M. 0 : Kunnumpuram, A yurveda College Jn., Trivandrum-1, (: 0471-2573040, 2473040

E-mail: info@ zephyrentrance.in, Website: www.zephyrentrance.in
BRANCHES

KOCHI
Puthussery Building, Kaloor (: 0484-2531040

KO LLAM
Sivajyothi C omplex, Polayathode
(: 0474-2743040

KEAM (ENGINEERING) ANSWER KEY 2018

PAPER II - MATHEMATICS

QUESTIONS \& ANSWERS

1. The value of $\frac{2\left(\cos 75^{\circ}+i \sin 75^{\circ}\right)}{0.2\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)}$ is
(A) $\frac{5}{\sqrt{2}}(1+i)$
(B) $\frac{10}{\sqrt{2}}(1+i)$
(C) $\frac{10}{\sqrt{2}}(1-i)$
(D) $\frac{5}{\sqrt{2}}(1-i)$
(E) $\frac{1}{\sqrt{2}}(1+i)$

ANSWER	B

2. If the conjugate of a complex number z is $\frac{1}{i-1}$, then z is
(A) $\frac{1}{i-1}$
(B) $\frac{1}{i+1}$
(C) $\frac{-1}{i-1}$
(D) $\frac{-1}{i+1}$
(E) $\frac{1}{i}$

ANSWER	D

3. The value of $\left(i^{18}+\left(\frac{1}{i}\right)^{25}\right)^{3}$ is equal to
(A) $\frac{1+i}{2}$
(B) $2+2 i$
(C) $\frac{1-i}{2}$
(D) $\sqrt{2}-\sqrt{2} i$
(E) $2-2 i$

ANSWER E
4. The modulus of $\frac{1+i}{1-i}-\frac{1-i}{1+i}$ is
(A) 2
(B) $\sqrt{2}$
(C) 4
(D) 8
(E) 10

ANSWER	A

5. If $z=e^{i 4 \pi / 3}$, then $\left(z^{192}+z^{194}\right)^{3}$ is equal to
(A) -2
(B) -1
(C) $-i$
(D) $-2 i$
(E) 0

ANSWER	B

6. If a and b are real numbers and $(\mathrm{a}+i \mathrm{~b})^{11}=1+3 i$, then $(\mathrm{b}+i \mathrm{a})^{11}$ is equal to
(A) $i+3$
(B) $1+3 i$
(C) $1-3 i$
(D) 0
(E) $-i-3$

ANSWER	E

7. If $\alpha \neq \beta, \alpha^{2}=5 \alpha-3, \beta^{2}=5 \beta-3$, then the equation having $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ as its roots is
(A) $3 x^{2}-19 x-3=0$
(B) $3 x^{2}+19 x-3=0$
(C) $x^{2}+19 x+3=0$
(D) $3 x^{2}-19 x-19=0$
(E) $3 x^{2}-19 x+3=0$

ANSWER	E

8. The focus of the parabola $y^{2}-4 y-x+3=0$ is
(A) $\left(\frac{3}{4}, 2\right)$
(B) $\left(\frac{3}{4},-2\right)$
(C) $\left(2, \frac{3}{4}\right)$
(D) $\left(\frac{-3}{4}, 2\right)$
(E) $\left(2, \frac{-3}{4}\right)$

ANSWER	D

9. If $f: R \rightarrow(0, \infty)$ is an increasing function and if , $\lim _{x \rightarrow 2018} \frac{f(3 x)}{f(x)}=1$, then $\lim _{x \rightarrow 2018} \frac{f(2 x)}{f(x)}$ is equal to
(A) $\frac{2}{3}$
(B) $\frac{3}{2}$
(C) 2
(D) 3
(E) 1

ANSWER	E

10. If f is differentiable at $\mathrm{x}=1$, then $\lim _{x \rightarrow 1} \frac{x^{2} f(1)-f(x)}{x-1}$ is
(A) $-f^{\prime}(1)$
(B) $f(1)-f^{\prime}(1)$
(C) $2 f(1)-f^{\prime}(1)$
(D) $2 f(1)+f^{\prime}(1)$
(E) $f(1)+f^{\prime}(1)$

ANSWER	C

11. Eccentricity of the ellipse $4 x^{2}+y^{2}-8 x+4 y-8=0$ is
(A) $\frac{\sqrt{3}}{2}$
(B) $\frac{\sqrt{3}}{4}$
(C) $\frac{\sqrt{3}}{\sqrt{2}}$
(D) $\frac{\sqrt{3}}{8}$
(E) $\frac{\sqrt{3}}{16}$

ANSWER	A

12. The focus of the parabola $(y+1)^{2}=-8(x+2)$ is
(A) $(-4,-1)$
(B) $(-1,-4)$
(C) $(1,4)$
(D) $(4,1)$
(E) $(-1,4)$

ANSWER A
13. Which of the following is the equation of a hyperbola?
(A) $x^{2}-4 x+16 y+17=0$
(B) $4 x^{2}+4 y^{2}-16 x+4 y-60=0$
(C) $x^{2}+2 y^{2}+4 x+2 y-27=0$
(D) $x^{2}-y^{2}+3 x-2 y-43=0$
(E) $x^{2}+4 x+6 y-2=0$

