Rao IIT Academy

Symbol of Excellence and Perfection
JEE | MEDICAL-UG | BOARDS | KVPY | NTSE | OLYMPIADS

HSC - BOARD - 2016

Date: 24.02.2016

PHYSICS (54)-SOLUTIONS

SECTION - I

Q. 1
(i) Analytical method:
i. Consider a particle performing circular motion in anticlockwise sense with centre O and radius r as shown in figure
ii. Let $\vec{\omega}=$ angular velocity
$\overrightarrow{\mathrm{v}}=$ linear velocity
$\overrightarrow{\mathrm{r}}=$ radius vector
iii. Linear displacement in vector form is given by
$\overrightarrow{\delta s}=\overrightarrow{\delta \theta} \times \vec{r}$
Dividing both side by $\delta \mathrm{t}$, we have
$\frac{\overrightarrow{\delta \mathrm{s}}}{\delta \mathrm{t}}=\frac{\overrightarrow{\delta \theta}}{\delta \mathrm{t}} \times \overrightarrow{\mathrm{r}}$

iv. Taking limiting value in equation (i) we have $\lim _{\delta t \rightarrow 0} \frac{\overrightarrow{\delta s}}{\delta t}=\lim _{\delta t \rightarrow 0} \frac{\overrightarrow{\delta \theta}}{\delta t} \times \overrightarrow{\mathrm{r}}$
$\therefore \frac{\overrightarrow{\mathrm{ds}}}{\mathrm{dt}}=\frac{\overrightarrow{\mathrm{d} \theta}}{\mathrm{dt}} \times \overrightarrow{\mathrm{r}}$
But $\frac{\overrightarrow{\mathrm{ds}}}{\mathrm{dt}}=\overrightarrow{\mathrm{v}}=$ linear velocity
$\frac{\overrightarrow{\mathrm{d} \theta}}{\mathrm{dt}}=\vec{\omega}=$ angular velocity
$\therefore \overrightarrow{\mathrm{v}}=\vec{\omega} \times \overrightarrow{\mathrm{r}}$
(1) marks
or

Calculus method

i. Let a particle is moving in XY plane with position vector,
$\vec{r}=r \hat{i} \cos \omega t+r \hat{j} \sin \omega t$
ii. Angular velocity is directed as perpendicular to plane i.e., along Z-axis

It is given by $\vec{\omega}=\omega \hat{k}$
Where $\hat{\mathrm{k}}=$ unit vector along Z - axis
iii. $\vec{\omega} \times \overrightarrow{\mathrm{r}}=\omega \hat{\mathrm{k}} \times(\mathrm{r} \hat{\mathrm{i}} \cos \omega \mathrm{t}+\mathrm{r} \hat{\mathrm{j}} \sin \omega \mathrm{t}) \quad$ [From equation (i)]

$$
\begin{align*}
& =\omega \mathrm{r} \cos \omega \mathrm{t} .(\hat{\mathrm{k}} \times \hat{\mathrm{i}})+\omega \mathrm{r} \sin \omega \mathrm{t} \cdot(\hat{\mathrm{k}} \times \hat{\mathrm{j}}) \\
& =\omega \mathrm{r} \hat{\mathrm{j}} \cos \omega \mathrm{t}+\omega \mathrm{r}(-\hat{\mathrm{i}}) \sin \omega \mathrm{t} \\
& \therefore \vec{\omega} \times \overrightarrow{\mathrm{r}}=-\mathrm{r} \omega \hat{\mathrm{i}} \sin \omega \mathrm{t}+\omega \mathrm{r} \hat{\mathrm{j}} \cos \omega \mathrm{t} \\
& \therefore \vec{\omega} \times \overrightarrow{\mathrm{r}}=\mathrm{r} \omega(-\hat{\mathrm{i}} \sin \omega \mathrm{t}+\hat{\mathrm{j}} \cos \omega \mathrm{t}) \ldots . . \tag{ii}
\end{align*}
$$

Also $\vec{v}=\frac{d \vec{r}}{d t}=r(-\omega \hat{i} \sin \omega t+\omega \hat{j} \cos \omega t)$
$=r \omega(-\hat{\mathrm{i}} \sin \omega \mathrm{t}+\hat{\mathrm{j}} \cos \omega \mathrm{t})$
From (ii) and (iii)
$\therefore \overrightarrow{\mathrm{v}}=\vec{\omega} \times \overrightarrow{\mathrm{r}}$ \qquad (1) marks

Topic:Circular motion; Sub-Topic:UCM_L-1_Target-2016_XII-HSC Board Test__Physics (ii)

(i) Let,
$\mathrm{M}=$ mass of the earth
$\mathrm{R}=$ radius of the earth
$h=$ height of the satellite from the earth's surface
$\mathrm{m}=$ mass of the satellite
$\mathrm{Vc}=$ critical velocity of the satellite in the given orbit
$\mathrm{r}=(\mathrm{R}+\mathrm{h})=$ radius of the circular orbit
(ii) For the circular motion of the satellite, the necessary centripetal force is given as

$$
\begin{equation*}
\mathrm{F}_{\mathrm{cp}}=\frac{\mathrm{mv}_{\mathrm{c}}^{2}}{\mathrm{r}} \tag{i}
\end{equation*}
$$

(iii) The Gravitational force of attraction between the earth and the satellite is given by

$$
\begin{equation*}
\mathrm{F}_{\mathrm{G}}=\frac{\mathrm{GMm}}{\mathrm{r}^{2}} \tag{ii}
\end{equation*}
$$

(iv) Gravitational force provides the centripetal force necessary for the circular motion of the satellite

$$
\begin{aligned}
& \therefore \mathrm{F}_{\mathrm{CP}}=\mathrm{F}_{\mathrm{G}} \\
& \therefore \frac{\mathrm{mv}_{\mathrm{c}}^{2}}{\mathrm{r}}=\frac{\mathrm{GMm}}{\mathrm{r}^{2}}[\text { From (i) and (ii)] } \\
& \therefore \mathrm{v}_{\mathrm{c}}^{2}=\frac{\mathrm{GM}}{\mathrm{r}}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{v}_{\mathrm{c}}^{2}=\sqrt{\frac{\mathrm{Gm}}{\mathrm{r}}} \tag{iii}
\end{equation*}
$$

(v) $\operatorname{But} \mathrm{r}=\mathrm{R}+\mathrm{h}$

$$
\therefore \mathrm{v}_{\mathrm{c}}=\sqrt{\frac{\mathrm{GM}}{(\mathrm{R}+\mathrm{h})}} \quad \ldots \text { (iv) }
$$

Also $\mathrm{GM}=\mathrm{gh}=(\mathrm{R}+\mathrm{h})^{2}$
$\therefore \mathrm{v}_{\mathrm{c}}=\sqrt{\mathrm{g}_{\mathrm{h}}(\mathrm{R}+\mathrm{h})} \ldots . .(\mathrm{v})$
(1) marks

Equation (iv) and (v) represent critical velocity of satellite orbiting at a certain height above the earth surface
Topic:Gravitation; Sub-Topic:Critical velocity_ L-1 _Target-2016_ XII-HSC Board Test \qquad Physics
(iii) Expression for kinetic energy of rolling body:
i. Let,

Mass = mass of the body
$\mathrm{v}=$ linear velocity of the body
ω = angular of inertia
I = moment of inertia
$\mathrm{K}=$ radius of gyration
ii. \quad K.E. of rolling body $=$ translational K.E. + rotational K.E.

