = 0$ in the interval $\left[\frac{\pi}{2}, 3\frac{\pi}{2}\right]$ is 4. (A) $\mathbf{2}$ $\mathbf{3}$ (B) (C) 4

(D) 5

Space for rough use

Rao IIT Academy

1

If $\tan^{-1} 2x + \tan^{-1} 3x = \frac{\pi}{4}$, then x =5. (A) -1 $\frac{1}{3}$ (B) $\frac{1}{6}$ (C) $\frac{1}{2}$ (D) Matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 5 \\ 2 & 4 & 7 \end{bmatrix}$ then the value of $a_{31}A_{31} + a_{32}A_{32} + a_{33}A_{33}$ is 6. (A) 1 (B) 13(C) -1

- (D) -13
- 7. The contrapositive of the statement : "If the weather is fine then my friends will come and we go for a picnic."
 - (A) The weather is fine but my friends will not come or we do not go for a picnic.
 - (B) If my friends do not come or we do not go for picnic then weather will not be fine.
 - (C) If the weather is not fine then my friends will not come or we do not go for a picnic.
 - (D) The weather is not fine but my friends will come and we go for a picnic.
- 8. If $f(x) = \frac{x}{x^2 + 1}$ is increasing function on then the value of x lies in
 - (A) *R*
 - (B) $(-\infty, -1)$
 - (C) $(1,\infty)$
 - (D) (-1,1)

```
9. If X = (4^n - 3n - 1 : n \in N) and Y = \{9(n - 1) : n \in N\}, then X \cap Y = \{9(n - 1) : n \in N\}
```

- (A) *X*
- (B) *Y*
- (C) Ø
- (D) {0}

- 10. The statement pattern $p \land (\sim p \land q)$ is
 - (A) a tautology
 - (B) a contradiction
 - (C) equivalent to $p \wedge q$
 - (D) equivalent to $p \lor q$

11. If
$$\int_{0}^{k} \frac{dx}{2+18x^{2}} = \frac{\pi}{24}$$
, then the value of k is
(A) 3
(B) 4
(C) $\frac{1}{3}$
(D) $\frac{1}{4}$

12. The cartesian co-ordinates of the point on the parabola $y^2 = -16x$, whose parameter is $\frac{1}{2}$ are

- (A) (-2,4)
- (B) (4,−1)
- (C) (-1, -4)
- (D) (-1,4)

13. $\int \frac{1}{\sin x \cdot \cos^2 x} dx =$

- (A) $\sec x + \log |\sec x + \tan x| + c$
- (B) $\sec x \cdot \tan x + c$
- (C) $\sec x + \log|\sec x \tan x| + c$
- (D) $\sec x + \log |\cos \sec x \cot x| + c$

If $\log_{10}\left(rac{x^3-y^3}{x^3+y^3}
ight)=2$ then $rac{dy}{dx}=$ 14. (A) $\frac{x}{y}$ (B) $-\frac{y}{x}$ (C) $-\frac{x}{y}$ $\frac{y}{x}$ (D) If $f: R - \{2\} \to R$ is a function defined by $f(x) = \frac{x^2 - 4}{x - 2}$, then range is 15. (A) *R* (B) $R - \{2\}$ (C) $R - \{4\}$ (D) $R - \{-2, 2\}$ If planes $\bar{r} \cdot \left(p\hat{i} - \hat{j} + 2\hat{k}\right) + 3 = 0$ and $\bar{r} \cdot \left(2\hat{i} - p\hat{j} - \hat{k}\right) - 5 = 0$ include angle $\frac{\pi}{3}$ then the value of p is 16. (A) 1, −3

- (B) −1,3
- (C) −3
- (D) 3
- 17. The order of the differential equation of all parabolas, whose latus rectum is 4a and axis parallel to the x-axis, is
 - (A) One
 - (B) Four
 - (C) Three
 - (D) Two

Space for rough use

ACAP

18. If lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$ and $\frac{y-k}{2} = z$ intersect the the value of k is (A) $\frac{9}{2}$ (B) $\frac{1}{2}$ (C) $\frac{5}{2}$ (D) $\frac{7}{2}$

19. If a line makes angles 120^0 and 60^0 with the positive directions of X and Z axes respectively then the angle made by the line with positive Y – axis is

- (A) 150°
- (B) 60⁰
- (C) 135^0
- (D) 120⁰
- 20. *L* and *M* are two points with position vectors $2\bar{a} \bar{b}$ and $\bar{a} + 2\bar{b}$ respectively. The position vector of the point N which divides the line segment LM in the ratio 2:1 externally is
 - (A) $3\overline{b}$
 - (B) $4\bar{b}$
 - (C) $5\bar{b}$
 - (D) $3\bar{a} + 4\bar{b}$
- 21. $\cos 1^{\circ} \cdot \cos 2^{\circ} \cdot \cos 3^{\circ} \dots \cos 179^{\circ} =$
 - (A) 0
 - (B) 1
 - (C) $-\frac{1}{2}$
 - (D) -1
- 22. If planes x cy bz = 0, cx y + az = 0 pass through a straight line then $a^2 + b^2 + c^2 = 0$
 - (A) 1 abc
 - (B) *abc* − 1
 - (C) 1 2abc
 - (D) 2abc 1