ANSWER	D

14. Let $f(x)=p x^{2}+q x+r$, where p, q, r are constants and $p \neq 0$. If $f(5)=-3 f(2)$ and $f(-4)=0$, then the other root of f is
(A) 3
(B) -7
(C) -2
(D) 2
(E) 6

ANSWER	A

15. Let $f: \mathrm{R} \rightarrow \mathrm{R}$ satisfy $f(x) f(y)=f(x y)$ for all real numbers x and y. If $f(2)=4$, then $f\left(\frac{1}{2}\right)=$
(A) 0
(B) $\frac{1}{4}$
(C) $\frac{1}{2}$
(D) 1
(E) 2

ANSWER	B

16. Sum of last 30 coefficients in the binomial expansion of $(1+x)^{59}$ is
(A) 2^{29}
(B) 2^{59}
(C) 2^{58}
(D) $2^{59}-2^{29}$
(E) 2^{60}

ANSWER	C

17. $(\sqrt{3}+\sqrt{2})^{4}-(\sqrt{3}-\sqrt{2})^{4}=$
(A) $20 \sqrt{6}$
(B) $30 \sqrt{6}$
(C) $5 \sqrt{10}$
(D) $40 \sqrt{6}$
(E) $10 \sqrt{6}$

ANSWER	D

18. Three players A, B and C play a game. The probability that A, B and C will finish the game are respectively $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$. The probability that the game is finished is
(A) $\frac{1}{8}$
(B) 1
(C) $\frac{1}{4}$
(D) $\frac{3}{4}$
(E) $\frac{1}{2}$

ANSWER	D

19. If $\mathrm{z}_{1}=2-i$ and $\mathrm{z}_{2}=1+i$, then $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+i}\right|$ is
(A) 2
(B) $\sqrt{2}$
(C) 3
(D) $\sqrt{3}$
(E) 1

ANSWER	NA

20. If $f(x)=\sqrt{\frac{x-\sin x}{x+\cos ^{2} x}}$, then $\lim _{x \rightarrow \infty} f(x)$ is equal to
(A) 1
(B) 2
(C) $\frac{1}{2}$
(D) 0
(E) ∞

ANSWER	A

21. The value of $\sin \frac{31}{3} \pi$ is
(A) $\frac{\sqrt{3}}{2}$
(B) $\frac{1}{\sqrt{2}}$
(C) $\frac{-\sqrt{3}}{2}$
(D) $\frac{-1}{\sqrt{2}}$
(E) $\frac{1}{2}$

ANSWER	A

22. The sum of odd integers from 1 to 2001 is
(A) $(1121)^{2}$
(B) $(1101)^{2}$
(C) $(1001)^{2}$
(D) $(1021)^{2}$
(E) $(1011)^{2}$

ANSWER	C

23. If $y=\frac{\sin ^{2} x}{1+\cot x}+\frac{\cos ^{2} x}{1+\tan x}$, then $y^{\prime}(x)$ is equal to
(A) $2 \cos ^{2} x$
(B) $2 \cos ^{3} x$
(C) $-\cos 2 x$
(D) $\cos 2 x$
(E) $3 \cos x$

ANSWER	C

24. The foci of the hyperbola $16 x^{2}-9 y^{2}-64 x+18 y-90=0$ are
(A) $\left(\frac{24 \pm 5 \sqrt{145}}{12}, 1\right)$
(B) $\left(\frac{21 \pm 5 \sqrt{145}}{12}, 1\right)$
(C) $\left(1, \frac{24 \pm 5 \sqrt{145}}{2}\right)$
(D) $\left(1, \frac{21 \pm 5 \sqrt{145}}{2}\right)$
(E) $\left(\frac{21 \pm 5 \sqrt{145}}{2},-1\right)$

ANSWER	A

25. If the sum of the coefficients in the expansions of $\left(a^{2} x^{2}-2 a x+1\right)^{51}$ is zero, then a is equal to
(A) 0
(B) 1
(C) -1
(D) -2
(E) 2

ANSWER	B

26. The mean deviation of the data $2,9,9,3,6,9,4$ from the mean is
(A) 2.23
(B) 3.23
(C) 2.57
(D) 3.57
(E) 1.03

ANSWER	C

27. The mean and variance of a binomial distribution are 8 and 4 respectively. What is $(\mathrm{X}=1)$?
(A) $\frac{1}{2^{8}}$
(B) $\frac{1}{2^{12}}$
(C) $\frac{1}{2^{6}}$
(D) $\frac{1}{2^{4}}$
(E) $\frac{1}{2^{5}}$

ANSWER	B

28. The number of diagonals of a polygon with 15 sides is
(A) 90
(B) 45
(C) 60
(D) 70
(E) 10

ANSWER	A

29. In a class, 40% of students study maths and science and 60% of students study maths. What is the probability of a student studying science given the student is already studying maths?
(A) $\frac{1}{3}$
(B) $\frac{1}{6}$
(C) $\frac{2}{3}$
(D) $\frac{1}{5}$
(E) $\frac{1}{4}$

30. The eccentricity of the conic $x^{2}+2 y^{2}-2 x+3 y+2=0$ is
(A) 0
(B) $\frac{1}{\sqrt{2}}$
(C) $\frac{1}{2}$
(D) $\sqrt{2}$
(E) 1

