GATEFORUM India's Leading GATE Prep Company

PAPER SOLUTIONS

Our Offerings

Classroom Programs

eLearning Program

Distance Learning Programs

IG

Section-I: General Ability

1. The perimeters of a circle, a square and an equilateral triangle are equal. Which one of the following statements is true?
(A) The circle has the largest area
(B) The square has the largest area
(C) The equilateral triangle has the largest area.
(D) All the three shapes have the same area.

Key: (A)
Sol: Let, side of equilateral triangle as 'a'.
Then perimeter of equilateral triangle $=3 \mathrm{a}$.
We know that, perimeter of circle $=2 \pi r$
Perimeter of square $=4 \mathrm{x}$; [where x is side of square]
Given, $\quad 3 \mathrm{a}=2 \pi \mathrm{r}$

$$
\Rightarrow \mathrm{r}=\frac{3 \mathrm{a}}{2 \pi}
$$

\therefore Radius of circle $=r=\frac{3 a}{2 \pi}$

$$
\begin{aligned}
& 3 a=4 x \Rightarrow x=\frac{3 a}{4} \\
\Rightarrow & \text { side of square }=\frac{3 a}{4}
\end{aligned}
$$

$$
\therefore \text { Area of circle }=\pi r^{2}=\left(\frac{9 a^{2}}{4 \pi^{2}}\right)=\frac{9 a^{2}}{4 \pi} \simeq 0.716 a^{2}
$$

\therefore Area of square $=x \times x=\frac{3 a}{4} \times \frac{3 a}{4}=\frac{9 a^{2}}{16} \simeq 0.563 \mathrm{a}^{2}$
\therefore Area of equilateral triangle $=\frac{\sqrt{3} \mathrm{a}^{2}}{4} \cong 0.433 \mathrm{a}^{2}$
\therefore The Circle has the largest area.
2. Find the missing group of letters in the following series:

BC, FGH, LMNO,
(A) UVWXY
(B) TUVWX
(C) STUVW
(D) RSTUV

Key: (B)

Sol:

3. "The judge's standing in the legal community, though shaken by false allegations of wrongdoing, remained \qquad ."
The world that best fills the blank in the above sentence is
(A) Undiminished
(B) damaged
(C) illegal
(D) uncertain

Key: (A)
4. The value of the expression $\frac{1}{1+\log _{u} v w}+\frac{1}{1+\log _{v} w u}+\frac{1}{1+\log _{w} u v}$ is \qquad
(A) -1
(B) 0
(C) 1
(D) 3

Key: (C)
Sol: $\frac{1}{1+\frac{\log v w}{\log u}}+\frac{1}{1+\frac{\log w u}{\log v}}+\frac{1}{1+\frac{\log u v}{\log w}}$

$$
\begin{aligned}
& =\frac{\log u}{\log u+\log v w}+\frac{\log v}{\log v+\log w u}+\frac{\log w}{\log w+\log u v} \\
& =\frac{\log u}{\log (u v w)}+\frac{\log v}{\log (u v w)}+\frac{\log w}{\log (u v w)}=\frac{\log (\text { uvw })}{\log (\text { uvw })}=1
\end{aligned}
$$

5. "The dress \qquad her so well that they all immediately \qquad her on her appearance."
The words that best fill the blanks in the above sentence are
(A) complemented, complemented
(B) complimented, complemented
(C) complimented, complimented
(D) complemented, complimented

Key: (D)
6. Forty students watched films A, B and C over a week. Each student watched either only one film or all three. Thirteen students watched film A, sixteen students watched film B and nineteen students watched film C. How many students watched all three films?
(A) 0
(B) 2
(C) 4
(D) 8

Key: (C)
Sol: Given, Total no. of students who watched films A, B and C over a week $=n(s)=40$.
Also given that, each student watched either only one film or all three.
i.e., $\mathrm{n}(\mathrm{A} \cap \mathrm{B} \cap \overline{\mathrm{C}})=\mathrm{n}(\mathrm{B} \cap \mathrm{C} \cap \overline{\mathrm{A}})=\mathrm{n}(\mathrm{C} \cap \mathrm{A} \cap \overline{\mathrm{B}})=0$;

