

$$= 600 \left(\frac{n(n+1)}{2} \right) = 300 (30 \times 31) = \text{Rs.}2, 79,000$$

:. Interest =
$$\frac{PRT}{100} = \frac{279000 \times 10 \times 1}{100 \times 12} = \text{Rs.}2325$$

:. Maturity vale = $600 \times 30 + 2325 = \text{Rs.} 20325$

Topic: Banking_Subtopic: Recurring Deposits_ Level: 1_Std. X__ICSE Board / Mathematics

- (c) Cards bearing numbers 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20 are kept in a bag A card is drawn at random from the bag. Find the probability of getting a card which is : [4]
 - (i) a prime number
 - (ii) a number divisible by 4
 - (iii) a number that is a multiple of 6
 - (iv) an odd number

Ans.

 $n(S) = {}^{10}C_1 = 10$

(i) $A = a prime number = \{2\}$

$$P(A) = \frac{1}{10}$$

(ii) B = Number divisible by $4 = \{4, 8, 12, 16, 20\}$

2)

$$P(B) = \frac{5}{10} = \frac{1}{2}$$

(iii) C = a number that is multiple of 6

$$= \{6, 12, 18\}$$

$$P(C) = \frac{3}{10}$$

(iv) D =an odd number = { }

$$P(D) = \frac{0}{10} = 0$$

Topic: Probability_Subtopic: Probability_Level: 1_Std. X_ICSE Board / Mathematics

Rao IIT Academy

Website : www.raoiit.com

2

Question 2

- (a) The circumference of the base of a cylindrical vessel is 132 cm and its height is 25 cm. Find the [3]
 - (i) radius of the cylinder

(ii) volume of cylinder
$$\left(\text{Use } \pi = \frac{22}{7} \right)$$

Ans. (i) Given circumference = $2\pi r$

$$132 = 2 \times \frac{22}{7} \times r$$

$$\therefore$$
 $r = 3 \times 7 = 21 cm$

- \therefore Radius = 21 cm
- (ii) Volume of cylinder $= \pi r^2 h$

$$=\frac{22}{7} \times 21 \times 21 \times 25$$

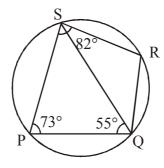
 $= 22 \times 21 \times 25 \times 3$

 $= 34,650 \ cm^3$

~ ~

(b) If (k-3), (2k+1) and (4k+3) are three consecutive terms of an A.P., find the value of k. [3]

Ans. : (k-3), (2k+1), (4k+3) are consecutive numbers in AP.


:.
$$2 \times (2k+1) = (k-3) + (4k+3)$$

$$\therefore 4k+2 = k-3+4k+3$$

$$\therefore k = 2$$

Topic: Progression_Subtopic: A.P._ Level: 1_Std. X__ICSE Board / Mathematics

(c) *PQRS* is a cyclic quadrilateral. Given $\angle QPS = 73^\circ$, $\angle PQS = 55^\circ$ and $\angle PSR = 82^\circ$, calculate :[4]

3

(i) $\angle QRS$

(iii) $\angle PRQ$

Rao IIT Academy

Website : www.raoiit.com

25

Ans. From diagram

(i)
$$\angle SPQ + \angle QRS = 180^{\circ}$$

 $73^{\circ} + \angle QRS = 180^{\circ}$

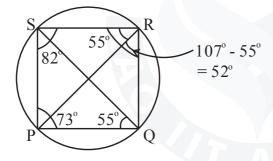
(Opposite angles are supplimentary)

$$\angle QRS = 180^\circ - 73^\circ = 107^\circ$$

(ii) $\angle PSR + \angle PQR = 180^{\circ}$

$$82^\circ + \angle PQR = 180^\circ$$

 $\angle PQR = 180^{\circ} - 82^{\circ}$


 $\angle PQR = 98^{\circ}$

But $\angle PQR = \angle PQS + \angle RQS$

 $98^\circ = 55^\circ + \angle RQS$

$$98^\circ - 55^\circ = \angle RQS = 43^\circ$$

(iii)

 $\therefore \angle PRQ = 52^{\circ}$

Topic: Circles_Subtopic:Circles_Level:2_Std. X_ICSE Board / Mathematics

Question 3

(a) If
$$(x+2)$$
 and $(x+3)$ are factors $x^3 + ax + b$, find the values of 'a' and 'b'.