ANSWER	B

31. If the mean of a set of observations $x_{1}, x_{2}, \ldots \ldots \ldots x_{10}$ is 20 , then the mean of $x_{1}+4, x_{2}+8, x_{3}+12 \ldots, x_{10}+40$ is
(A) 34
(B) 32
(C) 42
(D) 38
(E) 40

ANSWER	C

32. A letter is taken at random from the word "GTATISTICS" and another letter is taken at random from the word "ASSISTANT". The probability that they are same letters is
(A) $\frac{1}{45}$
(B) $\frac{13}{90}$
(C) $\frac{19}{90}$
(D) $\frac{5}{18}$
(E) $\frac{9}{10}$

ANSWER	C

33. If $\sin \alpha$ and $\cos \alpha$ are the roots of the equation $a x^{2}+b x+c=0$, then
(A) $a^{2}-b^{2}+2 a c=0$
(B) $(a-c)^{2}=b^{2}+c^{2}$
(C) $a^{2}+b^{2}-2 a c=0$
(D) $a^{2}+b^{2}+2 a c=0$
(E) $a+b+c=0$

ANSWER	A

34. If the sides of a triangle are 4,5 and 6 cms . Then the area of triangle is \qquad
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{4} \sqrt{7}$
(C) $\frac{4}{15}$
(D) $\frac{4}{15} \sqrt{7}$
(D) $\frac{15}{4} \sqrt{7}$

ANSWER	E

35. In a group of 6 boys and 4 girls, a team consisting of four children is formed such that the team has atleast one boy. The number of ways of forming a team like this is
(A) 159
(B) 209
(C) 200
(D) 240
(E) 212

ANSWER	B

36. A password is set with 3 distinct letters from the word LOGARITHMS. How many such passwords can be formed?
(A) 90
(B) 720
(C) 80
(D) 72
(E) 120

ANSWER	B

37. If 5^{97} is divided by 52 , the remainder obtained is
(A) 3
(B) 5
(C) 4
(D) 0
(E) 1
\square
ANSWER B
38. A quadratic equation $a x^{2}+b x+c=0$, with distinct coefficients is formed. If a, b, c are chosen from the numbers $2,3,5$, then the probability that the equation has real roots is
(A) $\frac{1}{3}$
(B) $\frac{2}{5}$
(C) $\frac{1}{4}$
(D) $\frac{1}{5}$
(E) $\frac{2}{3}$

ANSWER	A

39. $\lim _{x \rightarrow \infty} \frac{3 x^{3}+2 x^{2}-7 x+9}{4 x^{3}+9 x-2}$ is equal to
(A) $\frac{2}{9}$
(B) $\frac{1}{2}$
(C) $\frac{-9}{2}$
(D) $\frac{3}{4}$
(E) $\frac{9}{2}$

ANSWER	D

40. The minimum value of $f(x)=\max \{x, 1+x, 2-x\}$ is
(A) $\frac{1}{2}$
(B) $\frac{3}{2}$
(C) 1
(D) 0
(E) 2

ANSWER	B

41. The equations of the asymptotes of the hyperbola $x y+3 x-2 y-10=0$ are
(A) $x=-2, y=-3$
(B) $x=2, y=-3$
(C) $x=2, y=3$
(D) $x=4, y=3$
(E) $x=3, y=4$

ANSWER	B

42. If $f(x)=x^{6}+6^{x}$, then $f^{\prime}(x)$ is equal to
(A) 12 x
(B) $x+4$
(C) $6 x^{5}+6^{x} \log (6)$
(D) $6 x^{5}+x 6^{x-1}$
(E) x^{6}

ANSWER	C

43. The standard deviation of the data $6,5,9,13,12,8,10$ is
(A) $\frac{\sqrt{52}}{7}$
(B) $\frac{52}{7}$
(C) $\frac{\sqrt{53}}{7}$
(D) $\frac{53}{7}$
(E) 6

ANSWER	NA

44. $\quad \lim _{x \rightarrow 0} \frac{1-\cos m x}{1-\cos n x}=$
(A) $\frac{m^{2}}{n^{2}}$
(B) $\frac{n^{2}}{m^{2}}$
(C) ∞
(D) $-\infty$
(E) 0

ANSWER	A

45. $\lim _{x \rightarrow 0} \frac{\sqrt{1+2 x-1}}{x}=$
(A) 0
(B) -1
(C) $\frac{1}{2}$
(D) 1
(E) $\frac{-1}{2}$

ANSWER	D

46. Let f and g be differentiable functions such that $f(3)=5, g(3)=7, f^{\prime}(3)=13, g^{\prime}(3)=6$, $\mathrm{f}^{\prime}(7)=2$ and $\mathrm{g}^{\prime}(7)=0$. If $\mathrm{h}(\mathrm{x})=(\mathrm{fog})(\mathrm{x})$, then $\mathrm{h}^{\prime}(3)=$
(A) 14
(B) 12
(C) 16
(D) 0
(E) 10