Where $[\overline{\mathrm{A}}, \overline{\mathrm{B}}, \overline{\mathrm{C}}$ are complementatry events of A,B,Crespectively $]$
Given, $n(A)=13 ; n(B)=16 ; n(C)=19$
Assume that no. of students who watch all three films $=n(A \cap B \cap C)=x$
Given, $\mathrm{n}(\mathrm{A} \cap \overline{\mathrm{B}} \cap \overline{\mathrm{C}})=13-\mathrm{x}$

\therefore No. of students who watched all the three films $=\mathrm{x}=4$

[^0]
ME-GATE 2018

7. A house has a number which needs to be identified. The following three statements are given that can help in identifying the house number.
i. If the house number is a multiple of 3 , then it is a number from 50 to 59 .
ii. If the house number is NOT a multiple of 4 , then it is a number from 60 to 69 .
iii. If the house number is NOT a multiple of 6 , then it is a number from 70 to 79 .

What is the house number?
(A) 54
(B) 65
(C) 66
(D) 76

Key: (D)
Sol: From Statement-i, we have
if house no. is multiple of 3 , then house no. $\in[50,59]$
From Statement-ii, we have
if house no. is not a multiple of 4 , then house no. $\in[60,69]$
From Statement-iii, we have
if house no. is not a multiple of 6 , then house no $\in[70,79]$
\therefore The required house number, is 76 among $\{54,65,66,76\}$;
Since (i) 76 is not multiple of 3 , so house no. $\notin[50,59]$
(ii) 76 is not multiple of 6 , so house no. $\in[70,79]$
(iii) 76 is multiple of 4 , so house no. $\notin[60,69]$
\therefore The required house no. is 76 .
8. A contract is to be completed in 52 days and 125 identical robots were employed, each operational for 7 hours a day. After 39 days, five-seventh of the work was completed. How many additional robots would be required to complete the work on time, if each robot is now operational for 8 hours a day?
(A) 50
(B) 89
(C) 146
(D) 175

Key: (0)
Sol: $\quad 1$ Robot $\rightarrow 1 \mathrm{hr} \rightarrow 1$ work

$$
\begin{aligned}
& \quad 7 \mathrm{hrs} \rightarrow 7 \text { work } \\
& \Rightarrow 125 \text { Robots } \rightarrow 7 \text { hrs } / \text { day } \rightarrow 125 \times 7 \\
& \Rightarrow 125 \text { Robots } \rightarrow 7 \text { hrs } / \text { day } \rightarrow 52 \text { days } \rightarrow 125 \times 7 \times 52=45,500 \rightarrow \text { Total work }
\end{aligned}
$$

Given, After 39 days, $5 / 7^{\text {th }}$ of work was completed.

$$
\text { i.e., } 45,500 \times \frac{5}{7}=32,500 \text {. [Actually, in } 39 \text { days } 34125 \text { work has to be completed] }
$$

$$
\text { Remaining work }=45,500-32,500=13,000 \text { work }
$$

After 39 days, each robot is working 8hrs/day (given)
13 days $\times 8$ hrs $/$ day $\times 125$ robots can work $=13,000$ work.
i.e. Addtional robots not required, if each robot work $8 \mathrm{hrs} /$ day on 13 days.

[^1]9. An unbiased coin is tossed six times in a row and four different such trials are conducted. One trial implies six tosses of the coin. If H stands for head and T stands for tail, the following are the observations from the four trials:
(1) HTHTHT
(2) TTHHHT
(3) HTTHHT
(4) HHHT \qquad .

Which statement describing the last two coin tosses of the fourth trial has the highest probability of being correct?
(A) Two T will occur
(B) One H and one T will occur
(C) Two H will occur
(D) One H will be followed by one T

Key: (B)
Sol: In this, we are talking about $4^{\text {th }}$ trial, ie., nothing but one trial
One trial \rightarrow Tossing a coin six times (or) six coins tossed at a time
(1) $\Rightarrow \mathrm{P}[$ H T H T H T $]=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\left(\frac{1}{2}\right)^{6}$
$(2) \Rightarrow \mathrm{P}[$ T T H H H T $]=\left(\frac{1}{2}\right)^{6}$
$(3) \Rightarrow \mathrm{P}[$ H T T H H T $]=\left(\frac{1}{2}\right)$
(4) \Rightarrow H H H T