4

Ans. $\therefore x+2$ is factor of $x^3 + ax + b$

$$\therefore (-2)^{3} + a(-2) + b = 0$$

$$-8 - 2a + b = 0$$

$$2a - b = -8$$
 ...(i)

$$\therefore x + 3 \text{ is factor of } x^{3} + ax + b$$

$$(-3)^{3} + a(-3) + b = 0$$

$$-27 - 3a + b = 0$$

Rao IIT Academy

3a-b=-27 ...(ii)(ii)-(i) ...(ii)(3a-b)-(2a-b)=-27-(-8)3a-b-2a+b=-27+8a=-19Put a=-19 in (i)2(-19)-b=-8-38-b=-8-38+8=b=-30

Topic: Remainder & Factor_Subtopic:Factor theory__ Level:2_Std. X__ICSE Board / Mathematics

(b) Prove that
$$\sqrt{\sec^2 \theta + \csc^2 \theta} = \tan \theta + \cot \theta$$

Ans. L.H.S

 $\sqrt{\sec^2\theta + \csc^2\theta}$

$$\therefore \sqrt{\tan^2\theta + 1} + \cot^2\theta + 1$$

$$\therefore \sqrt{\tan^2\theta + 2 + \cot^2\theta}$$

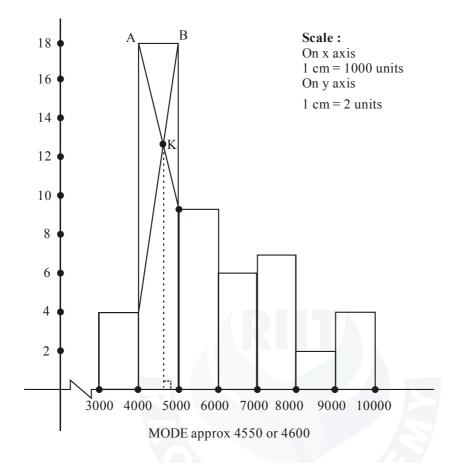
$$\therefore \sqrt{\tan^2\theta + 2\tan\theta\cot\theta + \cot^2\theta}$$

$$\{\tan\theta \times \cot\theta = 1\}$$

$$\therefore \sqrt{\left(\tan\theta + \cot\theta\right)^2}$$

 $\therefore \tan \theta + \cot \theta$

Topic: Trigonometric Functions_Subtopic: Identities__ Level:2_Std. X__ICSE Board / Mathematics


Using graph paper draw a histogram for the given distibution showing the number of runs scored by 50 batsman. Estimate the mode of the data : [4]

Runs	1000-	4000-	5000-	6000-	7000-	8000-	9000-
Scored	4000	5000	6000	7000	8000	9000	10000
No. of	1	18	0	6	7	2	1
batsman	4	10	9	0	/	2	4

Ans.

[3]

5

Topic:Graphical Representation_Subtopic: Histogram_ Level: 2_Std. X_ICSE Board / Mathematics

Question 4

(a) Solve the following inequation, write down the solution set and represent it on the real number line:

 $-2 + 10x \le 13x + 10 < 24 + 10x, x \in \mathbb{Z}$

[3]

Ans. $-2 + 10x \le 13x + 10$ and 13x + 10 < 24 + 10x

 $-12 \le 3x$ and 3x < 14

$$-4 \le x \text{ and } x < \frac{14}{3} \quad \because x \in Z$$

$$-4 \quad -3 \quad -2 \quad -1 \quad -0 \quad 1 \quad 2 \quad 3 \quad 4$$

$$\therefore x = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$$

Topic: Inequality_Subtopic: Inequality_Level: 2_Std. X_ICSE Board / Mathematics

(b) If the straight lines 3x - 5y = 7 and 4x + ay + 9 = 0 are perpendicular to one another, find the value of *a*. [3]

6

Rao IIT Academy

Ans. Slope of
$$3x - 5y = 7$$
 is
 $m_1 = \frac{-3}{-5} = \frac{3}{5}$
Slope of $4x + ay + 9 = 0$ is
 $m_2 = \frac{-4}{a}$
 \therefore lines are \perp
 $m_1 \times m_2 = -1$
 $\frac{3}{5} \times \frac{-4}{a} = -1$
 $\frac{-12}{5} = -a$
 $\therefore a = \frac{12}{5}$

Topic: Coordinate Geometry_Subtopic: Equation of line_ Level: 1_Std. X__ICSE Board / Mathematics

(c) Solve $x^2 + 7x = 7$ and give your answer correct to two decimal places.