$$
\begin{aligned}
& \mathrm{K} \cdot \mathrm{E}_{\text {rolling }}=\frac{1}{2} \mathrm{Mv}^{2}+\frac{1}{2} \mathrm{I} \omega^{2} \\
& =\frac{1}{2} \mathrm{Mv}^{2}+\frac{1}{2} \mathrm{MK}^{2}\left[\frac{\mathrm{v}^{2}}{\mathrm{r}^{2}}\right]
\end{aligned}
$$

$$
\left[\because \mathrm{I}=\mathrm{MK}^{2} \text { and } \mathrm{v}=\mathrm{r} \omega\right]
$$

$$
\therefore \mathrm{K}_{\mathrm{rolling}}=\frac{1}{2} \mathrm{Mv}^{2}\left[1+\frac{\mathrm{K}^{2}}{\mathrm{r}^{2}}\right]
$$

Since the value of ' K ' is different for different. Bodies $\mathrm{K}_{1}, \mathrm{E}_{1}$ also varies from body to body Topic:Rotional motion; Sub-Topic:Rolling motion_L-1_Target-2016_ XII-HSC Board Test Physics
(iv) Emissive power

The emissive power of a body at a given temperature is defined as the quantity of radiant energy emitted by the body per unit surface area of the body at that temperature
(1) marks

Coefficient of emission

The ratio of the emissive power of a body at a given temperature to the emissive power of a perfectely black body at the same temperature is called coefficient of emission (emissivity) of the body. \qquad (1) marks Topic:Kinetic theory of gases; Sub-Topic:Emissive power and Emissivity_L-1_Target-2016_XII-HSC Board Test_Physics
(v) $\mathrm{r}=5 \mathrm{~cm}=5 \times 10^{-2} \mathrm{~m}$
$\mathrm{n}=90$ r.p.m $=\left(\frac{90}{60}\right) \mathrm{r} . \mathrm{ps} \left\lvert\, \omega=2 \pi=\frac{3}{2} \times 2 \pi=3 \pi \mathrm{rad} / \mathrm{s}\right.$
$\therefore \mathrm{mr} \omega^{2}=\mu \mathrm{mg}$ \qquad (1/2) marks
$\therefore r \omega^{2}=\mu \mathrm{g}$
$\mu=\mathrm{r} \omega^{2} / \mathrm{g}=\frac{5 \times 10^{-2} \times(3 \pi)^{2}}{9.8}=\frac{5 \times 9 \pi^{2} \times 10^{-2}}{9.8}$ \qquad (1) marks
$=\frac{5 \times 9 \times(3.14)^{2} \times 10^{-2}}{9.8}$
$\mu=0.4527$ \qquad (1/2)marks
Topic:Circular motion; Sub-Topic:Centripetal force_L-2_Target-2016_XII-HSC Board Test_Physics
(vi) Fundamental frequency of an air coloumn in pipe closed at one end
$\mathrm{n}=\frac{\mathrm{V}}{4 \mathrm{~L}_{1}}$
third overtone of an open pipe $n=4\left(\frac{\mathrm{~V}}{2 \mathrm{~L}_{2}}\right)$ \qquad (1) marks
$\therefore \frac{\mathrm{V}}{4 \mathrm{~L}_{1}}=4\left(\frac{\mathrm{~V}}{2 \mathrm{~L}_{2}}\right)$
$\therefore \frac{\mathrm{L}_{1}}{\mathrm{~L}_{2}}=\frac{2}{16}=\frac{1}{8}$

1) marks

Topic:Stationary wave; Sub-Topic:Air columns_L-2_Target-2016_ XII-HSC Board Test_Physics (vii) $\mathrm{T}=6.28 \mathrm{sec}$.

Pathlength $=20 \mathrm{~cm} \therefore \mathrm{a}=10 \mathrm{~cm}=10 \times 10^{-2} \mathrm{~m}$
$\mathrm{v}=$? and $\mathrm{x}=6 \times 10^{-2} \mathrm{~m}$
$\omega=\frac{2 \pi}{\mathrm{~T}}=\frac{2 \times 3.14}{6.28}=1 \mathrm{rad} / \mathrm{s}$ \qquad (1/2) marks
$\mathrm{v}= \pm \omega \sqrt{(100-36) \times 10^{-4}}$
$=1 \times 8 \times 10^{-2}$
(1) marks
$\mathrm{v}=8 \times 10^{-2} \mathrm{~m} / \mathrm{s}$
(1/2) marks
Topic:Oscillation; Sub-Topic:SHM_L-2_Target-2016_XII-HSC Board Test_Physics
(viii) $\mathrm{E}=5 \pi \mathrm{~T}$

Formula $\mathrm{E}=\mathrm{T} . \Delta \mathrm{A}$
(1/2) marks
$5 \pi \mathrm{~T}=\mathrm{T} . \Delta \mathrm{A}$
$\therefore \Delta \mathrm{A}=5 \pi$
$4 \pi r^{2}=5 \pi$

$$
\begin{aligned}
& \mathrm{r}^{2}=\frac{5}{4} \quad \therefore \mathrm{r}=\sqrt{\frac{5}{4}} \\
& \mathrm{~d}=2 \times \mathrm{r}=2 \times \sqrt{\frac{5}{4}}=\sqrt{5} \\
& \mathrm{~d}=2.23 \mathrm{~cm}
\end{aligned}
$$

Topic:Surface tension; Sub-Topic:Surface energy_L-2_Target-2016_XII-HSC Board Test_Physics Q. 2
(i) (D)

Velocity $=v$; Diameter $=$ D. \therefore radius $=\frac{D}{2}$
Angular displacement $(\theta) \quad \omega=\frac{\theta}{t}$
$\nu=r \times \omega$
$v=\frac{D}{2} \times \frac{\theta}{t}$
$\therefore \theta=\frac{2 v t}{D}$
Angular displacement $(\theta)=\frac{2 v t}{D}$
Topic:Circular motion; Sub-Topic:Angular displacement_L-1_Target-2016_XII-HSC Board Test Physics
(ii) (B)
$W_{1}<W_{2}$
Force is same
$\therefore k_{1} x_{1}=k_{2} x_{2}$
$k_{1}>k_{2} \quad \therefore x_{1}<x_{2}$
Work done $W=\frac{1}{2} k x^{2}$
$W_{1}=\frac{1}{2} k_{1} x_{1}^{2}=\frac{1}{2} k_{1} x_{1} \times x_{1} \quad W_{2}=\frac{1}{2} k_{2} x_{2} \times x_{2}$
From equation (1) \& (2)
$\therefore W_{1}<W_{2}$
Topic:Oscillation; Sub-Topic:Work done by spring _ L-1_Target-2016_XII-HSC Board Test_Physics (iii) (A)

Four times that of A
$r_{A}=2 r_{B}$
stress $=\frac{F}{A}$
\therefore stress $\propto \frac{1}{r^{2}}$
$\therefore \frac{\text { tress }_{A}}{\operatorname{stress}_{B}}=\frac{r_{B}^{2}}{r_{A}^{2}}$
\therefore stress of $B=\frac{r_{A}^{2}}{r_{B}^{2}} \times$ stress of A
$=\frac{4 r_{B}^{2}}{r_{B}^{2}} \times \operatorname{stress}_{A}$
\therefore stress on $B=4$ stress on A
Topic:Elasticity; Sub-Topic:Stress _L-1_Target-2016_XII-HSC Board Test_Physics (iv) (D)
π radian
Sound waves reflected by denser medium. There is a phase change of π radian.
Topic: Wave motions; Sub-Topic:Reflection of sound waves_L-1_Target-2016_ XII-HSC Board Test Physics
(v) (B)
$n_{1} \sqrt{\frac{\sigma-1}{\sigma}}$
Frequency of vibration of wire n_{2}
$\frac{n_{2}}{n_{1}}=\sqrt{\frac{\sigma-1}{\sigma}}$ as $\frac{T_{1}}{T_{2}}=\frac{\sigma}{\sigma-1}$ and $\frac{n_{2}}{n_{1}}=\sqrt{\frac{T_{2}}{T_{1}}}$
Topic:Stationary waves; Sub-Topic:Resonance _L-1_Target-2016_XII-HSC Board Test_Physics
(vi) (C)
$C_{v}=(3+f) R$
$C_{p}=(4+f) R$
$\therefore \gamma=\frac{4+f}{3+f}$ for polyatomic gas.
Topic:Kinetic theory of gases; Sub-Topic:Specific heat
(vii) (C)
$3 \mathrm{~m} / \mathrm{s}$
Moment of Inertia
$\omega=6 \mathrm{rad} / \mathrm{s}$