Option(A):
H H H TTT
\therefore Required probability

$$
\begin{aligned}
=\left(\frac{1}{2}\right)^{6} & \text { H H H T T } \underline{\mathrm{H}} \\
& \therefore \text { Required probability } \\
& =\left(\frac{1}{2}\right)^{6}+\left(\frac{1}{2}\right)^{6}=2\left(\frac{1}{2}\right)^{6}
\end{aligned}
$$

Option(C) :
H H H T $\underline{H} \underline{H}$
\therefore Required probability

$$
=\left(\frac{1}{2}\right)^{6}
$$

10. A wire would enclose an area of $1936 \mathrm{~m}^{2}$, if it is bent into a square. The wire is cut into two pieces. The longer piece is thrice as long as the shorter piece. The long and the short pieces are bent into a square and a circle, respectively. Which of the following choices is closest to the sum of the areas enclosed by the two pieces in square meters?
(A) 1096
(B) 1111
(C) 1243
(D) 2486

Key: (C)
Given that, a wire bent over square has area of $1936 \mathrm{~m}^{2}$
Let us assume that, the side of square as ' x '.
Then $x^{2}=1936 \Rightarrow x=44$ meters.
\therefore Length of wire $=$ perimeter of square $=4 \mathrm{x}=176 \mathrm{~m}$
Again given $\mathrm{a}+\mathrm{b}=176$ such that $\mathrm{a}=3 \mathrm{~b}$

$$
\begin{aligned}
& \Rightarrow 3 b+b=17 b \Rightarrow 4 b=17 b \\
& \Rightarrow b=44 \therefore a=132[\because a=3 b]
\end{aligned}
$$

Given 'a' is bent over square and 'b' bent over circle.
i.e,. $4 x^{\prime}=a=132 \Rightarrow x^{\prime}=\frac{132}{4}=33\left[x^{\prime}=\right.$ length of the side of square $]$
$\Rightarrow x^{\prime}=33$
\because Area of square $=33 \times 33=1089$
$\therefore 2 \pi \mathrm{r}=\mathrm{b}[\because$ 'b'bent over circle]
$\Rightarrow \mathrm{r}=\frac{44}{2 \pi}(\because \mathrm{~b}=44) \Rightarrow \mathrm{r}=7$
\therefore Area of circle $=\pi\left(7^{2}\right)=154$
\therefore From $(1) \&(2) \Rightarrow$ sum of area's $=1089+154=1243 \mathrm{~m}^{2}$

Section-II: Mechanical Engineering

1. The Fourier cosine series for an even function $f(x)$ is given by $\mathrm{f}(\mathrm{x})=\mathrm{a}_{0}+\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{\mathrm{n}} \cos (\mathrm{nx})$
The value of the coefficient a_{2} for the function $f(x)=\cos ^{2}(x)$ in $[0, \pi]$ is
(A) -0.5
(B) 0.0
(C) 0.5
(D) 1.0

Key: (C)
Exp: We have, Fourier expression for even function:
$f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \frac{\cos n \pi x}{L}$; if $f(x)$ is defined over the range $-L$ to L. [i.e., period 2L]
But given $f(x)=\cos ^{2} x=\frac{1+\cos 2 x}{2}$

$$
\begin{aligned}
& \quad=\frac{1}{2}+\frac{1}{2} \cos 2 x=\frac{a_{0}}{2}+a_{2} \cdot \cos 2 x \\
& \therefore a_{0}=1 ; a_{2}=1 / 2 ; a_{1}=0
\end{aligned}
$$

2. Select the correct statement for 50% reaction stage in a steam turbine.
(A) The rotor blade is symmetric.
(B) The stator blade is symmetric.
(C) The absolute inlet flow angle is equal to absolute exit flow angle.
(D) The absolute exit flow angle is equal to inlet angle of rotor blade.