Ans.
$$x^2 + 7x = 7$$

$$x^{2} + 7x + \frac{49}{4} = 7 + \frac{49}{4}$$
$$\left(x + \frac{7}{2}\right)^{2} = \frac{77}{4}$$
$$x + \frac{7}{2} = \pm \sqrt{\frac{77}{4}}$$
$$x = \pm \sqrt{\frac{77}{4}} - \frac{7}{2}$$
$$x = \pm \sqrt{\frac{77}{4}} - \frac{7}{2}$$
$$x = \pm \frac{\sqrt{77} - 7}{2}$$
$$x = 0.88 \text{ or } x = -7.88$$
Algebra Subtopic: On

Topic: Algebra_Subtopic: Qudratic Equation_ Level: 1_Std. X_ICSE Board / Mathematics

Rao IIT Academy

7)

Website : www.raoiit.com

[4]

SECTION - B (40 Marks)

Attempt any four questions from this Section

Question 5

(a) The 4^{th} term of a G.P. is 16 and the 7^{th} terms is 128. Find the first term and common ratio of the series.

Ans. Let the first term of a G.P. *a* and common ratio *r*

$$a_4 = ar^3 = 16$$
 ...(i)

 $a_7 = ar^6 = 128$...(ii)

 $(ii) \div (i)$

 $\frac{ar^6}{ar^3} = \frac{128}{16}$

$$r^3 = 8$$

Put r = 2 in equation (ii)

$$a(2)^3 = 16$$

a = 2

```
\therefore First term (a) = 2
```

Common ratio = 2

Topic: Progression_Subtopic: G.P._ Level:1 _Std. X__ICSE Board / Mathematics

- (b) A man inversts Rs.22,500 in Rs.50 shares available at 10% discount. If the dividend paid by the company is 12%, calculate : [3]
 - (i) The number of shares purchased
 - (ii) The annual dividend received
 - (iii) The rate of return he gets on his investment. Give your answer correct to the nearest whole number.
- Ans. Actual price = 50 Rs./Share

Price after discount = 50 - 10% of 50 = Rs.45

(i) Total shares bought (Purchased)

$$=\frac{22500}{45}=500$$

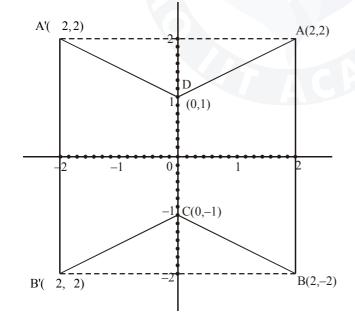
(ii) Annual dividend received

$$=500 \times 50 \times 12\%$$

Rao IIT Academy

8)

[3]


$$= 500 \times 50 \times \frac{12}{100}$$

= 5×600
= Rs. 3000
(iii) ROR = $\frac{25500 - 22500}{22500} \times 100$
= $\frac{3000}{22500} \times 100 = 13.33\%$

aprrox. 13%

Topic: Shares_Subtopic:Shares_Level: 2_Std. X_ICSE Board / Mathematics

- (c) Use graph paper for this question (Take 2cm = 1 unit along both x and y axis). ABCD is a quadrilateral whose vertices are A(2, 2), B(2, -2), C(0, -1) and D(0, 1).
 - (i) Reflect quadrilateral ABCD on the y-axis and name it as A'B'CD.
 - (ii) Write down the coordinaes of A' and B'.
 - (iii) Name two points which are invariant under the above reflection.
 - (iv) Name the polygon A'B'CD.