- 23. The point of intersection of lines represented by $x^2 y^2 + x + 3y 2 = 0$ is
 - (A) (1,0)
 - (B) (0,2)
 - (C) $\left(-\frac{1}{2},\frac{3}{2}\right)$
 - (D) $\left(\frac{1}{2}, \frac{1}{2}\right)$

24. A die is rolled. If X denotes the number of positive divisors of the outcome then the range of the random variable X is (A) $\{1,2,3\}$

- (B) $\{1, 2, 3, 4\}$
- (C) $\{1, 2, 3, 4, 5, 6\}$
- (D) $\{1, 3, 5\}$
- 25. A die is thrown four times. The probability of getting perfect square in at least one throw is
 - (A) $\frac{16}{81}$
 - 65
 - (B) $\frac{68}{81}$
 - (C) $\frac{23}{21}$
 - $\frac{1}{81}$
 - (D) $\frac{58}{81}$

26. If the line y = 4x - 5 touches to the curve $y^2 = ax^3 + b$ at the point (2, 3) then $7a + 2b = 3b^2$

- (A)
 - (B) 1
 - (C) −1

0

- (D) 2
- 27. The sides of a rectangle are given by $x = \pm a$ and $y = \pm b$. Then equation of the circle passing through the vertices of the rectangle is
 - (A) $x^2 + y^2 = a^2$
 - (B) $x^2 + y^2 = a^2 + b^2$
 - (C) $x^2 + y^2 = a^2 b^2$
 - (D) $(x-a)^2 + (y-b^2) = a^2 + b^2$

The minimum value of the function $f(x) = x \log x$ is 28. $-\frac{1}{e}$ (A) -e(B) $\frac{1}{e}$ (C) (D) e If X - B(n,p) with n = 10, p = 0.4 then $E(X^2) =$ 29. 4(A) (B) 2.4(C) 3.6(D) 18.4 The general solution of differential equation $\frac{dx}{dy} = \cos(x+y)$ is 30. (A) $\tan\left(\frac{x+y}{2}\right) = y+c$ (B) $\tan\left(\frac{x+y}{2}\right) = x+c$ (C) $\cot\left(\frac{x+y}{2}\right) = y+c$ (D) $\cot\left(\frac{x+y}{2}\right) = x+c$

- 31. Letters in the word HULULULU are rearranged. The probability of all three L being together is
 - (A) $\frac{3}{20}$
 - (B) $\frac{2}{5}$
 - (C) $\frac{3}{22}$
 - $(C) \quad \frac{1}{28}$
 - (D) $\frac{0}{23}$

Space for rough use

ACAP

32. The sum of the first 10 terms of the series 9 + 99 + 999 + is
(A)
$$\frac{9}{8}(9^{10} - 1)$$

(B) $\frac{100}{9}(10^9 - 1)$
(C) $10^9 - 1$
(D) $\frac{100}{9}(10^{10} - 1)$
33. If *A*, *B*, *C* are the angle of △*ABC* then $\cot A$. $\cot B + \cot B$. $\cot C$. $\cot A =$
(A) 0
(B) 1
(C) 2
(D) -1
34. If $\frac{dx}{\sqrt{16 - 9x^2}} = A\sin^{-1}(Bx) + C$ then $A + B =$
(A) $\frac{9}{4}$
(B) $\frac{19}{4}$
(C) $\frac{3}{4}$
(D) $\frac{13}{12}$
35. $\int e^x \left[\frac{2 + \sin 2x}{1 + \cos 2x}\right] dx =$
(A) $e^x \tan x + C$
(B) $e^x \tan x + C$
(C) $2e^x \tan x + C$
(D) $e^x \tan 2x + C$
36. If a, \bar{b}, \bar{c} are mutually perpendicular vectors having magnitude 1, 2, 3 respectively, then $[\bar{a} + \bar{b} + \bar{c} - \bar{b} - \bar{a} - \bar{c}] =$
(A) 0
(B) 6

- (B)
- 12(C)
- 18 (D)