$$
I=5 \mathrm{~kg} \mathrm{~m}^{2}
$$

$\frac{1}{2} I \omega^{2}=\frac{1}{2} m v^{2}$
$5 \times 36=20 \times v^{2}$
$v^{2}=\frac{5 \times 36}{20}=9$
$v=3 m / s$
Topic:Rotational motion; Sub-Topic:Kinetic energy \qquad L-1 Target-2016_XII-HSC Board Test_ Physics

Linear S.H.M. is defined as the linear periodic motion of a body, in which the resorting force (or acceleration) is always directed towards the mean position and its magnitude is directly proportional to the displacement from the mean position.
[1 MARK]
There is basic relation between S.H.M. and U.C.M. that is very useful in understanding S.H.M. For an object performing U.C.M. the projection of its motion along any diameter of its path executes S.H.M.
Consider particle ' P ' is moving along the circumference of circle of radius ' a ' with constant angular speed of ω in anticlockwise direction as shown in figure.
Particle P along circumference of circle has its projection particle on diameter AB at point M . Particle P is called reference particle and the circle on which it moves, its projection moves back and forth along the horizontal diameter, AB .

(b)

The x -component of the displacement of P is always same as displacement of M , the x -component of the velocity of P is always same as velocity of M and the x-component of the acceleration of M.

Suppose that particle P starts from initial position with initial phase α (angle between radius OP and the $\mathrm{x}-$ axis at the time $\mathrm{t}=0$) In time t the angle between OP and x-axis is $(\omega t+\alpha)$ as particle P moving with constant angular velocity (ω) as shown in figure.
$\cos (\omega t+\alpha)=\frac{x}{a}$
$\therefore x=a \cos (\omega t+\alpha)$
[1 MARK]
This is an expression for displacement of particle Mat time t.
As velocity of particle is the time rate of change of displacement then we have
$v=\frac{d x}{d t}=\frac{d}{d t}[a \cos (\omega t+\alpha)]$
$\therefore V=-a \omega \sin (\omega t+\alpha)$
As acceleration of particle is the time rate of change of velocity, then we have
acceleration $=\frac{d v}{d t}=\frac{d}{d t}[-a \omega \sin (\omega t+\alpha)]$
\therefore acceleration $=-a \omega^{2} \cos (\omega t+\alpha)$
\therefore acceleration $=\omega^{2} x$
[1 MARK]
It shows that acceleration of particle M is directly proportional to its displacement and its direction is opposite to that of displament. Thus particle M performs simple harmonic motion but M is projection of particle performing U.C.M. hence S.H.M. is projection of U.C.M. along a diameter, of circle.
Topic:Oscillation; Sub-Topic:SHM_ L-2_Target-2016_ XII-HSC Board Test_Physics
$\frac{d \theta_{1}}{d t}=4^{\circ} \mathrm{C} / \mathrm{min} \quad$ at $\theta_{1}=50^{\circ} \mathrm{C} \quad \theta_{0}=25^{\circ} \mathrm{C}$
$\frac{d \theta_{2}}{d t}=? \quad$ at $\theta_{2}=45^{\circ} \mathrm{C}$
According to Newtons law of colling
$\frac{d \theta}{d t}=K\left(\theta-\theta_{0}\right)$
[1 MARK]
$\frac{d \theta_{1}}{d t}=k\left(\theta_{1}-\theta_{0}\right)$ and $\frac{d \theta_{2}}{d t}=k\left(\theta_{2}-\theta_{0}\right)$
$\frac{\frac{d \theta_{1}}{d t}}{\frac{d \theta_{2}}{d t}}=\frac{\theta_{1}-\theta_{0}}{\theta_{2}-\theta_{0}}=\frac{50^{0}-25^{0}}{45^{0}-25^{0}}=\frac{25^{0}}{20^{\circ}}$
[1 MARK]
$\frac{d \theta_{2}}{d t}=\frac{20^{0}}{25^{0}} \times \frac{d \theta_{1}}{d t}$
$\frac{d \theta_{2}}{d t}=\frac{20^{0}}{25^{0}} \times 4=\frac{16}{5}=3.2$
$\frac{d \theta_{2}}{d t}=3.2^{\circ} \mathrm{C} / \mathrm{min}$
[1 MARK]
Topic:Kinetic theory of gases; Sub-Topic:Newton's law of cooling_ L-2_Target-2016_XII-HSC Board Test_Physics

OR

Q. 3

Formation of stationary waves by analytical method :
(i) Consider two identical progressive waves travelling along X axis in opposite direction. They are given by $y_{1}=A \sin \frac{2 \pi}{\lambda}(v t-x)$ along positive
X-axis
$y_{2}=A \sin \frac{2 \pi}{\lambda}(v t+x)$ along negative
X -axis
(ii) The resultant displacement ' y ' is given by the principle of superposition of waves.
$y=y_{1}+y_{2}$
$y=A \sin \frac{2 \pi}{\lambda}(v t-x)+A \sin \frac{2 \pi}{\lambda}(v t+x)$

[1 MARK]

(iii) By using $\sin C+\sin D$
$=2 \sin \left[\frac{C+D}{2}\right] \cos \left[\frac{C-D}{2}\right]$,
we get
$y=2 A \sin \left[\frac{2 \pi}{\lambda}\left(\frac{v t-x+v t+x}{2}\right)\right] \cos \left[\frac{2 \pi}{\lambda}\left(\frac{v t-x-v t-x}{2}\right)\right]$
$=2 A \sin \left(\frac{2 \pi v t}{\lambda}\right) \cos \left(\frac{2 \pi}{\lambda}(-x)\right)$
$\therefore y=2 A \sin 2 \pi n t \cos \left(\frac{2 \pi x}{\lambda}\right)\left(\because n=\frac{v}{\lambda}\right)$
$[\because \cos (-\theta)=\cos \theta]$
$\therefore y=2 A \cos \left(\frac{2 \pi x}{\lambda}\right) \sin 2 \pi n t$
[1 MARK]
(iv) Let $R=2 A \cos \left(\frac{2 \pi x}{\lambda}\right)$
$\therefore y=R \sin (2 \pi n t)$
But $\omega=2 \pi n$
$\therefore y=R \sin \omega t$
Equation (v) represents the equation of S.H.M. Hence, the resultant wave is a S.H.M. of amplitude R which varies with x .
(v) The absence of x in equation (v) shows that the resultant wave is neither travelling forward nor backward. Therefore it is called stationary waves.

Position of nodes and antinodes on stationary wave

Position of antinodes :

The points of a medium, which vibrate with maximum amplitude are called antinodes.
Since $\mathrm{R}=2 \mathrm{~A} \cos \left(\frac{2 \pi x}{\lambda}\right)$
At antinode: $R= \pm 2 \mathrm{~A}$
$\therefore \cos \left(\frac{2 \pi x}{\lambda}\right)= \pm 1$

Position of antinodes
$\therefore\left(\frac{2 \pi x}{\lambda}\right)=0, \pi, 2 \pi, 3 \pi, \ldots \ldots n \pi$
$\therefore x=0, \frac{\lambda}{2}, \lambda, \frac{3 \lambda}{2} \ldots \ldots$
\therefore Distance between two consecutive antinodes $=x_{1}-x_{0}=\frac{\lambda}{2}, x_{2}-x_{1}$
$=\lambda-\frac{\lambda}{2}=\frac{\lambda}{2}$ and so on.
Thus distance between two successive antinodes is $\lambda / 2$.