(ii)
$$A' = (-2, 2) \quad B' = (-2, -2)$$

(iii) C and D

(iv) A'B'CD is trapezium

Topic: Coordinate Geometry_Subtopic: Reflection_Level:2_Std. X__ICSE Board / Mathematics

9

Rao IIT Academy

Question 6

(a) Using properties of proportion, solve for x. Given that x is positive :

$$\frac{2x + \sqrt{4x^2 - 1}}{2x - \sqrt{4x^2 - 1}} = 4$$

Ans. $\frac{2x + \sqrt{4x^2 - 1}}{2x - \sqrt{4x^2 - 1}}$

Applying componendo and dividendo

 $=\frac{4}{1}$

$$\frac{\left(2x+\sqrt{4x^2-1}\right)+\left(2x-\sqrt{4x^2-1}\right)}{\left(2x+\sqrt{4x^2-1}\right)-\left(2x-\sqrt{4x^2-1}\right)} = \frac{4+1}{4-1}$$

$$\Rightarrow \frac{4x}{2\sqrt{4x^2 - 1}} = \frac{5}{3}$$

Squaring on both sides, we get

$$\Rightarrow \frac{4x^2}{4x^2 - 1} = \frac{25}{9}$$
$$\Rightarrow 36x^2 = 100x^2 - 25$$
$$\Rightarrow 64x^2 = 25$$
$$\Rightarrow x^2 = \frac{25}{64}$$
$$x = \pm \frac{5}{8}$$

Topic: Algebra_Subtopic: Ratio & Proportion_ Level:2_Std. X_ICSE Board / Mathematics

(b) If
$$A = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 4 \\ -1 & 7 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 0 \\ -1 & 4 \end{bmatrix}$, find $AC + B^2 - 10C$. [3]
Ans. $A = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 4 \\ -1 & 7 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 0 \\ -1 & 4 \end{bmatrix}$
 $AC + B^2 - 10C = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 4 \end{bmatrix} + \begin{bmatrix} 0 & 4 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} 0 & 4 \\ -1 & 7 \end{bmatrix} - 10 \begin{bmatrix} 1 & 0 \\ -1 & 4 \end{bmatrix}$
 $AC + B^2 - 10C = \begin{bmatrix} 2 - 3 & 12 \\ 5 - 7 & 28 \end{bmatrix} + \begin{bmatrix} -4 & 28 \\ -7 & 45 \end{bmatrix} - \begin{bmatrix} 10 & 0 \\ -10 & 40 \end{bmatrix}$

Rao IIT Academy

(10)

Website : www.raoiit.com

[3]

$$AC + B^{2} - 10C = \begin{bmatrix} -1 - 4 - 10 & 12 + 28 \\ -2 - 7 + 10 & 28 + 45 - 40 \end{bmatrix}$$
$$AC + B^{2} - 10C = \begin{bmatrix} -15 & 40 \\ 1 & 33 \end{bmatrix}$$

Topic:Algebra_Subtopic:Matrices_Level:1_Std. X_ICSE Board / Mathematics

(c) Prove that
$$(1 + \cot \theta - \csc \theta)(1 + \tan \theta + \sec \theta) = 2$$

Ans. Taking LHS:

 $(1 + \cot \theta - \csc \theta)(1 + \tan \theta + \sec \theta)$

$$= \left(1 + \frac{\cos\theta}{\sin\theta} - \frac{1}{\sin\theta}\right) \left(1 + \frac{\sin\theta}{\cos\theta} + \frac{1}{\cos\theta}\right)$$
$$= \frac{\left(\sin\theta + \cos\theta - 1\right)}{\sin\theta} \frac{\left(\sin\theta + \cos\theta + 1\right)}{\cos\theta}$$

$$=\frac{\left(\sin\theta+\cos\theta\right)^2-1^2}{\sin\theta\cdot\cos\theta}$$

$$=\frac{\sin^2\theta + \cos^2\theta + 2\sin\theta \cdot \cos\theta - 1}{\sin\theta \cdot \cos\theta}$$

$$=\frac{1+2\sin\theta\cdot\cos\theta-1}{\sin\theta\cdot\cos\theta}$$

$$=\frac{2\sin\theta\cdot\cos\theta}{\sin\theta\cdot\cos\theta}$$

= 2

Topic: Trigonometry Subtopic: Trigonometrical Identities Level: 2 Std. X ICSE Board / **Mathematics**

Question 7

Find the value of *k* for which the following equation has equal roots. [3] (a) $x^2 + 4kx + (k^2 - k + 2) = 0$