ANSWER	B

47. $\frac{\sqrt{3}}{\sin \left(20^{\circ}\right)}-\frac{1}{\cos \left(20^{\circ}\right)}=$
(A) 1
(B) $\frac{1}{\sqrt{2}}$
(C) 2
(D) 4
(E) 0

ANSWER	D

48. A poison variate X satisfies $P(X=1)=P(x=2) . P(X=6)$ is equal to
(A) $\frac{4}{45} e^{-2}$
(B) $\frac{1}{45} e^{-1}$
(C) $\frac{1}{9} e^{-2}$
(D) $\frac{1}{4} e^{-2}$
(E) $\frac{1}{45} e^{-2}$

ANSWER	A

49. Let a and be be 2 consecutive integers selected from the first 20 natural numbers. The probability that $\sqrt{a^{2}+b^{2}+a^{2} b^{2}}$ is an odd positive integer is
(A) $\frac{9}{19}$
(B) $\frac{10}{19}$
(C) $\frac{13}{19}$
(D) 1
(E) 0

ANSWER	D

50. An ellipse of eccentricity $\frac{2 \sqrt{2}}{3}$ is inscribed in a circle. A point is chosen inside the circle at random. The probability that the point lies outside the ellipse is
(A) $\frac{1}{3}$
(B) $\frac{2}{3}$
(C) $\frac{1}{9}$
(D) $\frac{2}{9}$
(E) $\frac{1}{27}$

ANSWER	B

51. If the vectors $4 \hat{i}+11 \hat{j}+m \hat{k}, 7 \hat{i}+2 \hat{j}+6 \hat{k}$ and $\hat{i}+5 \hat{j}+4 \hat{k}$ are coplanar, then m is equal to
(A) 38
(B) 0
(C) 10
(D) -10
(E) 25

ANSWER	C

52. Let $\stackrel{r}{a}=\hat{i}+\hat{j}+\hat{k}, \stackrel{r}{b}=\hat{i}+3 \hat{j}+5 \hat{k}$ and $\stackrel{r}{c}=7 \hat{i}+9 \hat{j}+11 \hat{k}$. Then the area of the parallelogram with diagonals ${ }^{\prime} a+b^{\prime}$ and $\bar{b}+{ }^{\prime}$ ' is
(A) $4 \sqrt{6}$
(B) $\frac{1}{2} \sqrt{21}$
(C) $\frac{\sqrt{6}}{2}$
(D) $\sqrt{6}$
(E) $\frac{1}{\sqrt{6}}$

ANSWER	A

53. If $\left|{ }^{\prime}{ }^{\prime}\right|=3,|\dot{b}|=1,\left.\right|^{\prime} c \mid=4$ and ${ }^{\prime} a+\dot{b}^{\prime}+{ }^{\prime} c=0$, then the value of ${ }^{\prime} a^{\prime} \cdot \dot{b}+\dot{b}^{\prime} \cdot{ }^{\prime} \cdot c+{ }^{\prime} \cdot \mathbf{c} \cdot a$ is equal to
(A) 13
(B) 26
(C) -29
(D) -13
(E) -26

ANSWER	D

54. IF $\left|{ }^{\prime}{ }^{\prime}-\dot{\prime}-\left.\right|^{\prime}\right|=\left|{ }^{\prime}\right|=\mid=1$, then the angle between ${ }^{\prime} a$ and \dot{b} is equal to
(A) $\frac{\pi}{3}$
(B) $\frac{3 \pi}{4}$
(C) $\frac{\pi}{2}$
(D) 0
(E) π

ANSWER	A

55. If the vectors $\stackrel{r}{a}=\hat{i}-\hat{j}+2 \hat{k}, \stackrel{r}{b}=2 \hat{i}+4 \hat{j}+\hat{k}$ and $\stackrel{r}{c}=\lambda \hat{i}+9 \hat{j}+\mu \hat{k}$ are mutually orthogonal, then $\lambda+\mu$ is equal to
(A) 5
(B) -9
(C) -1
(D) 0
(E) -5

ANSWER	B

56. The solutions of $x^{2 / 5}+3 x^{1 / 5}-4=0$ are
(A) 1,1024
(B) $-1,1024$
(C) 1,1031
(D) $-1024,1$
(E) $-1,1031$

ANSWER	D

57. If the equations $x^{2}+a x+1=0$ and $x^{2}-x-a=0$ have a real common root b , then the value of b is equal to
(A) 0
(B) 1
(C) -1
(D) 2
(E) 3

ANSWER	C

58. If $\sin \theta-\cos \theta=1$, then the value of $\sin ^{3} \theta-\cos ^{3} \theta$ is equal to
(A) 1
(B) -1
(C) 0
(D) 2
(E) -2

ANSWER A
59. Two dice of different colours are thrown at a time. The probability that the sum is either 7 or 11 is
(A) $\frac{7}{36}$
(B) $\frac{2}{9}$
(C) $\frac{2}{3}$
(D) $\frac{5}{9}$
(E) $\frac{6}{7}$

ANSWER	B

60. $\frac{1}{9!}+\frac{1}{3!7!}+\frac{1}{5!5!}+\frac{1}{7!3!}+\frac{1}{9!}$ is equal to
(A) $\frac{2^{9}}{10!}$
(B) $\frac{2^{10}}{8!}$
(C) $\frac{2^{11}}{9!}$
(D) $\frac{2^{10}}{7!}$
(E) $\frac{2^{8}}{9!}$