Nodes :

The pairs of medium, which vibrate with minimum amplitude are called nodes.
Amplitude at node is minimumi.e. 0 .
$\therefore R_{\text {min }}=0$
Since, $R=2 A \cos \left(\frac{2 \pi x}{\lambda}\right)$
$\therefore \cos \left(\frac{2 \pi x}{\lambda}\right)=0$
$\therefore \frac{2 \pi x}{\lambda}=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \ldots \ldots$.
$\therefore x=\frac{\lambda}{4}, \frac{3 \lambda}{4}, \frac{5 \lambda}{4}, \ldots \ldots$
Distance between two consecutive nodes,
$x_{1}-x_{0}=\frac{3 \lambda}{4}-\frac{\lambda}{4}=\frac{\lambda}{2}$,
$x_{2}-x_{1}=\frac{5 \lambda}{4}-\frac{3 \lambda}{4}=\frac{\lambda}{2}$ and so on.
Thus distance between two successive nodes is $\frac{\lambda}{2}$.
Hence nodes and antinodes are equispaced. The distance between nodes and adjacent antinode is $\frac{\lambda}{4}$.
Topic:Stationary wave; Sub-Topic:Formation of stationary wave_L-2_Target-2016_XII-HSC Board Test_Physics
$\mathrm{n}_{1}=1.5 \mathrm{n}_{48}$. beat frequency $=4 \mathrm{~Hz}$, the set of tunning forks is arranged in series of decending frequencies.
$\mathrm{n}_{2}=\mathrm{n}_{1}-4$
$\mathrm{n}_{3}=\mathrm{n}_{2}-4=\mathrm{n}_{1}-2 \times 4$
$\mathrm{n}_{4}=\mathrm{n}_{3}-4=\mathrm{n}_{1}-3 \times 4$
$\mathrm{n}_{48}=\mathrm{n}_{47}-4=\mathrm{n}_{1}-47 \times 4=\mathrm{n}_{1}-188 \quad$ [1 Mark]
But $\mathrm{n}_{1}=1.5 \mathrm{n}_{48}$
$\therefore \mathrm{n}_{48}=1.5 \mathrm{n}_{48}-188$
$\therefore(1.5-1) \mathrm{n}_{48}=188$
$\therefore 0.5 \mathrm{n}_{48}=188$
$\mathrm{n}_{48}=\frac{188}{0.5}=\frac{188}{1 / 2}=376 \mathrm{~Hz}$
$\therefore \mathrm{n}_{1}=1.5 \times 376$
[1 Mark]
$\mathrm{n}_{1}=564 \mathrm{~Hz}$
$n_{42}=n_{1}-4 \times 41$

$$
=564-164
$$

$n_{42}=400 \mathrm{~Hz}$
Topic:Stationary wave; Sub-Topic:Formation of beats_L-2_Target-2016_XII-HSC Board Test_Physics
Q. 4
(i) $\mathrm{m}=600 \mathrm{~kg}$
$\mathrm{d}=5000 \mathrm{~m}=5 \mathrm{~km}$
$\mathrm{g}_{\mathrm{d}}=\mathrm{g}\left(1-\frac{\mathrm{d}}{\mathrm{R}}\right)$
[1 Mark]
$=g\left(1-\frac{5}{6400}\right)$
$\mathrm{g}_{\mathrm{d}}=9.8 \times 0.999$
$g_{d}=9.7902 \mathrm{~m} / \mathrm{s}^{2}$
weight on surface $=\mathrm{mg}$

$$
\begin{aligned}
& =600 \times 9.8 \\
& =5880 \mathrm{~N}
\end{aligned}
$$

weight at depth $5000 \mathrm{~m}=\mathrm{mg}_{\mathrm{d}}$

$$
\begin{aligned}
& =600 \times 9.7902 \\
& =5874 \mathrm{~N}
\end{aligned}
$$

\therefore decrease in weight $=\mathrm{mg}-\mathrm{mg}_{\mathrm{d}}$

$$
=5880-5874
$$

decrease in weight $=6 \mathrm{~N}$
Topic:Gravitation; Sub-Topic:Change ing due to depth_L-2_Target-2016_XII-HSC Board Test_Physics
(ii) Principle of parallel axes :

The moment of inertial of a body about any axis is equal to the sum of its moment of inertia about a parallel axis passing through its centre of mass and the product of its mass and the square of the perpendicular distance between the two parallel axes.
Mathematically, $\mathrm{I}_{\mathrm{O}}=\mathrm{I}_{\mathrm{C}}+\mathrm{Mh}^{2}$
where $\mathrm{I}_{\mathrm{O}}=\mathrm{M}$. I of the body about any axis passing through centre O .
$\mathrm{I}_{\mathrm{C}}=\mathrm{M}$. I of the body about parallel axis passing through centre of mass.
$\mathrm{h}=$ distance between two parallel axes.

Proof:

i. Consider a rigid body of mass M rotating about an axis passing through a point O as shown in the figure.
Let C be the centre of mass of the body, situated at distance h from the axis of rotation.

ii. Consider a small element of mass dm of the body, situated at a point P .
iii. Join PO and PC and draw PD perpendicular to OC when produced.
iv. M. I of the element dm about the axis through O is $(\mathrm{OP})^{2} \mathrm{dm}$
\therefore M.I of the body about the axis thorugh O is given by

$$
\begin{equation*}
\mathrm{I}_{\mathrm{O}}=\int(\mathrm{OP})^{2} \mathrm{dm} \tag{1}
\end{equation*}
$$

v. M.I of the element dm about the axis through c is $\mathrm{CP}^{2} \mathrm{dm}$
\therefore M.I of the body about the axis through C

$$
\begin{equation*}
\mathrm{I}_{\mathrm{C}}=\int \mathrm{CP}^{2} \mathrm{dm} \tag{2}
\end{equation*}
$$

vi. From the figure,

$$
\begin{aligned}
& \mathrm{OP}^{2}=\mathrm{OD}^{2}+\mathrm{PD}^{2} \\
& =(\mathrm{OC}+\mathrm{CD})^{2}+\mathrm{PD}^{2} \\
& =\mathrm{OC}^{2}+2 \mathrm{OC} \cdot \mathrm{CD}+\mathrm{CD}^{2}+\mathrm{PD}^{2}
\end{aligned}
$$

$\because \quad \mathrm{CP}^{2}=\mathrm{CD}^{2}+\mathrm{PD}^{2}$
$\therefore \quad \mathrm{OP}^{2}=\mathrm{OC}^{2}+2 \mathrm{OC} . \mathrm{CD}+\mathrm{CP}^{2}$
vii. From equation (1)
$\mathrm{I}_{\mathrm{O}}=\int \mathrm{OP}^{2} \mathrm{dm}$
From equation (3)