11

 $x^{2} + 4kx + (k^{2} - k + 2) = 0$ Sol.

following equation having equal roots

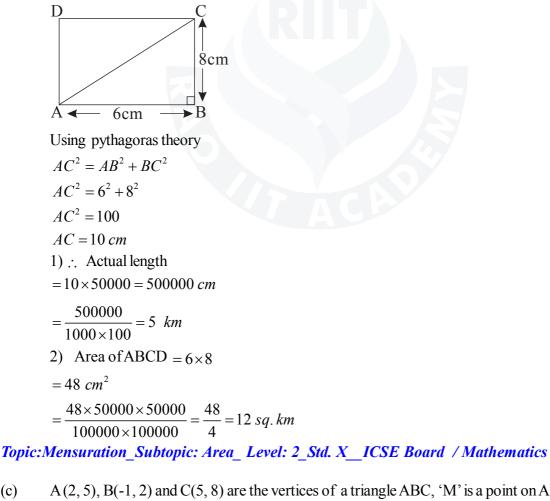
 $\therefore b^2 - 4ac = 0$

here
$$a = 1$$
, $b = 4k$, $c = k^2 - k + 2$

$$(4k)^2 - 4(1)(k^2 - k + 2) = 0$$

Rao IIT Academy

Website : www.raoiit.com


[4]

$$\Rightarrow 16k^{2} - 4k^{2} + 4k - 8 = 0$$

$$\Rightarrow 12k^{2} + 4k - 8 = 0$$

$$\Rightarrow 3k^{2} + k - 2 = 0$$

$$\Rightarrow 3k^{2} + 3k - 2k - 2 = 0$$

$$\Rightarrow 3k(k+1) - 2(k+1) = 0$$

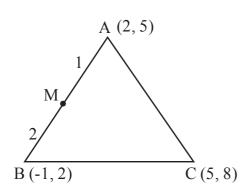
$$(k+1)(3k-2) = 0$$

$$k = -1 \quad \text{or} \quad k = \frac{2}{3}$$

Topic: Algebra_Subtopic: Quadratic Equation_ Level: 2_Std. X__ICSE Board / Mathematics

- (b) On a map drawn to a scale of 1:50,000, a rectangular plot of land ABCD has the following dimensions. AB = 6cm, BC = 8 cm and all angles are right angles. Find :
 - (i) the actual length of the diagonal distance AC of the plot in km.
 - (ii) the actual area of the plot in sq km.

(c) A(2, 5), B(-1, 2) and C(5, 8) are the vertices of a triangle ABC, 'M' is a point on AB such that AM : MB = 1 : 2. Find the co-ordinates of 'M'. Hence find the equation of the line passing through the points C and M. [4]


12)

Rao IIT Academy

Website : www.raoiit.com

[3]

Sol. A(2,5), B(-1,2) and C(5,8)

Let the co-ordinates of M is (x, y)

$$x = \frac{2 \times 2 + 1 \times (-1)}{2 + 1} = \frac{4 - 1}{3} = 1$$
$$y = \frac{2 \times 5 + 1 \times 2}{2 + 1} = \frac{12}{3} = 4$$

 \therefore point M = (1, 4)

Equation of line passing through C(5, 8) and M(1, 4).

$$y-8 = \frac{4-8}{1-5}(x-5)$$
$$y-8 = \frac{-4}{-4}(x-5)$$
$$y-8 = 1(x-5)$$
$$y-8 = x-5$$
$$x-y+3 = 0$$

Topic: Coordinate Geometry_Subtopic: Equation of line__ Level:2 _Std. X__ICSE Board / Mathematics

Question 8

(a) Rs. 7500 were divided equally among a certain number of children. Had there been 20 less children, each woule have received Rs. 100 more. Find the original number of children. [3]

13)

Sol. Let the original number of person be x, then 7500 divided equally between x person,

each one get
$$=\frac{7500}{x}$$

7500 divided equally between x - 20 children
each one get $75 = \frac{7500}{x-20}$