ANSWER	C

61. The order and degree of the differential equation
$\left(y^{\prime \prime}\right)^{2}+\left(y^{\prime \prime}\right)^{3}-\left(y^{\prime}\right)^{4}+y^{5}=0$ is
(A) 3 and 2
(B) 1 and 2
(C) 2 and 3
(D) 1 and 4
(E) 3 and 5

ANSWER	A

62. $\int_{-2}^{2}|x| d x$ is equal to
(A) 0
(B) 1
(C) 2
(D) 4
(E) $\frac{1}{2}$

ANSWER	D

63. $\int_{-1}^{0} \frac{d x}{x^{2}+2 x+2}$ is equal to
(A) 0
(B) $\frac{\pi}{4}$
(C) $\frac{-\pi}{4}$
(D) $\frac{\pi}{2}$
(E) $\frac{-\pi}{2}$

ANSWER	B

64. If $\int_{-1}^{4} f(x) d x=4$ and $\int_{2}^{4}(3-f(x)) d x=7$, then $\int_{-1}^{2} f(x) d x$ is
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

ANSWER	E

65. $\int \frac{x e^{x}}{(1+x)^{2}} d x=$
(A) $\frac{e^{x}}{1+x}+c$
(B) $\frac{e^{x}}{1+e^{x}}+c$
(C) $\frac{e^{2 x}}{1+e^{x}}+c$
(D) $\frac{e^{-x}}{1+x}+c$
(E) $\frac{e^{-2 x}}{1+x}+c$

ANSWER	A

66. The remainder when 2^{2000} is divided by 17 is
(A) 1
(B) 2
(C) 8
(D) 12
(E) 4

ANSWER	A

67. The coefficient of x^{5} in the expansion of $(x+3)^{8}$ is
(A) 1542
(B) 1512
(C) 2512
(D) 12
(E) 4

ANSWER B
68. The maximum value of $5 \cos \theta+3 \cos \left(\theta+\frac{\pi}{3}\right)+3$ is
(A) 5
(B) 11
(C) 10
(D) -1
(E) 2

ANSWER	C

69. The area of the triangle in the complex plane formed by z, iz and $\mathrm{z}+\mathrm{iz}$ is
(A) $|z|$
(B) $|\bar{z}|^{2}$
(C) $\frac{1}{2}|z|^{2}$
(D) $\frac{1}{2}|z+i z|^{2}$
(E) $|z+i z|$

ANSWER	C

70. Let $f:{ }^{\circ} \rightarrow^{\circ}$ be a differentiable function. If f is even, then $\mathrm{f}^{\prime}(0)$ is equal to
(A) 1
(B) 2
(C) 0
(D) -1
(E) $\frac{1}{2}$

ANSWER	C

71. The coordinate of the point dividing internally the line joining the points $(4,-2)$ and $(8,6)$ in the ratio $7: 5$ is
(A) $(16,18)$
(B) $(18,16)$
(C) $\left(\frac{19}{3}, \frac{8}{3}\right)$
(D) $\left(\frac{8}{3}, \frac{19}{3}\right)$
(E) $(7,3)$

ANSWER	C

72. The area of the triangle formed by the points $(a, b+c),(b, c+a),(c, a+b)$ is
(a) abc
(B) $a^{2}+b^{2}+c^{2}$
(C) $a b+b c+c a$
(D) 0
(E) $a(a b+b c+c a)$

ANSWER	D

73. If (x, y) is equidistant from $(a+b, b-a)$ and $(a-b, a+b)$, then
(A) $a x+b y=0$
(B) $a x-b y=0$
(C) $b x+a y=0$
(D) $b x-a y=0$
(E) $x=y$

ANSWER	D

74. The equation of the line passing through (a, b) and parallel to the line $\frac{x}{a}+\frac{y}{b}=1$ is
(A) $\frac{x}{a}+\frac{y}{b}=3$
(B) $\frac{x}{a}+\frac{y}{b}=2$
(C) $\frac{x}{a}+\frac{y}{b}=0$
(D) $\frac{x}{a}+\frac{y}{b}+2=0$
(E) $\frac{x}{a}+\frac{y}{b}=4$

ANSWER	B

75. If the points $(2 a, a),(a, 2 a)$ and (a, a) enclose a triangle of area 18 square units, then the centroid of the triangle is equal to
(A) $(4,4)$
(B) $(8,8)$
(C) $(-4,-4)$
(D) $(4 \sqrt{2}, 4 \sqrt{2})$
(E) $(6,6)$

ANSWER	B

76. The area of a triangle is 5 sq. units. Two of its vertices are $(2,1)$ and $(3,-2)$. The third vertex lies on $y=x+3$. The coordinates of the third vertex can be
(A) $\left(\frac{-3}{2}, \frac{-3}{2}\right)$
(B) $\left(\frac{3}{4}, \frac{-3}{2}\right)$
(C) $\left(\frac{7}{2}, \frac{13}{2}\right)$
(D) $\left(\frac{-1}{4}, \frac{1}{2}\right)$
(E) $\left(\frac{3}{2}, \frac{3}{2}\right)$
ANSWER \quad C
77. If $x^{2}+y^{2}+2 g x+2 f y+1=0$ represents a pair of straight lines, then $f^{2}+g^{2}$ is equal to
(A) 0
(B) 1
(C) 2
(D) 4
(E) 3