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{O}}=\int\left(\mathrm{OC}^{2}+2 \mathrm{OC} \cdot \mathrm{CD}+\mathrm{CP}^{2}\right) \mathrm{dm} \\
& \begin{aligned}
\therefore \quad \mathrm{I}_{\mathrm{O}} & =\int\left(\mathrm{h}^{2}+2 \mathrm{hx}+\mathrm{CP}^{2}\right) \mathrm{dm} \\
& =\int \mathrm{h}^{2} \mathrm{dm}+\int 2 \mathrm{~h} \cdot \mathrm{xdm}+\int \mathrm{CP}^{2} \mathrm{dm} \\
& =\mathrm{h}^{2} \int \mathrm{dm}+2 \mathrm{~h} \int \mathrm{xdm}+\int \mathrm{CP}^{2} \mathrm{dm} \\
\mathrm{I}_{\mathrm{O}} & =\mathrm{h}^{2} \int \mathrm{dm}+2 \mathrm{~h} \int \mathrm{xdm}+\mathrm{I}_{\mathrm{C}}
\end{aligned}
\end{aligned}
$$

[From equation (2)]

$$
\begin{equation*}
\therefore \mathrm{I}_{\mathrm{O}}=\mathrm{I}_{\mathrm{C}}+\mathrm{h}^{2} \int \mathrm{dm}+2 \mathrm{~h} \int \mathrm{xdm} \tag{4}
\end{equation*}
$$

viii. Since $\int d m=M$ and $\int x d m=0$ and
algebraic sum of the moments of the masses of its individual particles about the centre of mass is zero for body in equilibrium.
\therefore Equation (4) becomes

$$
\mathrm{I}_{\mathrm{O}}=\mathrm{I}_{\mathrm{C}}+\mathrm{Mh}^{2}
$$

Hence proved.
Topic:Rotational motion; Sub-Topic:Theorem of parallel axes_L-2_Target-2016_XII-HSC Board Test Physics
(iii) Expression for excess pressure inside a drop :

i. Free surface of drops or bubbles are spherical in shape.

Let,
$\mathrm{P}_{\mathrm{i}}=$ Inside pressure of a drop or air bubble
$\mathrm{P}_{0}=$ outside pressure of bubble
$r=$ radius of drop or bubble.
ii. Let the radius of drop increases from r to $r+\Delta r$ so that inside pressure remains constant.
iii. Initial area of drop $\mathrm{A}_{1}=4 \pi \mathrm{r}^{2}$,

Final surface area of drop $A_{2}=4 \pi(r+\Delta r)^{2}$
Increase in surface area

$$
\begin{aligned}
\Delta \mathrm{A}=\mathrm{A}_{2}-\mathrm{A}_{1} & =4 \pi\left[(\mathrm{r}+\Delta \mathrm{r})^{2}-\mathrm{r}^{2}\right] \\
& =4 \pi\left[\mathrm{r}^{2}+2 \mathrm{r} \Delta \mathrm{r}+\Delta \mathrm{r}^{2}-\mathrm{r}^{2}\right] \\
& =8 \pi \mathrm{r} \Delta \mathrm{r}+4 \pi \Delta \mathrm{r}^{2}
\end{aligned}
$$

iv. As Δr is very small
\therefore term containing $\Delta \mathrm{r}^{2}$ is neglected
$\therefore \quad \Delta \mathrm{A}=8 \pi \mathrm{r} \Delta \mathrm{r}$
v. Work done by force of surface tension

$$
\begin{equation*}
\mathrm{dW}=\mathrm{T} \Delta \mathrm{~A}=(8 \pi \mathrm{r} \Delta \mathrm{r}) \mathrm{T} \tag{1}
\end{equation*}
$$

But $d W=F \Delta r=\left(\mathrm{P}_{\mathrm{i}}-\mathrm{P}_{0}\right) \mathrm{A} \Delta \mathrm{r}$
From equation (1)
$\left(\mathrm{P}_{\mathrm{i}}-\mathrm{P}_{0}\right) \mathrm{A} \Delta \mathrm{r}=(8 \pi \mathrm{r} \Delta \mathrm{r}) \mathrm{T}$
$\therefore \quad \mathrm{P}_{\mathrm{i}}-\mathrm{P}_{0}=\frac{8 \pi \mathrm{r} \Delta \mathrm{rT}}{4 \pi \mathrm{r}^{2} \Delta \mathrm{r}} \quad\left[\therefore \mathrm{A}=4 \pi \mathrm{r}^{2}\right]$
$\therefore \quad \mathrm{P}_{\mathrm{i}}-\mathrm{P}_{0}=\frac{2 \mathrm{~T}}{\mathrm{r}}$
Equation (2) represents excess pressure inside a drop or air bubble. It is also called Laplace's law of spherical membrane.
[1 Mark]
Topic:Surface tension; Sub-Topic:Pressure in bubble_L-2_Target-2016_ XII-HSC Board Test_Physics
(iv) $\mathrm{A}=1.5 \mathrm{~mm}^{2}=1.5 \times 10^{-3} \times 10^{-3}$

$$
\mathrm{A}=1.5 \times 10^{-6} \mathrm{~m}^{2}
$$

$\mathrm{Y}=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2} \quad \mathrm{~F}=$ load
$\sigma=0.291$
Lateral strain $=1.5 \times 10^{-5}$
g $=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\sigma=\frac{\text { Lateral strain }}{\text { longitudinal strain }}$

$$
\begin{aligned}
& \text { longitudinal strain }=\frac{1.5 \times 10^{-5}}{0.291} \\
\mathrm{Y} & =\frac{\text { longitudinal stress }}{\text { longitudinal strain }}=\frac{\mathrm{Mg} / \pi \mathrm{r}^{2}}{\ell / \mathrm{L}} \\
\mathrm{M} & =\frac{\mathrm{Y} \times \text { longitudinal strain } \times \pi \mathrm{r}^{2}}{\mathrm{~g}} \\
\mathrm{M} & =\frac{2 \times 10^{11} \times 1.5 \times 10^{-5} \times \text { Area }}{0.291 \times 9.8} \\
\mathrm{M} & =\frac{2 \times 10^{11} \times 1.5 \times 10^{-5} \times 1.5 \times 10^{-6}}{0.291 \times 9.8} \\
& =\frac{4.5 \times 10^{11} \times 10^{-11}}{9.8 \times 291}=\frac{4.5}{2.852}=\frac{4.5}{2.852} \\
\mathrm{M} & =1.578 \mathrm{~kg}
\end{aligned} \quad[\mathbf{1 ~ M a r k]}]
$$

Topic:Elasticity; Sub-Topic:Young's modulus_L-2_Target-2016_XII-HSC Board Test_Physics

SECTION - II

Q. 5
(i) The bending of light near the edge of an obstacle or slit and spreading into the region of geometrical shadow is called diffraction of light.
There are two types of diffraction:
(a) Fresnel diffraction: Diffraction pattern in which source of light and the screen are kept at finite distance from the diffracting system is called fresnel diffraction e.g. diffraction of straight edge, small opaque disc, narrow rectangular slit, etc.
(b) Fraunhofer diffraction: Diffraction pattern in which the source of light and the screen are effectively at infinite distances from the diffracting system, is called Fraunhofer diffraction. In this diffraction pattern, convex lens is used.