Rao IIT Academy

According to the question
$\frac{7500}{x-20} = \frac{7500}{x} + \frac{100}{1}$
$\frac{7500}{x-20} = \frac{7500 + 100x}{x}$
7500x = (x - 20)(7500 + 100x)
75x = (x - 20)(75 + x)
$75x = 75x + x^2 - 1500 - 20x$
$x^2 - 20x - 1500 = 0$
$x = \frac{20 \pm \sqrt{400 - 4(-1500)}}{2}$
$x = \frac{20 \pm \sqrt{400 + 6000}}{2}$
$x = \frac{20 \pm 80}{2}$
$x = \frac{20+80}{2}$ or $x = \frac{20-80}{2}$
x = 50 or $x = -30$ (not possible)
\therefore original number of children = 50

Topic: Algebra_Subtopic: Quadratic Equation_ Level:1_Std. X__ICSE Board / Mathematics

(14)

(b)	If the mean of the following distribution of 24, find the value of a^{2}

Marks	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50
Number of students	7	a	8	10	5

Sol. Mean = 24

Class	Frequency (f _i)	Class mark (x _i)	$\mathbf{f_i} \times \mathbf{x_i}$
0 - 10	7	5	35
10 - 20	а	15	15a
20 - 30	8	15	200
30 - 40	10	35	350
40 - 50	5	45	225
Total	30 + a		810 + 15a

Rao IIT Academy

Website : www.raoiit.com

[3]

$$\therefore \text{Mean} = \frac{\sum f_i x_i}{\sum f_i} = 24$$
$$\frac{810 + 15a}{30 + a} = 24$$
$$810 + 15a = 720 + 24a$$
$$90 = 9a$$
$$\boxed{a = 10}$$

Topic: Statistics_Subtopic: Mean_Level: 1_Std. X_ICSE Board / Mathematics

(c) Using ruler and compass only, construct a $\triangle ABC$ such that BC = 5 cm and AB = 6.5 cm and

 $\angle ABC = 120^{\circ}$

- (i) Construct a circm circle of $\triangle ABC$
- (ii) Construct a cyclic quadrilateral ABCD, such that D is equidistant from AB and BC.
- Sol. Step of construction :

(i) Draw BC = 5 cm

(ii) At B, draw

 $\angle XBC = 120^{\circ}$

- (iii) From BX, cut off AB = 6.5 cm
- (iv) Join AC to get $\triangle ABC$

(v) Draw the perpendicular bisector of

BC and AB. These bisectors meet at O. With O as centre and radius equal to OA, draw a circle, which passes through A, B and C. This is the required circumcircle of $\triangle ABC$

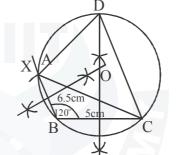
(vi) Produce the perpendicular bisector of BC so that it meets the circle at D. Join CD and AD to get the required cyclic quadrilateral ABCD.

Topic: Geometry_Subtopic: Construction_Level:1_Std. X_ICSE Board / Mathematics

Question 9

Priyanka has a recurring deposit account of Rs. 1000 per month at 10% per annum. If she gets Rs. 5550 as interest at the time of maturity, find dthe total time for which the account was held. [3]

15 `


Sol. Amount of recurring deposit per month = Rs. 1000 Rate of interest = 10% p.a.

let period = n months Amount of interest = 5550(1)

Total principal for one month = $\frac{1000 \times n(n+1)}{2}$

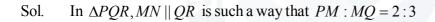
Interest =
$$\frac{1000n(n+1)}{2} \times \frac{10}{100} \times \frac{1}{12}$$

= $\frac{25}{6}n(n+1)$ (2)
From (1) nd (2), we get
 $\frac{25}{6}n(n+1) = 5550$

Rao IIT Academy

[4]

 $25n^{2} + 25n = 33300$ $25n^{2} + 25n - 33300 = 0$ $n^{2} + n - 1332 = 0$ $n^{2} + 37n - 36n - 1332 = 0$ n(n+37) - 36(n+37) = 0 (n-36)(n+37) = 0 $\boxed{n = 36}$


Topic: Commercial Arithmetic_Subtopic: Banking__ Level:2_Std. X__ICSE Board / Mathematics

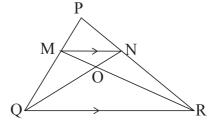
(b) In
$$\triangle PQR$$
, MN in parallel to QR and $\frac{PM}{MQ} = \frac{2}{3}$

(i) Find $\frac{MN}{QR}$

(ii) Prove that $\triangle OMN$ and $\triangle ORQ$ are similar.