Key: (D)
Exp: For 50% reaction turbine $\theta=\beta, \alpha=\phi$
3. During solidification of a pure molten metal, the grains in the casting near the mould wall are
(A) coarse and randomly oriented
(B) fine and randomly oriented
(C) fine and ordered
(D) coarse and ordered

Key: (B)
Exp: Cooling at wall is faster so, grain size is fine \& randomly oriented
4. The peak wavelength of radiation emitted by a black body at a temperature of 2000 K is $1.45 \mu \mathrm{~m}$. If the peak wavelength of emitted radiation changes to $2.90 \mu \mathrm{~m}$, then the temperature (in K) of the black body is
(A) 500
(B) 1000
(C) 4000
(D) 8000

Key: (B)
Exp: $\quad \lambda_{1}\left(\mathrm{~T}_{\max }\right)_{1}=\lambda_{2}\left(\mathrm{~T}_{\text {max }}\right)_{2}$
$1.45 \times 2000=2.90 \times\left(\mathrm{T}_{\max }\right)_{2}$
$\Rightarrow\left(\mathrm{T}_{\max }\right)_{2}=1000 \mathrm{~K}$
5. Metal removal in electric discharge machining takes place through
(A) ion displacement
(B) melting and vaporization
(C) corrosive reaction
(D) plastic shear

Key: (B)
Exp: In EDM, electric spark is used to melt the metal \& vaporization of metal takes place
6. The preferred option for holding an odd-shaped work piece in a centre lathe is
(A) Live and dead centres
(B) three jaw chuck
(C) lathe dog
(D) four jaw chuck

Key: (D)

7. The arrival of customers over fixed time intervals in a bank follow a Poisson distribution with an average of 30 customers / hour. The probability that the time between successive customer arrival is between 1 and 3 minutes is \qquad (Correct to two decimal places).
Key: (0.3834)
Exp: $\quad \lambda=30 / \mathrm{hr}$
$\lambda=0.5 / \mathrm{min}$
$\therefore \mathrm{P}_{(\mathrm{t})}=1-\mathrm{e}^{-\lambda \mathrm{t}}$
$\mathrm{P}(1)=1-\mathrm{e}^{-0.5 \times 1}=0.3934$
$\mathrm{P}(3)=1-\mathrm{e}^{-0.5 \times 3}=0.7768$
So, $\mathrm{P}(1 \leq \mathrm{T} \leq 3)=0.7768-0.3934=0.3834$
8. For an ideal gas with constant properties undergoing a quasi-static process, which one of the following represents the change of entropy (Δs) from state 1 to 2 ?
(A) $\Delta \mathrm{s}=\mathrm{C}_{\mathrm{p}} \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)$
(B) $\Delta s=\mathrm{C}_{\mathrm{v}} \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{C}_{\mathrm{p}} \ln \left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)$
(C) $\Delta \mathrm{s}=\mathrm{C}_{\mathrm{p}} \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{C}_{\mathrm{v}} \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)$
(D) $\Delta \mathrm{s}=\mathrm{C}_{\mathrm{v}} \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)+\mathrm{R} \ln \left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)$

Key: (A)
Exp: For an ideal gas undergoing a quasi static process,
Change in entropy, $\Delta \mathrm{s}=\mathrm{C}_{\mathrm{p}} \ell \mathrm{n}\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \ell \mathrm{n}\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)$
Proof:- $\mathrm{dQ}=\mathrm{dU}+\mathrm{pdV}=\mathrm{C}_{\mathrm{v}} \mathrm{dT}+\mathrm{pdV}$

$$
\begin{array}{rlr}
\Delta s=\frac{d Q}{T} & =C_{V} \frac{d T}{T}+\frac{P}{T} d V & \\
& =C_{V} \frac{d T}{T}+\frac{R}{V} d V & {[P V=R T] \rightarrow v^{\prime} v^{\prime} \text { is specific volume }}
\end{array}
$$

On Integration,

$$
\mathrm{s}_{2}-\mathrm{s}_{1}=\mathrm{C}_{\mathrm{V}} \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)+\mathrm{R} \ln \left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}\right) \ldots(\mathrm{i})
$$

We know that
$\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$

$$
\begin{equation*}
\Rightarrow \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}} \times \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}} \tag{2}
\end{equation*}
$$