[1 mark]

Example: Diffraction due to a single slit, double slit using a plane wavefront.
In Fresnel diffraction, spherical or cylindrical wavefronts are used whereas in Fraunhofer diffraction, plane wavefronts are used.
Topic:Interference and Diffraction; Sub-Topic:Diffraction_L-1_Target-2016_XII-HSC Board Test_Physics (ii)

[2 marks]

Cyclotron
Topic:Magnetic effect of electric current; Sub-Topic:Cyclotron_L-1_Target-2016_XII-HSC Board Test_Physics (iii) $1 / 2$ mark each

No.	Paramagnetic substance	Ferromagnetic substance
(i)	It is weakly attracted by a magnet	It is strongly attracted by a magnet
(ii)	When kept in a non-uniform magnetic field, it shows moderate tendency to move from weaker to the stronger part of the field	When kept in a non-uniform magnetic field, it shows strong tendency to move from weaker to the stronger part of the field.
(iii)	When kept in an external magnetic field it becomes weakly magnetised, and the direction of magnetic moment acquired will be same as that of the field.	When kept in an external magnetic field it be o mes strongly magnetised, and the direction of magnetic moment acquired will be same as that of the field.
(iv)	When the external magnetic field is removed, the paramagnetic substance loses its magnetism.	When the external magnetic field is removed, the ferromagnetic substance retains magnetism permanently

Topic:Magnetism_; Sub-Topic:Magnetic substances_L-1_Target-2016_XII-HSC Board Test__Physics
(iv) Definition :

When the electromagnetic waves (radiowaves) from the transmitting antenna propagate along the surface of the earth so as to reach the receiving antenna, the wave propagation is called ground wave propagation (surface wave propagation).
[1 mark]

Explanation :

(i) Ground waves are the radiowaves which propagate along the surface of the earth.
(ii) There is loss of power in a signal during its propagation on the surface of the earth due to partial absorption of energy by ground. Hence ground wave propagation is suitable for low frequency and medium frequency. It is used for local broadcasting.
(iii) Ground wave propagation is possible only when the transmitting and receiving antenna are close to the earth's surface.
[1 mark]
Topic:Communication system_; Sub-Topic:Wave propagation; L-1_Target-2016_XII-HSC Board
Test Physics
(v) Given, $G=500 \Omega, \quad R_{p}=21 \Omega$

[1/2 marks]

$\therefore \quad$ using $R_{P}=\frac{G . S}{G+S}$
[1/2 marks]
$\{\therefore \mathrm{G}$ and S are in parallel combination in an ammeter $\}$
$\therefore \quad 21=\frac{500 \mathrm{~S}}{500+\mathrm{S}} \Rightarrow 21(500+\mathrm{S})=500 \mathrm{~S}$
$\Rightarrow \quad 10500+21 \mathrm{~S}=500 \mathrm{~S}$
$\Rightarrow \quad 500 \mathrm{~S}-21 \mathrm{~S}=10500 \quad$ [1/2 marks]
$\Rightarrow \quad 479 \mathrm{~S}=10500$
$\Rightarrow \quad \mathrm{S}=\frac{10500}{479} \Omega=21.92 \Omega$
$\therefore \quad$ shunt resistance is 21.92Ω
[1/2 marks]
Topic:Magnetic effect of electric current; Sub-Topic:Ammeter_L-2_Target-2016_XII-HSC Board Test Physics
(vi) Given, $\mathrm{T}_{1}=200 \mathrm{~K}, \chi_{1}=1.8 \times 10^{-5}$

$$
\chi_{1}-\chi_{2}=6 \times 10^{-6}=0.6 \times 10^{-5}
$$

$\Rightarrow \chi_{2}=\chi_{1}-0.6 \times 10^{-5}$

$$
=1.8 \times 10^{-5}-0.6 \times 10^{-5}=1.2 \times 10^{-5}
$$

$\Rightarrow \chi_{2}=1.2 \times 10^{-5}$
$\because \chi \cdot \mathrm{T}=\mathrm{constant}$ [1/2 mark]
$\therefore \chi_{1} \mathrm{~T}_{1}=\chi_{2} \mathrm{~T}_{2} \Rightarrow \mathrm{~T}_{2}=\left(\frac{\chi_{1}}{\chi_{2}}\right) \mathrm{T}_{1}=\left(\frac{1.8 \times 10^{-5}}{1.2 \times 10^{-5}}\right) \times 200 \mathrm{~K} \quad[\mathbf{1} / 2 \mathrm{mark}]$
$\Rightarrow \mathrm{T}_{2}=300 \mathrm{~K}$
Topic:Magnetism_; Sub-Topic:Paramagnetic substances_L-1_Target-2016_ XII-HSC Board Test \qquad Physics
(vii) Given $\mathrm{M}=2 \mathrm{H}, \mathrm{dI}=-4 \mathrm{~A}, \mathrm{dt}=2.5 \times 10^{-4} \mathrm{~s}$
[1/2 mark]
Using $\phi=$ MI
\therefore emf induced $=-\frac{\mathrm{d} \phi}{\mathrm{dt}}=-\mathrm{M} \frac{\mathrm{dI}}{\mathrm{dt}}$
$=2 \times \frac{4}{2.5 \times 10^{-4}} \mathrm{~V}$ [1/2 mark]
$\therefore \varepsilon=32,000 \mathrm{~V}=32 \mathrm{kV}$
[1/2 mark]
[1/2 mark]
Topic:Electro magnetic induction; Sub-Topic:Mutual induction_L-1_Target-2016_ XII-HSC Board Test Physics
(viii) Given: $\lambda=4.33 \times 10^{-4}$ per year

$$
\begin{aligned}
\therefore \text { half life } & =\mathrm{T}_{1 / 2}=\frac{0.693}{\lambda} \\
& =\frac{0.693}{4.33 \times 10^{-4}} \text { year } \\
& =0.16 \times 10^{4} \text { year } \\
& =1600 \text { year } \\
& =0.16 \times 10^{4} \times 365 \text { days } \\
& =584000 \text { days }
\end{aligned}
$$

Topic:Atom molecule Nuceli; Sub-Topic:Radio activity_L-2_Target-2016_ XII-HSC Board Test Physics
Q. 6
(i) (d)

$$
\because i_{p}=\tan ^{-1} \mu \quad \therefore \mu=\tan \left(i_{p}\right)=\tan 60^{\circ}=\sqrt{3}
$$

Topic:Wave theory of light_; Sub-Topic:Brewster's law_L-1_Target-2016_ XII-HSC Board Test Physics
(ii) (c)
R. $\mathrm{P}=\frac{a}{1.22 \lambda}$ where a is aperture (diameter) of objective

Topic:_Interference and Diffraction_; Sub-Topic:Telescope _L-1_Target-2016_ XII-HSC Board Test Physics
(iii) (b)

$$
\begin{aligned}
& E=\frac{1}{4 \pi \epsilon_{0} k} \cdot \frac{Q}{r^{2}} \\
& \therefore E \propto \frac{1}{k}
\end{aligned}
$$

Topic:Electrostatics; Sub-Topic:Application of Gauss law_ L-1_Target-2016_XII-HSC Board Test \qquad Physics
(iv) (a)

The internal resistance (r) of a cell is measured by potentiometer using the formula

$$
r=R\left(\frac{l_{1}}{l_{2}}-1\right) \Rightarrow \frac{l_{1}}{l_{2}}=\frac{r}{R}+1 \Rightarrow l_{1}=l_{2}\left(\frac{R+r}{R}\right)
$$

Topic:_Current electricity; Sub-Topic:Application of potentiometer_ L-1_Target-2016_XII-HSC Board Test__Physics
(v) (d)

Energy of photon, $E=h v=h c / \lambda$
Topic:Electron and photons; Sub-Topic:Photoelectric effect_L-1_Target-2016_ XII-HSC Board Test__Physics
(vi) (b)

The ouput of NOR gate is one only if both inputs are zero, otherwise the output is zero.
Topic:Semi-conductor; Sub-Topic:Logic gates_L-1_Target-2016_ XII-HSC Board Test__Physics (vii) (c)

The process of superimposing a low frequency signal on a high frequency wave is called modulation.
Topic:Communication system_; Sub-Topic:Modulation_L-1_Target-2016_ XII-HSC Board Test Physics
Q. 7

Transformer :

Transformer is an electrical device which converts low alternating voltage at high current to highalternating voltage at low current and vice-versa.

Principle:

[1/2 mark]

It is based on the principle of mutual induction i.e. whenever the magnetic flux linked with a coilchanges, an e.m.f. is induced in the neighbouring coil.