(iii) Find. Area of $\triangle OMN$: Area of $\triangle ORQ$

(i) In ΔPQR , $MN \parallel QR$


$$\therefore \quad \frac{PM}{MQ} = \frac{PN}{NR} = \frac{2}{3} \Longrightarrow \frac{MQ}{PM} = \frac{3}{2}$$

Adding 1 on both sides,

$$1 + \frac{MQ}{PM} = \frac{3}{2} + 1$$

$$\Rightarrow \frac{PM + MQ}{PM} = \frac{3 + 2}{2}$$

$$\frac{PQ}{PM} = \frac{5}{2} \Rightarrow \frac{PM}{PQ} = \frac{2}{5}$$
Now in ΔPMN and ΔPQR ,
$$\angle PMN = \angle PQR$$
 (corresponding angles)
$$\angle P = \angle P$$
 (Common)
$$\therefore \Delta PMN \sim \Delta PQR$$
 (AA postulates)
$$\therefore \frac{PM}{PQ} = \frac{MN}{QR} = \frac{PN}{NR}$$

[3]

Rao IIT Academy (16) Website

But
$$\frac{PM}{PQ} = \frac{2}{5}$$

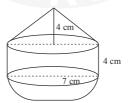
 $\therefore \frac{MN}{QR} = \frac{2}{5}$
(ii) In $\triangle OMN$ and $\triangle ORQ$
(a) $\angle MON = \angle QOR$
Since MN || QR,
(b) $\angle MNO = \angle OQR$
(c) $\angle NMO = \angle ORQ$

(Vertically opposite angles)

(Alternate angles)

(Alternate angles)

By AAA postulates,


 $\Delta OMN \sim \Delta ORQ$

(iii)
$$\frac{Ar(\Delta OMN)}{Ar(\Delta ORQ)} = \frac{MN^2}{QR^2}$$

 $\frac{Ar(\Delta OMN)}{Ar(\Delta ORQ)} = \frac{4}{25}$

Topic: Geometry_Subtopic: Similarity_ Level:2_Std. X__ICSE Board / Mathematics

(c) The following figure represents a solid consisting of a right circular cylinder with a hemisphere at one end and a cone at the other. This common radius is 7 cm. The height of the cylinder and cone are each of 4 cm. Find the volume of the solid. [4]

Sol. Volume = Volume of cone + Volume of cylinder + Volume of hemishpere

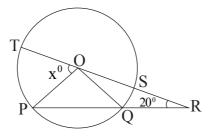
$$= \frac{1}{3}\pi r^{2}h + \pi r^{2}H + \frac{2}{3}\pi r^{3} = \frac{1}{3}\pi r^{2}(h+3H+2r)$$
$$= \frac{1}{3} \times \frac{22}{7} \times 7 \times 7(4+4\times 3+2\times 7)$$
$$= \frac{1}{3} \times 22 \times 7 \times 30$$
$$= 22 \times 7 \times 10$$
$$= 1540 \ cm^{3}$$

Topic: Mensuration_Subtopic: Cylinder_ Level: 2_Std. X__ICSE Board / Mathematics

17)

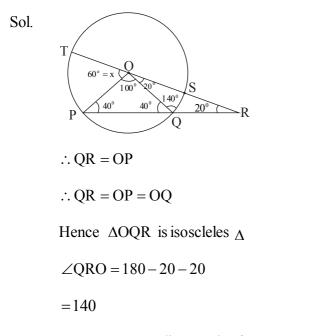
Rao IIT Academy

[3]