Substituting (2) in (1)

$$
\begin{array}{rlr}
\mathrm{s}_{2}-\mathrm{s}_{1} & =\mathrm{C}_{\mathrm{v}} \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)+\mathrm{R} \ell n\left(\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}} \times \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right) \\
& =\mathrm{C}_{\mathrm{v}} \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)+\mathrm{R} \ell n\left(\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}\right)+\mathrm{R} \ell n\left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right) \\
& =\ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)\left(\mathrm{C}_{\mathrm{v}}+\mathrm{R}\right)+\mathrm{R} \ell\left(\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}\right) & \\
\therefore \mathrm{s}_{2}-\mathrm{S}_{1} & =\mathrm{C}_{\mathrm{p}} \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \ell \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right) \quad\left[\begin{array}{l}
\because \mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{R} \\
\mathrm{C}_{\mathrm{p}}=C_{\mathrm{v}}+\mathrm{R}
\end{array}\right]
\end{array}
$$

9. In a single degree of freedom under damped spring-mass-damper system as shown in the figure, an additional damper is added in parallel such that the system still remains underdamped. Which one of the following statements is ALWAYS true?
(A) Transmissibility will increase
(B) Transmissibility will decrease
(C) Time period of free oscillations will increase.
(D) Time period of free oscillations will decrease.

Key: (C)
Exp: $\quad \omega_{d} \propto \sqrt{1-\xi^{2}}$
If additional damper used, then ξ increases and ω_{d} decrease
$\because \mathrm{T}_{\mathrm{d}}=\frac{2 \pi}{\omega_{\mathrm{d}}}$
so, T_{d} increases
10. The divergence of the vector field $\overrightarrow{\mathbf{u}}=e^{x}(\cos y \hat{i}+\sin y \hat{j})$ is
(A) 0
(B) $\mathrm{e}^{\mathrm{x}} \cos \mathrm{y}+\mathrm{e}^{\mathrm{x}} \sin \mathrm{y}$
(C) $2 \mathrm{e}^{\mathrm{x}} \cos \mathrm{y}$
(D) $2 e^{x} \sin y$

Key: (C)
Exp: We have; Div $\overrightarrow{\mathbf{u}}=\nabla . \overrightarrow{\mathbf{u}}$

$$
\begin{aligned}
& =\left(\hat{\mathrm{i}} \frac{\partial}{\partial \mathrm{x}}+\hat{\mathrm{j}} \frac{\partial}{\partial \mathrm{y}}+\hat{\mathrm{k}} \frac{\partial}{\partial \mathrm{z}}\right) \cdot\left(\mathrm{e}^{\mathrm{x}} \cos \mathrm{y} \hat{\mathrm{i}}+\mathrm{e}^{\mathrm{x}} \sin \hat{\mathrm{y}}\right) \\
& =\frac{\partial}{\partial \mathrm{x}}\left[\mathrm{e}^{\mathrm{x}} \cos \mathrm{y}\right]+\frac{\partial}{\partial \mathrm{y}}\left[\mathrm{e}^{\mathrm{x}} \sin \mathrm{y}\right] \\
& =\mathrm{e}^{\mathrm{x}} \cos \mathrm{y}+\mathrm{e}^{\mathrm{x}} \cos \mathrm{y}=2 \mathrm{e}^{\mathrm{x}} \cos \mathrm{y} \\
& \therefore \operatorname{Div} \overrightarrow{\mathrm{u}}=2 \mathrm{e}^{\mathrm{x}} \cos \mathrm{y}
\end{aligned}
$$

11. Match the following products with the suitable manufacturing process

Product		Manufacturing Process	
P	Toothpaste tube	1	Centrifugal casting
Q	Metallic pipes	2	Blow moulding
R	Plastic bottles	3	Rolling
S	Threaded bolts	4	Impact extrusion

(A) P-4, Q-3, R-1, S-2
(B) P-2, Q-1, R-3, S-4
(C) P-4, Q-1, R-2, S-3
(D) P-1, Q-3, R-4, S-2

Key: (C)
12. A hollow circular shaft of inner radius 10 mm , outer radius 20 mm and length 1 m is to be used as a torsional spring. If the shear modulus of the material of the shaft is 150 GPa , the torsional stiffness of the shaft (in $\mathrm{kN}-\mathrm{m} / \mathrm{rad}$) is \qquad (correct to two decimal places).

