DIRECTORATE OF GOVERNMENT EXAMINATIONS, CHENNAI – 6 HIGHER SECONDARY SECOND YEAR PUBLIC EXAMINATION - MARCH 2018 **KEY ANSWERS FOR PHYSICS**

- 1. For answers in Part II, III and IV like reasoning, explanation, narration, description and listing of points, students may write in their own words but without changing the concepts and without skipping any points.
- 2. Answers written only in BLACK or BLUE should be evaluated.
- 3. For graphical representation, X and Y variables must be mentioned. If not, reduce 1/2 mark.
- 4. Mark should be given to the unit, only if the answer is correct for problems.
- 5. Choose the correct answer and write the answer with option code.

1	ΤΥΡΕ Α	QN		ТҮРЕ В
h		1	d	intensity of incident radiation
		2	a	10.7 MHz
			a	immobile positive ions
				capacitor
				0.66 milli coulomb
				π/3
				contracts
				conservation of energy
				in a direction bisecting angle ACB
a		3	a	
a		10	b	uncontrolled fission reaction
		-		₂₆ Fe ⁵⁹
		-		10 ⁻²⁷ kgms ⁻¹
		13	a	4h/2π
				<u>*</u>
	V	14	h	m ² V ⁻¹ s ⁻¹ (or) c) Cs Kg ⁻¹
				neither a net force nor a torque
				0,0
				1
d				an ON switch
b	m ² V ⁻¹ s ⁻¹ (or) c) Cs Kg ⁻¹			high specific resistance
С	conservation of energy	20	b	phenomenon of conversion of kinetic energy into radiation
a	capacitor	21	d	9 minutes
		22	a	diffraction pattern becomes narrower
-	energy into radiation			and crowded together
a	π/3	23	d	absorbs green light
С	10 ⁻²⁷ kgms ⁻¹	24	b	E
a	4h/2π	25	b	με
				$\frac{\mu}{\mu_0 \epsilon_0}$
a	immobile positive ions	26	С	zero
a		a continuous and		the velocity of the particle
24.000		a state of the state of the	the second	scanning
-		States and the states	Supreman	transverse
d	9 minutes	30	d	a particles
	C a b a c a a a a a b	b uncontrolled fission reaction a in a direction bisecting angle ACB d scanning d α particles c zero c an ON switch a 0.66 milli coulomb d intensity of incident radiation a diffraction pattern becomes narrower and crowded together a the velocity of the particle c neither a net force nor a torque b 0, 0 b $\sqrt{\frac{\mu\varepsilon}{\mu_0 \epsilon_0}}$ a 10.7 MHz d 1 b transverse b E d absorbs green light b $m^2 V^{-1} s^{-1} (or)c) Cs Kg^{-1}$ c conservation of energy a capacitor b phenomenon of conversion of kinetic energy into radiation a $\pi/3$ c $10^{-27} kgms^{-1}$ a high specific resistance b Contracté	buncontrolled fission reaction1ain a direction bisecting angle ACB2dscanning3d α particles4czero5can ON switch6a0.66 milli coulomb7dintensity of incident radiation8adiffraction pattern becomes narrower9and crowded together10cneither a net force nor a torque11b0,012b $\sqrt{\frac{\mu\varepsilon}{\mu_0 \epsilon_0}}$ 13a10.7 MHz14d115btransverse16bE17dabsorbs green light18bm² V ⁻¹ s ⁻¹ (or)c) Cs Kg ⁻¹ 19cconservation of energy20acapacitor21bphenomenon of conversion of kinetic energy into radiation23a $\pi/3$ 23c 10^{-27} kgms ⁻¹ 24a $4h/2\pi$ 25aimmobile positive ions26a z_6Fe^{59} 27ahigh specific resistance28bcontracts28	b uncontrolled fission reaction 1 d a in a direction bisecting angle ACB 2 a d scanning 3 a d x particles 4 a c zero 5 a c an ON switch 6 a a 0.66 milli coulomb 7 b d intensity of incident radiation 8 c a diffraction pattern becomes narrower and crowded together 10 b c neither a net force nor a torque 11 a b 0, 0 122 c b 0, 0 122 c b $\sqrt{\mu \epsilon_0}$ 13 a a 10.7 MHz 14 b d 1 15 c b transverse 16 b b m ² V ¹ s ⁻¹ (or)C) Cs Kg ⁻¹ 19 a c conservation of energy 20 b a capacitor 21 d b phenomenon of con