ANSWER	B

78. If θ is the angle between the pair of straight lines $x^{2}-5 x y+4 y^{2}+3 x-4=0$, then $\tan ^{2} \theta$ is equal to
(A) $\frac{9}{16}$
(B) $\frac{16}{25}$
(C) $\frac{9}{25}$
(D) $\frac{21}{25}$
(E) $\frac{25}{9}$

ANSWER	C

79. If $3 \hat{i}+2 \hat{j}-5 \hat{k}=x(2 \hat{i}-\hat{j}+\hat{k})+y(\hat{i}+3 \hat{j}-2 \hat{k})+z(-2 \hat{i}+\hat{j}-3 \hat{k})$, then
(A) $\mathrm{x}=1, \mathrm{y}=2, \mathrm{z}=3$
(B) $\mathrm{x}=2, \mathrm{y}=3, \mathrm{z}=1$
(C) $x=3, y=1, z=2$
(D) $x=1, y=3, z=2$
(E) $x=2, y=2, z=3$

ANSWER	C

S80. $\quad \sin 15^{\circ}=$
(A) $\frac{\sqrt{3}-1}{2 \sqrt{2}}$
(B) $\frac{\sqrt{3}+1}{2 \sqrt{2}}$
(C) $\frac{1-\sqrt{3}}{2 \sqrt{2}}$
(D) $\frac{1+\sqrt{3}}{\sqrt{2}}$
(E) $\frac{-(1+\sqrt{3})}{2 \sqrt{2}}$

ANSWER
A
81. If a^{\prime} and $\stackrel{r}{b}=3 \hat{i}+6 \hat{j}+6 \hat{k}$ are collinear and ${ }^{\prime} \cdot \cdot \dot{b}=27$, then ${ }^{\prime} a$ is equal to
(A) $3(\hat{i}+\hat{j}+\hat{k})$
(B) $\hat{i}+2 \hat{j}+2 \hat{k}$
(C) $2 \hat{i}+2 \hat{j}+2 \hat{k}$
(D) $\hat{i}+3 \hat{j}+3 \hat{k}$
(E) $\hat{i}-3 \hat{j}+2 \hat{k}$

ANSWER	B

82. If $|\dot{a}|=13,|\dot{b}|=5$ and ${ }^{\prime} a \cdot b=30$, then $|\stackrel{'}{a} \times \dot{b}|$ is equal to
(A) 30
(B) $\frac{30}{25} \sqrt{233}$
(C) $\frac{30}{33} \sqrt{193}$
(D) $\frac{65}{23} \sqrt{493}$
(E) $\frac{65}{13} \sqrt{133}$

ANSWER	E

83. If ${ }^{56} \mathrm{P}_{\mathrm{r}+6}:{ }^{54} \mathrm{P}_{\mathrm{r}+3}=30800: 1$, then r is equal to
(A) 69
(B) 41
(C) 51
(D) 61
(E) 49

ANSWER	B

84. Distance between two parallel lines $y=2 x+4$ and $y=2 x-1$ is
(A) 5
(B) $5 \sqrt{5}$
(C) $\sqrt{5}$
(D) $\frac{1}{5}$
(E) $\frac{3}{\sqrt{5}}$

ANSWER	C

85. $\left({ }^{7} \mathrm{C}_{0}+{ }^{7} \mathrm{C}_{1}\right)+\left({ }^{7} \mathrm{C}_{2}+{ }^{7} \mathrm{C}_{3}\right)+\ldots+\left({ }^{7} \mathrm{C}_{6}+{ }^{7} \mathrm{C}_{7}\right)=$
(A) $2^{8}-2$
(B) $2^{7}-1$
(C) 2^{7}
(D) $2^{8}-1$
(E) $2^{7}-2$

ANSWER	C

86. The coefficient of x in the expansion of $\left(1-3 x+7 x^{2}\right)(1-x)^{16}$ is
(A) 17
(B) 19
(C) -17
(D) -19
(E) 20

ANSWER	D

87. The equation of the circle with centre $(2,2)$ which passes through $(4,5)$ is
(A) $x^{2}+y^{2}-4 x+4 y-77=0$
(B) $x^{2}+y^{2}-4 x-4 y-5=0$
(C) $x^{2}+y^{2}+2 x+2 y-59=0$
(D) $x^{2}+y^{2}-2 x-2 y-23=0$
(E) $x^{2}+y^{2}+4 x-2 y-26=0$

ANSWER	B

88. The point in the xy-plane which is equidistant from $(2,0,3),(0,3,2)$ and $(0,0,1)$ is
(A) $(1,2,3)$
(B) $(-3,2,0)$
(C) $(3,-2,0)$
(D) $(3,2,0)$
(E) $(3,2,1)$

ANSWER	D

89. Let $f: \bullet \rightarrow$ • be such that $\mathrm{f}(1)=2$ and $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})$ for all natural numbers x and y . If $\sum_{k=1}^{n} f(a+k)=16\left(2^{\mathrm{n}}-1\right)$, then a is equal to
(A) 3
(B) 4
(C) 5
(D) 6
(E) 7