[^2]Key: (35.34)
Exp: $\mathrm{R}_{\mathrm{i}}=10 \mathrm{~mm}$. $\mathrm{D}_{\mathrm{i}}=20 \mathrm{~mm}$
$\mathrm{R}_{0}=20 \mathrm{~mm}, \mathrm{D}_{0}=40 \mathrm{~mm}$
$\mathrm{L}=1 \mathrm{mts}=1000 \mathrm{~mm}$
$\mathrm{G}=150 \mathrm{GPa}$
$\frac{\mathrm{T}}{\theta}=\frac{\mathrm{GJ}}{\ell}=\frac{150 \times 10^{3} \times \frac{\pi}{32}\left(40^{4}-20^{4}\right)}{(1000)}$
$=35.34 \mathrm{kN}-\mathrm{m} / \mathrm{rad}$
13. If y is the solution of the differential equation $y^{3} \frac{d y}{d x}+x^{3}=0, y(0)=1$, the value of $y(-1)$ is
(A) -2
(B) -1
(C) 0
(D) 1

Key: (C)
Exp: Given D.E
$y^{3} \frac{d y}{d x}+x^{3}=0$
$\Rightarrow y^{3} d y+x^{3} d x=0 \rightarrow$ variable - separable D.E
$\Rightarrow \int y^{3} d y+\int x^{3} d x=c$
$\Rightarrow \frac{\mathrm{y}^{4}}{4}+\frac{\mathrm{x}^{4}}{4}=\mathrm{c} \rightarrow(1)$
Given $\mathrm{y}(0)=1$; i.e., $\mathrm{y}=1$ at $\mathrm{x}=0$
From (1) $; \mathrm{c}=\frac{1}{4}$
\therefore From $(1) ; \frac{\mathrm{x}^{4}}{4}+\frac{\mathrm{y}^{4}}{4}=\frac{1}{4}$

$$
\Rightarrow x^{4}+y^{4}=1
$$

$$
\Rightarrow y^{4}=1-x^{4}
$$

$$
\Rightarrow y=\sqrt[4]{1-x^{4}}
$$

$\therefore \mathrm{y}(-1)=\sqrt[4]{1-(-1)^{4}}=0$
14. An engine operates on the reversible cycle as shown in the figure.
The work output from the engine (in $\mathrm{kJ} / \mathrm{cycle}$) is \qquad (correct to two decimal places).

Key: (62.5)
Exp: \quad Work done $=$ Area $=\frac{1}{2} \times 0.50 \times 250$

$$
=62.5 \mathrm{kN}-\mathrm{m}
$$

15. Pre-tensioning of a bolted joint is used to
(A) strain harden the bolt head
(B) decrease stiffness of the bolted joint
(C) increase stiffness of the bolted joint
(D) prevent yielding of the thread root

Key: (C)
Exp: Pre-tensioning increases the stiffness of the bolts.
16. A ball is dropped from rest from a height of 1 m in a frictionless tube as shown in the figure. If the tube profile is approximated by two straight lines (ignoring the curved portion), the total distance travelled (in m) by the ball is \qquad (correct to two decimal places).

Key: (2.414)
Exp: Ball will start moving from point B to point A \& then reach at point C.
\because Since ignoring friction,
i.e, potential energy at point B and C will be same.

$=1+\mathrm{AC}, \quad \mathrm{AC}=\frac{1}{\sin 45^{\circ}}$
$=1+\sqrt{2}=2.414 \mathrm{mts}$
17. The viscous laminar flow of air over a flat plate results in the formation of a boundary layer. The boundary layer thickness at the end of the plate of length L is δ_{L}. When the plate length is increased to twice its original length. The percentage change in laminar boundary layer thickness at the end of the plate (with respect to δ_{L}) is \qquad (correct to two decimal places).
Key: (41.42)
Exp: For laminar boundary layer
Where $\delta \propto \sqrt{\mathrm{x}}$
$\delta=$ Boundary Layer thickness of location ' x ' from leading edge
So, $\frac{\delta_{2}}{\delta_{1}}=\sqrt{\frac{2 \mathrm{~L}}{\mathrm{~L}}}$
$\delta_{2}=1.4142 \delta_{1}$
So, $\%$ change $=\frac{\delta_{2}-\delta_{1}}{\delta_{1}} \times 100$
$=\frac{1.4142 \delta_{1}-\delta_{1}}{\delta_{1}} \times 100=41.42 \%$
18. The minimum axial compressive load, P , required to initiate buckling for a pinned-pinned slender column with bending stiffness EI and length L is
(A) $\mathrm{P}=\frac{\pi^{2} \mathrm{EI}}{4 \mathrm{~L}^{2}}$
(B) $\mathrm{P}=\frac{\pi^{2} \mathrm{EI}}{\mathrm{L}^{2}}$
(C) $\mathrm{P}=\frac{3 \pi^{2} \mathrm{EI}}{4 \mathrm{~L}^{2}}$
(D) $\mathrm{P}=\frac{4 \pi^{2} \mathrm{EI}}{\mathrm{L}^{2}}$