Part II

1. For all problem type questions correct answer without unit reduce half mark

2. For wrong answers with correct unit do not award mark for unit

31	The force of attraction or repulsion between two point charges is directly proportional to the product of the charges and inversely proportional to the square of the distance between them (OR)	3	3
	$F\alpha \frac{q_1 q_2}{r^2}$ (give one mark)		
32	A polar molecule is one in which the centre of gravity of the positive charges is separated from the centre of gravity of the negative charges by a finite distance.	2	3
	Examples : N ₂ O, H ₂ O, HCl, NH ₃ . (one only)	1	
33	Correct definition The electrical resistivity of a material is defined as the resistance offered to current flow by a conductor of unit length having unit area of cross section	2	3
	The unit of ρ is ohm–m (Ω m)	1	

34	$R_t = R_0(1 + \alpha t) \qquad \text{formula}$	la	1	
	$=10(1+0.004 \times 100)$ subst	itution	1	
	=14Ω answ	ver	1/2 + 1/2	3
35	Emf	potential difference		
	The difference of potentials	The difference in potentials		
	between the two terminals	between any two points in a		
	of a cell in an open circuit is	closed circuit is called		
	called the electromotive	potential difference.	2x1½	3
	force (emf) of a cell.			
	The emf is independent of	Potential difference is		
	external resistance of the	proportional to the		
	circuit	resistance between any two		
		points		
36	The line integral ∮B .dl for a c	closed curve is equal to μ_0 times	3	
	the net current I_o through the	area bounded by the curve	3	3
		or)		
	mere writing $\oint \vec{B} \cdot \circ \vec{dl} = \mu_o I_o$ give	e one mark		
37	e = -Blv	formula	1	
	$= -2 \times 10^{-5} \times 20.48 \times 40$	substitution	1	3
	= -0.0164 V (or) 0.0164 V		1	
	$= -0.0104 \circ (01) 0.0104 \circ$	(any equivalent value)		

38	The Q factor of a series resonant circuit is defined as the		
	ratio of the voltage across a coil or capacitor to the applied		
	voltage.	3	3
	(OR)		
	$Q = \frac{\text{voltage across L or C}}{\text{Applied voltage}}$		
39	(i) every point on a given wave front may be considered as a	1 ½	
	source of secondary wavelets which spread out with the		
	speed of light in that medium and		3
	(ii) the new wavefront is the forward envelope of the		
	secondary wavelets at that instant	1 1⁄2	
40	$r_n^2 = nR\lambda(or)\lambda = \frac{r_8^2}{8R}$ Formula	1	
	$\lambda = \frac{3.6 \times 10^{-3} \times 3.6 \times 10^{-3}}{8 \times 3}$ substitution	1	3
	= 5400A° (OR) 5.4x10 ⁻⁷ m		5
	(equivalent answer)	1	
41	Conditions to achieve laser action		
	(i) There must be an inverted population i.e. more atoms in	1	
	the excited state than in the ground state.		3
	(ii) The excited state must be a metastable state.	1	
	(iii) The emitted photons must stimulate further emission		
	, , , , , , , , , , , , , , , , , , ,	1	

42	$2d\sin\theta = n\lambda$ formula	1	
	For max wavelength $\sin \theta = 1$ $\lambda_{max} = \frac{2d}{n} = \frac{2 \times 2.82 \times 10^{-10}}{1}$ substitution	1	3
	$\lambda_{max} = 5.64 A^{\circ}$ (equivalent answer)	1	
43	 Uses of Electron microscope (i) It is used in the industry, to study the structure of textile fibres, surface of metals, composition of paints etc. (ii) In medicine and biology, it is used to study virus, and bacteria. (iii) In Physics, it has been used in the investigation of atomic structure and structure of crystals in detail. 	3x1=3	3
44	Properties of β Rays (Any Three)	3x1=3	3
45	The conversion of a photon into an electron-positron pair on its interaction with the strong electric field surrounding a nucleus is called pair production	1 ½	3
	The converse of pair production in which an electron and positron combine to produce a photon is known as annihilation of matter	1 ½	
46	(A+B) (A+C) = AA + AC + BA + BC $= A+AC + AB + BC$ $= A(1+C+B) + BC = A + BC$	1 1 1	3
47	 Advantages of negative feedback (i) Highly stabilised gain. (ii) Reduction in the noise level. (iii) Increased bandwidth (iv) Increased input impedance and decreased output impedance. (v) Less distortion 	All Points	3

48	First theorem		
40	The complement of a sum is equal to the product of the	1 1/2	•
	complements.		3
	$\overline{A+B} = \overline{A} \bullet \overline{B}$	r andress in a	
	Second theorem	1.1/	
	"The complement of a product is equal to the sum of the complements	1 1/2	
	$\overline{A \bullet B} = \overline{A} + \overline{B}$		
	Writing mere expression (1+1) marks		
49	D,	-	
13			
			3
			Ŭ
	A $-\mathbf{I}$ \rightarrow $Y=A+B$		
	▼ ⊾ ≥,		
	D, _ ≤		
	°-I		
	₹		
50	MERITS OF DIGITAL COMMUNICATIONS		
•	(i) The transmission quality is high and almost independent		
	of the distance between the terminals.		
	(ii) The capacity of the transmission system can be	0.10	
	increased.	3x1=3	3
	(iii) The newer types of transmission media such as light		
	beams in optical fibers and wave guides operating in the		
	microwave frequency extensively use digital		
	communication.		