Construction :

i. A transformer consists of two sets of coils P and S insulated from each other. The coil P is called the primary coil and coil S is called the secondary coil.
ii. The two coils are wound separately on a laminated soft iron core.
iii. The a.c. input voltage is applied across the primary and the induced output a.c voltage is obtained across the secondary, which is used to drive current in the desired circuit.
iv. The two coils are electrically insulated from each other but they are magnetically linked.
v. To minimise eddy currents the soft iron core is laminated.

Working
i. When an alternating voltage is applied to the primary coil the current through the coil goes on changing.

Rao IIT Academy/ Target -2016/ HSC - Board Physics (54) / Solutions

Hence the magnetic flux through the core also changes.
ii. As this changing magnetic flux is linked with both the coils, an e.m.f. is induced in each coil.
iii. The amount of the magnetic flux linked with the coil depends upon the number of turns of the coil.
iv. Let ' ϕ ' be the magnetic flux linked per turn with both the coils at certain instant ' t '.
v. Let ' N_{p} ' and ' N ' be the number of turns of primary and secondary coil,
$\mathrm{N}_{\mathrm{P}} \phi=$ magnetic flux linked with the primary coil at certain instant ' t '
$N_{s} \phi=$ magnetic flux linked with the secondary coil at certain instant ' t '
vi. Induced e.m.f. produced in the primary and secondary coil is given by

$$
\begin{align*}
& e_{P}=-\frac{d \phi_{p}}{d t}=-N_{P} \frac{d \phi}{d t} \tag{I}\\
& e_{S}=-\frac{d \phi_{\mathrm{s}}}{d t}=-N_{S} \frac{d \phi}{d t} \tag{II}
\end{align*}
$$

vii. Divide equation (II) and (I)

$$
\begin{equation*}
\therefore \frac{\mathrm{e}_{\mathrm{s}}}{\mathrm{e}_{\mathrm{p}}}=\frac{\mathrm{N}_{\mathrm{s}}}{\mathrm{~N}_{\mathrm{P}}} \tag{III}
\end{equation*}
$$

Equation (III) represents equation on transformer.
The ratio $\frac{\mathrm{N}_{\mathrm{S}}}{\mathrm{N}_{\mathrm{P}}}$ is called turns ratio (transformer ratio) of the transformer.
viii. For an ideal transformer,

Input power $=$ Output power

$$
\begin{align*}
& \therefore \mathrm{e}_{\mathrm{P}} \mathrm{I}_{\mathrm{P}}=\mathrm{e}_{\mathrm{S}} \mathrm{I}_{\mathrm{S}} \\
& \therefore \frac{\mathrm{e}_{\mathrm{S}}}{\mathrm{e}_{\mathrm{P}}}=\frac{\mathrm{I}_{\mathrm{P}}}{\mathrm{I}_{\mathrm{S}}} \tag{IV}
\end{align*}
$$

ix. From equation (III) and (IV)

$$
\frac{\mathrm{e}_{\mathrm{S}}}{\mathrm{e}_{\mathrm{P}}}=\frac{\mathrm{N}_{\mathrm{S}}}{\mathrm{~N}_{\mathrm{P}}}=\frac{\mathrm{I}_{\mathrm{P}}}{\mathrm{I}_{\mathrm{S}}}
$$

[1/2 mark]
Topic:EMI_; Sub-Topic:Transformer_L-2_Target-2016_XII-HSC Board Test__Physics
Given: $A=40 \mathrm{~cm}^{2}=40 \times 10^{-4} \mathrm{~m}^{2}$

$$
\begin{aligned}
& Q=0.2 \mu C=2 \times 10^{-7} \mathrm{C} \\
& \epsilon_{0}=8.85 \times 10^{-12} \mathrm{~Wb} / \mathrm{A}-\mathrm{m}
\end{aligned}
$$

\therefore Surface charge density, $\sigma=\frac{Q}{A}=\frac{2 \times 10^{-7} C}{40 \times 10^{-4} \mathrm{~m}^{2}}$

$$
\therefore \sigma=5 \times 10^{-5} \mathrm{C} / \mathrm{m}^{2}
$$

\therefore Electric field intensity, $E=\frac{\sigma}{\epsilon_{0}}$

$$
=\frac{5 \times 10^{-5} \mathrm{C} / \mathrm{m}^{2}}{8.85 \times 10^{-12} \mathrm{~Wb} / \mathrm{A}-\mathrm{m}}
$$

$$
=5.65 \times 10^{6} \mathrm{~N} / \mathrm{C}
$$

and Mechanical force acting per unit area

$$
\begin{aligned}
& \frac{d F}{d A}=f=\frac{1}{2} \in_{0} E^{2}=\frac{1}{2} \times 8.85 \times 10^{-12} \times\left(5.65 \times 10^{6}\right)^{2} \\
& =141.26 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Topic:Electrostatics_; Sub-Topic:Mechanical force_L-2 _Target-2016_XII-HSC Board Test \qquad Physics

OR

Geiger-Marsden experiment :

i. The experimental arrangement is as shown in figure.

ii. In this experiment a narrow beam of α-particles from radioactive source was incident on a gold foil.
iii. The scattered α-particles were detected by the detector fixed on rotating stand. Detector used had zinc sulphide screen and microscope.
iv. α-particles produced scintillations on screen which could be observed through microscope.
v. The whole setup is enclosed in an evacuated chamber.

Observations :

i. Most of the α-particles passed undeviated.
ii. Only few (about 0.14%) scattered by more than 1°.
iii. Some α-particles were deflected slightly and very few (1 in 8000) deflected by more than 90°.
iv. Some α-particles were bounced back with $\theta=180^{\circ}$.

Mass defect : The difference between the actual mass of the nucleus and the sum of masses of consistuent nucleons is called mass defect.
Let,
$\mathrm{M}=$ Measured mass of nucleus
$\mathrm{A}=$ mass number
$\mathrm{Z}=$ atomic number
$\mathrm{m}_{\mathrm{p}}=$ mass of hydrogen atom
$\mathrm{m}_{\mathrm{a}}=$ mass of free neutron
$(\mathrm{A}-\mathrm{Z})=$ number of neutrons
\therefore Mass defect
$\Delta \mathrm{m}=\left[\mathrm{Zm}_{\mathrm{p}}+(\mathrm{A}-\mathrm{Z}) \mathrm{m}_{\mathrm{n}}\right]-\mathrm{M}$
Topic:Atoms, molecules and Nuclei_; Sub-Topic:Geiger Marsden experiment, Mass defects_L- 2_Tar-get-2016_ XII-HSC Board Test___Physics
Given : $\phi_{0}=2.3 \mathrm{eV}=2.3 \times 10^{-19} \mathrm{~J}$