ANSWER	A

90. If ${ }_{n} C_{r-1}=36,{ }_{n} C_{r}=84$ and ${ }_{n} C_{r+1}=126$, then $n=$
(A) 3
(B) 4
(C) 8
(D) 9
(E) 10

ANSWER	D

91. Let $f:(-1,1) \rightarrow(-1,1)$ be continuous, $f(\mathrm{x})=f\left(\mathrm{x}^{2}\right)$ for all $\mathrm{x} \in(-1,1)$ and $f(0)=\frac{1}{2}$, then the value of $4 f\left(\frac{1}{4}\right)$ is
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

ANSWER	B

92. $\lim _{x \rightarrow \theta} \sqrt{x^{2}+1}-\sqrt{x^{2}-1}=$
(A) -1
(B) 1
(C) 0
(D) 2
(E) 4

ANSWER	C

93. If f is differentiable at $\mathrm{x}=1$ and $\lim _{h \rightarrow 0} \frac{1}{h} f(1+h)=5$, then $f^{\prime}(1)=$
(A) 0
(B) 1
(C) 3
(D) 4
(E) 5

ANSWER	E

94. The maximum value of the function $2 x^{3}-15 x^{2}+36 x+4$ is attained at
(A) 0
(B) 3
(C) 4
(D) 2
(E) 5

ANSWER	D

95. If $\int f(x) \cos x d x=\frac{1}{2}\{f(x)\}^{2}+c$, then $f\left(\frac{\pi}{2}\right)$ is
(A) c
(B) $\frac{\pi}{2}+c$
(C) $\mathrm{c}+1$
(D) $2 \pi+\mathrm{c}$
(E) $\mathrm{c}+2$

ANSWER	C

96. $\int_{\pi / 4}^{3 \pi / 4} \frac{x}{1+\sin x} d x=$
(A) $\pi(\sqrt{2}-1)$
(B) $\pi(\sqrt{2}+1)$
(C) $2 \pi(\sqrt{2}-1)$
(D) $2 \pi(\sqrt{2}+1)$
(E) $\frac{\pi}{\sqrt{2}+1}$

\section*{| ANSWER | A, E |
| :--- | :--- |}

97. $\int_{0}^{\pi / 2} \frac{2^{\sin x}}{2^{\sin x}+2^{\cos x}} d x=$
(A) 2
(B) π
(C) $\frac{\pi}{4}$
(D) 2π
(E) 0

ANSWER	C

98. $\lim _{x \rightarrow 0}\left(\frac{\int_{0}^{x^{2}} \sin \sqrt{t} d t}{x^{2}}\right)=$
(A) $\frac{2}{3}$
(B) $\frac{2}{9}$
(C) $\frac{1}{3}$
(D) 0
(E) $\frac{1}{6}$

ANSWER

 D99. The area bounded by $y=\sin ^{2} x, x=\frac{x}{2}$ and $x=\pi$ is
(A) $\frac{\pi}{2}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{8}$
(D) $\frac{\pi}{16}$
(E) 2π

ANSWER	B

100. The differential equation of the family of curves $y=e^{x}(A \cos x+B \sin x)$. where A and B are arbitrary constants is
(A) $y^{\prime \prime}-2 y^{\prime}+2 y=0$
(B) $y^{\prime \prime}+2 y^{\prime}-2 y=0$
(C) $y^{\prime \prime}+y^{\prime 2}+y=0$
(D) $y^{\prime \prime}+2 y^{\prime}-y=0$
(E) $y^{\prime \prime}-2 y^{\prime}-2 y=0$

\section*{| ANSWER | A |
| :--- | :--- |}

101. The real part of $(i-\sqrt{3})^{13}$ is
(A) 2^{-10}
(B) 2^{12}
(C) 2^{-12}
(D) -2^{-12}
(E) 2^{10}

ANSWER	NA

102. $\lim _{x \rightarrow 0} \frac{1+x-e^{x}}{x^{2}}=$
(A) $\frac{1}{2}$
(B) $\frac{-1}{2}$
(C) 1
(D) -1
(E) 0

ANSWER	B

103. $\int \frac{(\sin x+\cos x)(2-\sin 2 x)}{\sin ^{2} 2 x} d x=$
(A) $\frac{\sin x+\cos x}{\sin 2 x}+c$
(B) $\frac{\sin x-\cos x}{\sin 2 x}+c$
(C) $\frac{\sin x}{\sin x+\cos x}+c$
(D) $\frac{\sin x}{\sin x-\cos x}+c$
(E) $\frac{\sin x-\cos x}{\sin x+\cos x}+c$

ANSWER	B

104. A plane is at a distance of 5 units from the origin; and perpendicular to the vector $2 \$+\oint+2 k$. The equation of the plane is
(A) $\stackrel{\text { I }}{r}$. $\left(22^{\$}+\ddagger-2 k^{\ddagger}\right)=15$

(C) $\begin{array}{r}\text { I } \\ r\end{array}(2 \$+\ddagger+2 \sharp)=15$
(D) $\stackrel{I}{r}(\$+\$+2 \mathbb{N})=15$
(E) $\begin{array}{r}\text { I } \\ r\end{array}(2 \$-\ddagger+2 \sharp)=15$