	Part – III		-
51	Properties of electric lines of force	5x1=5	5
	5 properties		
52.	Daniel cell	1	
	Diagram		
	Ť		
	\rightarrow Zmc Rod dilute H.SO		
	Porous Pot		5
	Copper Vessel		
		1	
	construction	2	
	working the value of emf 1.08 V	1	
53	Applications of super conductors		
	(Any five applications)	5x1=5	5
54			
	$B = \frac{n\mu_o Ia^2}{2(a^2 + x^2)^{3/2}} $ formula	2	
	$2(a^2 + x^2)^{-1}$		5
	a tait the and cimplification	2	5
	Substitution and simplification	-	
	$B = 9.9 \times 10^{-5} T$ answer	1	
5	Diagram	1	
	S.		
		1	
	Explanation		
.	The Magnetic field produced at any point inside the solenoid		
	S_1 due to the current I_1 is $B_1 = \frac{\mu_o N_1 I_1}{l}$		
1	Flux linked with each turen of $S_2 = B_1 A$		5
	Total Magnetic flux with linked with solenoid having N_2 turns		
		1	

Part – III

		aur Lunnalius II (Professorier) eithe ar Balance Luga	
	is $\phi_2 = B_1 A N_2 = \left(\frac{\mu_o N_1 I_1}{l}\right) A N_2$		
	up to	2	
	$\phi_2 = MI_1$	-	
	$\phi_2 = MI_1$ $M = \frac{\mu_o N_1 N_2 A}{l}$	1	
56	Radius of nth dark ring	1	
	Diagram	•	
	$ \begin{array}{c} $	1	5
	Upto $2t = \frac{r_n^2}{R}$	1	
	Condition for dark ring $2t = n\lambda$	1	
	$r_n^2 = nR\lambda$ (or) $r_n = \sqrt{nR\lambda}$	1	
andrafasjon inder		•	
57	Spectral series of Hydrogen Names and explanations with formula	5x1=5	5
	If Names alone written 2 marks		
58	Einstein photo electric equation	1997 (* 1992) 1997 - Carlon Martin, 1997 (* 1997)	
50	The emission of photo electron is the result of the interaction between a single photon of the incident radiation and an electron in the metal	1	
	Explanation of usage of photon energy by two ways	1	5
	$h\nu = W + \frac{1}{2}mv^2$	1	
	If the electron does not lose energy by internal collisions, as it		
	escapes from the metal, the entire energy will be exhibited as the		
	kinetic energy of the electron.	1	
	$hv = W + \frac{1}{2}mv_{\max}^2$		
	$hv - hv_o = \frac{1}{2}mv_{\text{max}}^2(or)h(v - v_o) = \frac{1}{2}mv_{\text{max}}^2$		

59	$l = l_0 \sqrt{1 - \frac{v^2}{C^2}} \qquad \text{formula}$	2	5
	$l = l_0 \sqrt{1 - \frac{v^2}{C^2}} \text{formula}$ $\frac{99}{100} = \sqrt{1 - \frac{v^2}{C^2}}$ Substitution and simplification	2	
	$V = 4.23 \times 10^7 \text{ ms}^{-1}$ (any other equivalent answer)	1	
60	0.6931	1	
	$\lambda = \frac{0.6931}{3.8} \text{ per day}$	1	5
	$N = N_{0}e^{-\lambda t}$ $\frac{40}{100} N_{0} = N_{0}e^{-\lambda t}$ $e^{\lambda t} = \frac{10}{4}$ $t = \frac{3.8}{0.6931} \times \log_{10} 2.5 \times 2.3026$ $= 5.022 \text{ days} \text{ or any equivalent method}$ (OR)	2	
	$_{1}H^{2} +_{1}H^{2}>_{2}He^{4} + Q$ Total B.E of $_{1}H^{2} = 1.1 \times 2 = 2.2 \text{ MeV}$ Total B.E of $_{2}\text{He}^{4} = 7.0 \times 4 = 28.0 \text{ MeV}$	1	
	Total Binding energy of reactant = Total Binding energy of product – Energy released	1	
	∴Energy released = 28.0 -4.4 MeV	1	
	= 23.6 MeV	1	
	(or any equivalent method)		