Key: (B)
Exp: $\quad P_{E}=\frac{\pi^{2} E I}{L_{e}^{2}}$
for both ends pinned,
$\mathrm{L}_{\mathrm{e}}=\mathrm{L}$
$\mathrm{P}_{\mathrm{E}}=\frac{\pi^{2} \mathrm{EI}}{\mathrm{L}^{2}}$
19. Consider a function u which depends on position x and time t. The partial differential equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

is known as the
(A) Wave equation
(B) Heat equation
(B) Laplace's equation
(D) Elasticity equation

Key: (B)
Exp: Clearly; $\frac{\mathrm{du}}{\mathrm{dt}}=\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}$ is known as the heat equation
20. Feed rate in slab milling operation is equal to
(A) rotation per minute (rpm)
(B) product of rpm and number of teeth in the cutter
(C) product of rpm, feed per tooth and number of teeth in the cutter
(D) product of rpm, feed per tooth and number of teeth in contact

Key: (C)
Exp: \because feed rate in milling,
$f_{m}=f_{t} \cdot Z \cdot N$
$\mathrm{f}_{\mathrm{t}}=$ feed per tooth
$Z=$ No. of teeth
$\mathrm{N}=\mathrm{rpm}$
21. Denoting L as liquid and M as solid in a phase-diagram with the subscripts representing different phases, a eutectoid reaction is described by
(A) $\mathrm{M}_{1} \rightarrow \mathrm{M}_{2}+\mathrm{M}_{3}$
(B) $\mathrm{L}_{1} \rightarrow \mathrm{M}_{1}+\mathrm{M}_{2}$
(C) $\mathrm{L}_{1}+\mathrm{M}_{1} \rightarrow \mathrm{M}_{2}$
(D) $\mathrm{M}_{1}+\mathrm{M}_{2} \rightarrow \mathrm{M}_{3}$

Key: (A)
Exp: At Eutectoid point one solid converts into the another solid
$\mathrm{M}_{1} \rightarrow \mathrm{M}_{2}+\mathrm{M}_{3}$
$\mathrm{M}=$ Solid
i.e. $\gamma \rightarrow \alpha+\mathrm{Fe}_{3} \mathrm{C}$
22. If $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 1\end{array}\right]$ then $\operatorname{det}\left(\mathrm{A}^{-1}\right)$ is \quad ___ (correct to two decimal places).

Key: (0.25)
Exp: Given,

Clearly; A is upper triangular matrix
$\operatorname{det}\left(\mathrm{A}^{-1}\right)=\left|\mathrm{A}^{-1}\right|=\frac{1}{|\mathrm{~A}|}(\because$ From the properties of determinant $)$
$\Rightarrow\left|\mathrm{A}^{-1}\right|=\frac{1}{1 \times 4 \times 1}=\frac{1}{4}=0.25$
$(\because$ The determinant of upper triangular matrix is the product of diagonal elements).
23. A local tyre distributor expects to sell approximately 9600 steel belted radial tyres next year. Annual carrying cost is Rs. 16 per tyre and ordering cost is Rs. 75. The economic order quantity of the tyres is
(A) 64
(B) 212
(C) 300
(D) 1200

Key: (C)
Exp: D = 9600units/year
C = Rs.16/unit/year
F = Rs. 75/order

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 \mathrm{DF}}{\mathrm{C}}} \\
& =\sqrt{\frac{2 \times 9600 \times 75}{16}} \\
& =300 \mathrm{units}
\end{aligned}
$$