Question 10

(a) Use Remainder theorem to factorize the following polynomial: $2x^{3} + 3x^{2} - 9x - 10$ Sol. $p(x) = 2x^{3} + 3x^{2} - 9x - 10$ p(-1) = 2(-1) + 3(1) - 9(-1) - 10 = 0 $\therefore x + 1$ is a factor of p(x)Now, dividing p(x) by x + 1, we get $2x^{2} + x = 10$

$$\begin{array}{r} 2x^{2} + x - 10 \\ x + 1 \overline{\smash{\big)}} & 2x^{3} + 3x^{2} - 9x - 10 \\ & 2x^{3} + 2x^{2} \\ (-) & (-) \\ \hline & x^{2} - 9x - 10 \\ & x^{2} + x \\ (-) & (-) \\ \hline & -10x - 10 \\ & (+) & (+) \\ \hline & 0 \end{array}$$


$$\therefore 2x^{3} + 3x^{2} - 9x - 10 = (x + 1)(2x^{2} + x - 10)$$
$$= (x + 1)[2x^{2} + 5x - 4x - 10]$$
$$= (x + 1)[x(2x + 5) - 1(2x + 5)]$$
$$= (x + 1)(x - 2)(2x + 5)$$

- Topic: Algebra_Subtopic:Remainder & Factor theorem_ Level:1 _Std. X_ICSE Board / Mathematics
- (b) In the figure given below 'O' is the center of the circle. If QR = OP and $\angle ORP = 20^\circ$. Find the value of 'x' giving reasons. [3]

18)

Rao IIT Academy

 $\therefore \angle OQP = 40^{\circ}$ linear pair of $\angle OQR$

 $\therefore \angle OPQ = 40^{\circ}$ as $\triangle OPQ$ is isosceles

 $\therefore \angle POQ = 180^{\circ} - 40^{\circ} - 40^{\circ} = 100^{\circ}$

 $\therefore \angle POT = x = 180^{\circ} - 100^{\circ} - 20^{\circ} = 60^{\circ}$

Topic: Geometry_Subtopic:Circle_Level: 2_Std. X_ICSE Board / Mathematics

(c) The angle of elevation from a point P of the top of a tower QR, 50 m high is 60° and that of the tower PT freom a point Q is 30°. Find the height of the tower PT, correct to the nearest metre. [4]

Let the height of the tower PT is h. and PQ is x In Δ PQT

 $\tan 30^{\circ} = \frac{PT}{PQ}$ $\frac{1}{\sqrt{3}} = \frac{H}{x}$ $x = \sqrt{3} h \qquad \dots \dots (1)$ In ΔPQR $\tan 60^{\circ} = \frac{50}{x}$ $\sqrt{3} x = 50 \qquad \dots \dots (2)$ $\Rightarrow \sqrt{3} (\sqrt{3} h) = 50$ 3h = 50 $h = \frac{50}{3}$ $\therefore h = \frac{50}{3}$

Topic: Trigonometry_Subtopic: Heights & Distances_Level: 2_Std. X_ICSE Board / Mathematics

Question 11

(a) The 4th term of an A. P. is 22 and 15th term is 66. Find the first term and the common difference. Hence find the sum of the series to 8 terms. [4]

(20)

Sol. Let the first term at a A.P. is a and common difference is d.

put d = 4 in equation (1)

$$a + 3 \times 4 = 22$$

 $a + 12 = 22$
 $a = 10$
 $S_n = \frac{n}{2} [2a + (n-1)d]$
 $S_8 = \frac{8}{2} [20 + 7 \times 4]$
 $S_8 = 4 [20 + 8 \times 4]$

Rao IIT Academy

 $S_8 = 4[48] = 192$

Topic: Algebra_Subtopic: A.P._ Level: 1_Std. X__ICSE Board / Mathematics

(b) Use graph paper for htis questin.

A survey regarding height (in cm) of 60 boys belonging to Class 10 of a school was conducted. The following data was recorded : [6]

Height in cm	135-140	140-145	145-150	150-155	155-160	160-165	165-170
No. of boys	4	8	20	14	7	6	1

Taking 2cm = height of 10 cm along one axis and 2 cm = 10 boys along the other axis draw an ogive of the above distribution. Use the graph to estimate the following :

(i) the medium

(ii) lower Quarile

(iii) if above 158 cm is considered as the tall boys of the class. Find the number of boys in the class who are tall.

Topic: Statistics_Subtopic: Median & Quartiles_ Level:2_Std. X__ICSE Board / Mathematics Sol.

21

Height (in cm)	No.of boys	C.f.
135-140	4	4
140-145	8	12
145-150	20	32
150-155	14	46
155-160	7	53
160-165	6	59
165-170	1	60

Median =
$$\frac{60}{2} = 30^{th}$$
 item

Rao IIT Academy

(22)

Rao IIT Academy