61	Current gain in CB mode, $\alpha = \frac{I_c}{I_E}$	1	
	Current gain in CE mode, $\beta = \frac{I_c}{I_B}$	1	
	$I_E = I_B + I_c$ (or) $\alpha = \frac{I_c}{I_B + I_c}$	1	5
	$\left \frac{1}{\alpha} - 1 \right = \frac{1}{\beta}$ solving up to		5
	$\beta = \frac{\alpha}{1-\alpha} (or)\alpha = \frac{\beta}{1+\beta}$	2	
62	Principle : Radio echo	1	5
	Applications	4x1=4	

Part – IV

	Part – IV		
6:	3 Electric field due to dipole on axial line Diagram	1	
	$\begin{array}{cccc} A & O & B & E_2 & p & E_1 \\ \bullet & \bullet & \bullet & \bullet & \bullet \\ -q & +q & & & & \\ \bullet & \bullet & \bullet & \bullet & \\ \hline \end{array}$		
	Explanation	1	
	Electric field due to +q charge		
	$E_1 = \frac{1}{4\pi\varepsilon_o} \frac{q}{(r-d)^2} \text{along BP}$	1/2+1/2	
	Electric field due to - q charge	1/2+1/2	
	$E_2 = \frac{1}{4\pi\varepsilon_o} \frac{q}{\left(r+d\right)^2} \text{along PA}$	72472	
	$E = E_1 + (-E_2)$ or $E = E_1 - E_2$	1	
	$E = \frac{q}{4\pi\varepsilon_o} \left[\frac{1}{(r-d)^2} - \frac{1}{(r+d)^2} \right]$		
	$E = \frac{q}{4\pi\varepsilon_o} \left[\frac{4rd}{(r^2 - d^2)^2} \right] \text{ along BP}$	2	
	p = q2d	1	
	$E = \frac{1}{4\pi\varepsilon_0} \frac{2p}{r^3}$	1	10
	E acts in the direction of dipole moment.	1	

65	AC generator	2	
and include a commu	Diagram		
n new first each deal and the first each of the last time and the first end of the last of the last of the last			
	Line B. C. R.	1	
	Principle : Electromagnetic induction		
	Explanation of four parts (Writing mere names alone – 1 mark) Working	4x ½ =2	
	The direction of the induced current is given by Fleming's right hand rule	1	10
	For First half rotation : AB moves downward, CD moves upward hence current flows along DCBA , in the outer circuit B_1 to B_2	1	
	For second half rotation : CD moves downward, AB moves upward hence current flows along ABCD $$, in the outer circuit B ₂ to B ₁	1	
	$e = E_o \sin \omega t$; $E_o = NBA\omega$	1/2 + 1/2	
	Wave form Diagram		
ng se dara series da se se da series da series da series da series da de series de series de series de series d	$= \frac{1}{2} \frac{\pi}{2} $	1	

	Types of spectra]
66	Types of speeking			8
	Definition for emission and absorption spectrum	2+2		e ê
	Explanation for three types of emission spectra			22
	(appearance and example)	3		1.00
	(i) continuous emission			
	(ii) line emission			
	(iii) band emission		10	
	Explanation for three types of absorption spectra	3		
	(appearance and example)	3		
	(i) continuous absorption			
	(ii) line absorption			
	(iii) band absorption			
	(Mere heading alone written give 2 marks only)	2x1=2		
67	Bohr's postulates	221-2		
	two postulate			
	radius of electron in nth orbit	1		
	Explanation			
	Electrostatic force $F = \frac{1}{4\pi\varepsilon_o} \frac{ze^2}{r_o^2}$			
	upto $\omega_n^2 = \frac{ze^2}{4\pi\varepsilon_n mr_n^3}$	2		
	0			
	$L = mv_n r_n = mr_n \omega^2_n (\text{or})$ $L = \frac{nh}{2\pi}$	1		
	upto $\omega_n^2 = \frac{n^2 h^2}{4\pi^2 m^2 r_n^4}$	2		
	$n^2 h^2 \varepsilon_{-}$	2		10
	Up to $r_n = \frac{\pi m e_0}{\pi m z e^2}$			10

68	Bain bridge mass spectrometer		
	Diagram	2	
	B_{i} B_{i} $Velocity selector$ H_{i} E $Plastographic plate$ $B' inwards$		
	Used for the accurate determination of isotopic / atomic masses	1	10
	construction	2	
	Working		
	In the velocity selector $Bqv = qE \Rightarrow v = \frac{E}{B}$	1	
	in the evacuated chamber		
	$B'qv = \frac{mv^2}{R} \implies m = \frac{B'qR}{v}$	3	
	Substituting $v = \frac{E}{B}$ $m = \frac{BB'qR}{E}$		
	lons with different masses trace semi- circular paths of different radii and produce dark lines on the plate. The distance between opening of the chamber and the position of the dark line gives the diameter 2R from which radius R can be calculated Knowin g q, B, B` R isotopic masses determined	1	