37. If points P(4, 5, x), Q(3, y, 4) and R(5, 8, 0) are collinear, then the value of x + y is

- (A) -4
- (B) 3
- (C) 5
- (D) 4

38. If the slope of one of the lines given by $ax^2 + 2hxy + by^2 = 0$ is two times the other then

- (A) $8h^2 = 9ab$
- (B) $8h^2 = 9ab^2$
- (C) 8h = 9ab
- (D) $8h = 9ab^2$
- 39. The equation of the line passing through the point (-3,1) and bisecting the angle between co-ordinate axes is
 - (A) x + y + 2 = 0
 - (B) -x + y + 2 = 0
 - (C) x y + 4 = 0
 - (D) 2x + y + 5 = 0
- 40. The negation of the statement : "Getting above 95% marks is necessary condition for Hema to get the admission in good college".
 - (A) Hema gets above 95% marks but she does not get the admission condition for Hema to get the
 - (A) admission in good college."
 - (B) Hema does not get above 95% marks and she gets admission in good college
 - (C) If Hema does not get above 95% marks then she will not get the admission in good college.

 $+ \beta^2$ is

(D) Hema does not get above 95% marks or she gets the admission in good college.

10.000

41. If
$$f(x) = x^2 + \alpha$$
 for $x \ge 0$
 $= 2\sqrt{x^2 + 1} + \beta$ for $x < 0$
is continuous at $x = 0$ and $f\left(\frac{1}{2}\right) = 2$ then α^2
(A) 3
(B) $\frac{8}{25}$
(C) $\frac{25}{8}$
(D) $\frac{1}{2}$

Space for rough use

3

42. If
$$y = (\tan^{-1} x)^2$$
 then $(x^2 + 1)^2 \frac{d^2 y}{dx^2} + 2x(x^2 + 1)\frac{dy}{dx} =$

- (A) 4
- (B) 2
- (C) 1
- (D) 0

43. The line 5x + y - 1 = 0 coincides with one of the lines given by $5x^2 + xy - kx - 2y + 2 = 0$ then the value of k is (A) -11

- (B) 31
- (C) 11
- (D) -31

44. If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 1 & 2 \\ 1 & 2 & 4 \end{bmatrix}$$
 then $(A^2 - 5A)A^{-1} =$
(A) $\begin{bmatrix} 4 & 2 & 3 \\ -1 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$
(B) $\begin{bmatrix} -4 & 2 & 3 \\ -1 & -4 & 2 \\ 1 & 2 & -1 \end{bmatrix}$
(C) $\begin{bmatrix} -4 & -1 & 1 \\ 2 & -4 & 2 \\ 3 & 2 & -1 \end{bmatrix}$
(D) $\begin{bmatrix} -1 & -2 & 1 \\ 4 & -2 & -3 \\ 1 & 4 & -2 \end{bmatrix}$

45. The equation of line passing through (3, -1, 2) and perpendicular to the lines $\bar{r} = (\hat{i} + \hat{j} - \hat{k}) + \lambda(2\hat{i} - 2\hat{j} + \hat{k})$ and $\bar{r} = (2\hat{i} + \hat{j} - 3\hat{k}) + \mu(\hat{i} - 2\hat{j} + 2\hat{k})$ is

(A)	$\frac{x+3}{2} = \frac{y+1}{3} = \frac{z-2}{2}$
(B)	$\frac{x-3}{3} = \frac{y+1}{2} = \frac{z-2}{2}$
(C)	$\frac{x-3}{2} = \frac{y+1}{3} = \frac{z-2}{2}$
(D)	$\frac{x-3}{2} = \frac{y+1}{2} = \frac{z-2}{3}$

- A coin is tossed three times. If X denotes the absolute difference between the number of heads and the number of tails then P(X = 1) =46.
 - $\frac{1}{2}$ (A) $\frac{2}{3}$ (B)

 - $\frac{1}{6} \\ \frac{3}{4}$ (C)

- If $2\sin\left(\theta+\frac{\pi}{3}\right)=\cos\left(\theta-\frac{\pi}{6}\right)$, then $\tan\theta=$ 47. (A) $\sqrt{3}$ (B) $-\frac{1}{\sqrt{3}}$ (C) $\frac{1}{\sqrt{3}}$ (D) $-\sqrt{3}$
- The area of the region bounded by $x^2 = 4y$, y = 1, y = 4 and the y-axis lying in the first quadrant is ______ square units. 48.
 - $\frac{22}{3}$ (A)

 - $\frac{28}{3}$ (B)
 - (C) 30
 - $\underline{21}$ (D) 4

(A)

(B)

(D)

 $\frac{2}{3} \\ \frac{5}{2}$

1 (C)

 $\frac{3}{2}$

If $f(x) = \frac{e^{x^2} - \cos x}{x^2}$, for $x \neq 0$ is continuous at x = 0, then value of f(0) is 49.

Space for rough use

Rao IIT Academy

50. The maximum value of 2x + y subject to $3x + 5y \le 26$ and $5x + 3y \le 30, x \ge 0, y \ge 0$ is

- (A) 12
- (B) 11.5
- (C) 10
- (D) 17.33