ANSWER	C

105. $\frac{\sin A-\sin B}{\cos A+\cos B}$ is equal to
(A) $\sin \left(\frac{A+B}{2}\right)$
(B) $2 \tan (A+B)$
(C) $\cot \left(\frac{A-B}{2}\right)$
(D) $\tan \left(\frac{A-B}{2}\right)$
(E) $2 \cot (A+B)$

106. If $x=A \cos 4 t+B \sin 4 t$, then $\frac{d^{2} x}{d t^{2}}=$
(A) x
(B) $-16 x$
(C) $15 x$
(D) $16 x$
(E) $-15 x$

ANSWER	B

107. The arithmetic mean of ${ }^{n} \mathrm{Co},{ }^{n} C_{1},{ }^{n} C_{2}, \ldots,{ }^{n} C_{n}$ is
(A) $\frac{2^{n}}{n+1}$
(B) $\frac{2^{n}}{n}$
(C) $\frac{2^{n-1}}{n+1}$
(D) $\frac{2^{n-1}}{n}$
(E) $\frac{2^{n+1}}{n}$

ANSWER	A

108. The variance of first 20 natural numbers is
(A) $\frac{399}{2}$
(B) $\frac{379}{12}$
(C) $\frac{133}{2}$
(D) $\frac{133}{4}$
(E) $\frac{169}{2}$

ANSWER	D

109. If S is a set with 10 elements and $\mathrm{A}=\{(x, y): x, y \in S, x \neq y\}$, then the number of elements in A is
(A) 100
(B) 90
(C) 80
(D) 150
(E) 45

ANSWER	B

110. A coin is tossed and a die is rolled. The probability that the coin shows head and the die shows 3 is
(A) $\frac{1}{6}$
(B) $\frac{1}{12}$
(C) $\frac{1}{9}$
(D) $\frac{11}{12}$
(E) $\frac{1}{11}$

ANSWER	B

111. If $\mathrm{A}=\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right)$, then the sum of all the diagonal entries of A^{-1} is
(A) 2
(B) 3
(C) -3
(D) -4
(E) 4

ANSWER	E

112. Let $f(x)=\left|\begin{array}{lll}x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x\end{array}\right|$. If $x=-9$ is a root of $f(x)=0$, then the other root are
(A) 2 and 7
(B) 3 and 6
(C) 7 and 3
(D) 6 and 2
(E) 6 and 7

ANSWER	A

113. If $\left[\begin{array}{lll}1 & x & 1\end{array}\right]\left[\begin{array}{ccc}1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ x\end{array}\right]=0$, then x can be
(A) -2
(B) 2
(C) 14
(D) -14
(E) 0

ANSWER	A, D

114. If $A=\left[\begin{array}{cc}2 x & 0 \\ x & x\end{array}\right]$ and $\mathrm{A}^{-1}=A=\left[\begin{array}{cc}1 & 0 \\ -1 & 2\end{array}\right]$, then $\mathrm{x}=$
(A) 2
(B) $\frac{1}{2}$
(C) 1
(D) 3
(E) 0

ANSWER	B

115. If $\left|\begin{array}{ccc}x & 2 & x \\ x^{2} & x & 6 \\ x & x & 6\end{array}\right|=a x^{4}+b x^{3}+c x^{2}+d x+e$, then $5 a+4 b+3 c+2 d+e$ is equal to
(A) 11
(B) -11
(C) 12
(D) -12
(E) 13

ANSWER	B

116. $\left|\begin{array}{lll}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b\end{array}\right|=$
(A) 1
(B) 0
(C) $(1-a)(1-b)(1-c)$
(D) $a+b+c$
(E) $2(a+b+c)$

ANSWER	B

117. If $f(x)=\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 x & x-1 & x \\ 3 x(x-1) & (x-1)(x-2) & x(x-1)\end{array}\right|$, then $f(50)=$
(A) 0
(B) 2
(C) 4
(D) 1
(E) 3

ANSWER	A

118. If $\Delta(x)=\left\lvert\, \begin{array}{ccc}1 & \cos x & 1-\cos x \\ 1+\sin x & \cos x & 1+\sin x-\cos x \\ \sin x & \sin x & 1\end{array}\right.$, then $\int_{0}^{\pi / 2} \Delta(x) d x=$
(A) $\frac{-1}{2}$
(B) $\frac{1}{2}$
(C) 1
(D) -1
(E) 0

ANSWER	A

119. The equation of the plane passing through the points $(1,2,3),(-1,4,2)$ and $(3,1,1)$ is
(A) $5 x+y+12 z-23=0$
(B) $5 x+6 y+2 z=23$
(C) $5 x+6 y+2 z=23$
(D) $x+y+z=13$
(E) $2 x+6 y+5 z=7$

ANSWER	B

120. In an arithmetic progression, if the $\mathrm{k}^{\text {th }}$ term is $5 \mathrm{k}+1$, then the sum of first 100 terms is
(A) $50(507)$
(B) $51(506)$
(C) 50 (506)
(D) 51(507)
(E) 52(506)

ANSWER	A