$$
\lambda=6800 A=6.8 \times 10^{-7} \mathrm{~m}
$$

$\therefore v_{0}=\frac{\phi_{0}}{h}=\frac{2.3 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}}$
$\therefore v_{0}=5.55 \times 10^{14} \mathrm{~Hz} \quad$ [1 mark]
Incident frequency, $v=\frac{c}{\lambda}=\frac{3 \times 10^{8}}{6.8 \times 10^{-7}}$
$\therefore v=\frac{3}{6.8} \times 10^{15}=4.412 \times 10^{14} \mathrm{~Hz}$
[1 mark]
$\because v<v_{0}$
\therefore There will be no emission of photoelectrons.
[1/2 mark]
Topic:Electrons and photons_; Sub-Topic:Photoelectric effects_L- 2 _Target-2016_XII-HSC Board Test \qquad Physics
Q. 8
(i) Given: ${ }^{a} \mu_{g}=1.5, v=3.5 \times 10^{14} \mathrm{~Hz}$,
[1/2 Mark]
$c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$\therefore \lambda_{a}=\frac{c}{v}=\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{3.5 \times 10^{14} \mathrm{~Hz}}=8.571 \times 10^{-7} \mathrm{~m}$
[1/2 Mark]
\therefore using ${ }^{a} \mu_{g}=\frac{\lambda_{a}}{\lambda_{g}}$
$\Rightarrow \lambda_{g}=\frac{\lambda_{a}}{{ }^{a} \mu_{g}}=\frac{8.571 \times 10^{-7}}{1.5}=5.714 \times 10^{-7} \mathrm{~m}$
[1/2 Mark]
\therefore Change in wavelength $=\lambda_{g}-\lambda_{a}$
$=\left(5.714 \times 10^{-7}-8.571 \times 10^{-7}\right) \mathrm{m}$
$=-2.857 \times 10^{-7} \mathrm{~m}=-2857 \AA$
[1 Mark]
Negative sign shows that wavelength decreases as the light passes from air to glass
wave number in glass $=\frac{1}{\lambda_{g}}=\frac{1}{5.714 \times 10^{-7} \mathrm{~m}}$

$$
=0.175 \times 10^{7} \mathrm{~m}^{-1}=1.75 \times 10^{6} \mathrm{~m}^{-1}
$$

[1/2 Mark]
Topic: Wave theory of light_; Sub-Topic:Refraction of light_ L-2_Target-2016_ XII-HSC Board Test \qquad Physics
(ii) Given: $m=10, x_{R}=2.09 \mathrm{~mm}=2.09 \times 10^{-3} \mathrm{~m}$

$$
\lambda_{R}=6400 A=6.4 \times 10^{-7} \mathrm{~m}, \lambda_{B}=4800 A=4.8 \times 10^{-7} \mathrm{~m} \quad[1 / 2 \text { Mark }]
$$

Using: $\quad x=(2 m-1) \frac{\lambda D}{2 d}$
[1/2 Mark]
$x_{R}=(2 m-1) \frac{\lambda_{R} D}{2 d}$
$\Rightarrow \frac{D}{d}=\frac{2 x_{R}}{(2 m-1) \lambda_{R}}=\frac{2 \times 2.09 \times 10^{-3} \mathrm{~m}}{(20-1) \times 6.4 \times 10^{-7} \mathrm{~m}}$
$\Rightarrow \frac{D}{d}=\frac{2 \times 2.09}{19 \times 6.4} \times 10^{4}$
$\Rightarrow \frac{D}{d}=343.75$
[1/2 Mark]
\therefore fringe width of red light,
$X_{R}=\frac{\lambda_{R} D}{d}=6.4 \times 10^{-7} m \times 343.75 \quad$ \{using equation (i) \}
$\Rightarrow X_{R}=2.2 \times 10^{-4} \mathrm{~m}=0.22 \mathrm{~mm}$
\therefore fringe width of blue light,
$X_{B}=\frac{\lambda_{B} D}{d}=4.8 \times 10^{-7} \mathrm{~m} \times 343.75$
$\therefore X_{B}=1.65 \times 10^{-4} \mathrm{~m}=0.165 \mathrm{~mm}$
[1/2 Mark]
\therefore change in fringe width $=X_{B}-X_{R}=0.165 \mathrm{~mm}-0.22 \mathrm{~mm}$
$=-0.055 \mathrm{~mm}=-55 \mu \mathrm{~m}$
Negative signe indicates that fringewidth decreases by $55 \mu m$.
\qquad Physics
(iii) Kelvin's method to determine the resistance of a galvanometer:
(a) In Kelvin's method, the galvanometer whose resistance is to be determined is connected in the left gap of a meter-bridge and a known resistance R is connected in the right gap.
(b) A jockey is connected directly to the point D and it can slide along the wire.

[1 Mark]

G: Galvanometer
R : Resistance fromresistance box
AC : Metal wire one meter long
R_{h} : Rheostat
E: Cell
K: Plug key
J: Jockey
(c) Acell ofe.m. $\mathrm{f}^{\text {' }} \mathrm{E}$ ' is connected between points A and C of the wire in series with a high resistance box.
(d) The rheostat is used to adjust the deflection in the galvanometer to half of its maximum value. Hence, this method is also called half current method or half scale method.
(e) First the deflection in the galvanometer is adjusted at half of its original value and the reading is noted.

It acts as null position.
(f) The value of R is adjected, so that the galvanometer gives a fairly large deflection i.e. full scaledeflection. If the jockey is touched to different points on the wire then galvanometer shows increase or decrease in the deflection.
(g) A point D is located on the wire so that when the Jockey is touched at that point, galvanometer shows the same deflection as before. It means that point D and B are at the same potential i.e. bridge is balanced.
(h) Let,
$1_{\mathrm{g}}=$ length of the wire corresponding to left gap.
$1_{R}=$ length of wire corresponding to right gap
$\mathrm{G}=$ resistance of galvanometer
(i) In the balanced condition,
$\frac{\mathrm{G}}{\mathrm{R}}=\frac{\text { Resistance of wire of length } l_{g}}{\text { Resistance of wire of length } l_{R}}$
$\therefore \frac{G^{\prime}}{R}=\frac{\sigma l_{g}}{\sigma l_{R}}=\frac{l_{g}}{l_{R}}$
where,
$\sigma=$ resistance per unit length of wire
$\therefore G=R \frac{l_{g}}{l_{R}}$
(j) since $l_{g}+l_{R}=100 \mathrm{~cm}$
$\therefore l_{R}=\left(100-l_{g}\right)$
$\therefore G=R\left(\frac{l_{g}}{100-l_{g}}\right)$
Measuring l_{g} and R we can easily determine value of G .
[2 Marks]
Topic:Current electricity_; Sub-Topic:Kelvin method_L-2_Target-2016_XII-HSC Board Test \qquad Physics
(iv) Principle of working of an oscillator:

[1 Mark]
(i) A simple oscillator consists of an amplifier and feedback network with frequency determining components.
(ii) A frequency-determining network, (resonant tank circuit) which also works as feedback network and transistor amplifier acts as element.
(iii) With enough feedback, the oscillations start as soon as the circuit is switched on.
(iv) With positive feedback, the output current of the amplifier will be in the right phase to increase the alternating current in the resonant circuit.
(v) The oscillations then built up in amplitude until the power losses in the circuit are equal to the power that the amplifier can develop.
(vi) The natural frequency of the oscillator is close to the resonant frequency of the resonant circuit.
(vii) Suppose the voltage gain without feedback of the amplifier is $A=\frac{V_{0}}{V_{i}}$.
(viii) The feedback factor β is the fraction the output voltage fed back to the input $\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{f}}=\beta \mathrm{V}_{\mathrm{o}}$

$$
\begin{array}{ll}
\therefore & \mathrm{A}=\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{~V}_{\mathrm{i}}}=\frac{1}{\beta} \\
\therefore & \mathrm{~A} \beta=1
\end{array}
$$

(ix) The condition $\mathrm{A} \beta=1$, is called. Berkhausen's criterion. It states that the phase shift of the feedback voltage will be zero or integral multiple of 2π radian i.e. there will be positive feedback.
(x) The voltage gain of complete system is given by $\mathrm{A}_{\mathrm{f}}=\frac{\mathrm{A}}{1-\mathrm{A} \beta}$

Thus, for the frequency for which $\mathrm{A} \beta=1, \mathrm{~A}_{\mathrm{f}}$ will be infinite, i.e. the circuit will operate without any external signal voltage, which means the circuit will oscillate at that frequency.
Topic:Semi-conductor_; Sub-Topic:Oscillators_ L-2_Target-2016_ XII-HSC Board Test