24. Fatigue life of a material for a fully reversed loading condition is estimated from $\sigma_{\mathrm{a}}=1100 \mathrm{~N}^{-0.15}$
Where σ_{a} is the stress amplitude in MPa and N is the failure life in cycles. The maximum allowable stress amplitude (in MPa) for a life of 1×10^{5} cycles under the same loading condition is
\qquad (correct to two decimal places).
Key: (195.61)
Exp: For completely reversed loading,

$$
\begin{aligned}
& \sigma_{\max }=\sigma_{\mathrm{a}} \\
& \sigma_{\mathrm{a}}=1100 \mathrm{~N}^{-0.15} \\
& \sigma_{\mathrm{a}}=1100 \times\left(1 \times 10^{5}\right)^{-0.15} \\
& =195.61 \mathrm{MPa}
\end{aligned}
$$

25. A frictionless gear train is shown in the figure. The leftmost 12-teeth gear is given a torque of $100 \mathrm{~N}-\mathrm{m}$. The output torque from the 60 -teeth gear on the right in $\mathrm{N}-\mathrm{m}$ is

(A) 5
(B) 20
(C) 500
(D) 2000

Key: (D)
$\operatorname{Exp}: \frac{T_{1}}{Z_{1}}=\frac{T_{2}}{Z_{2}}$
$\mathrm{T}_{2}=\frac{100 \times 48}{12}=400 \mathrm{~N}-\mathrm{m}$
$\mathrm{T}_{2}=\mathrm{T}_{3}=400 \mathrm{~N}-\mathrm{m}$
$\frac{\mathrm{T}_{3}}{\mathrm{Z}_{3}}=\frac{\mathrm{T}_{4}}{\mathrm{Z}_{4}}$
$\frac{400}{12}=\frac{\mathrm{T}_{4}}{60}$
$\mathrm{T}_{4}=\frac{400 \times 60}{12}=2000 \mathrm{~N}-\mathrm{m}$
26. A circular hole of 25 mm diameter and depth of 20 mm is machined by EDM process. The material removal rate (in $\mathrm{mm}^{3} / \mathrm{min}$) is expressed as

$$
4 \times 10^{4} \mathrm{IT}^{-1.23}
$$

Where $\mathrm{I}=300 \mathrm{~A}$ and the melting point of the material, $\mathrm{T}=1600^{\circ} \mathrm{C}$. The time (in minutes) for machining this hole is \qquad (correct to two decimal places)
Key: (7.143)
Exp: \quad MRR $=4 \times 10^{4} \mathrm{IT}^{-1.23}$

$$
\begin{aligned}
& =4 \times 10^{4} \times 300 \times 1600^{-1.23} \\
& =1374.4 \mathrm{~mm}^{3} / \min
\end{aligned}
$$

Volume to be removed $=\frac{\pi}{4} D^{2} L$

$$
=\frac{\pi}{4}(25)^{2} \times 20=9817.4 \mathrm{~mm}^{3}
$$

Time required $=\frac{9817.4}{1374.4}=7.143 \mathrm{~min}$
27. Following data correspond to an orthogonal turning of a 100 mm diameter rod on a lathe. Rake angle: $+15^{\circ}$; Uncut chip thickness: 0.5 mm ; nominal chip thickness after the cut: 1.25 mm . The shear angle (in degrees) for this process is \qquad (correct to two decimal places).
Key: (23.31)
Exp: d=100mm

$$
\begin{aligned}
& \alpha=15^{\circ}, t_{1}=0.5 \mathrm{~mm} \\
& t_{c}=1.25 \mathrm{~mm} \\
& r=\frac{t_{1}}{t_{c}}=0.4
\end{aligned}
$$

$$
\begin{aligned}
& \tan \phi=\frac{\mathrm{r} \cos \alpha}{1-\mathrm{r} \sin \alpha} \Rightarrow \tan \phi=\frac{0.4 \times \cos 15}{1-0.4 \times \sin 15} \\
& \tan \phi=0.4309 \therefore \phi=23.31
\end{aligned}
$$

28. A rigid rod of length 1 m is resting at an angle $\theta=45^{\circ}$ as shown in the figure. The end P is dragged with a velocity of $\mathrm{U}=5 \mathrm{~m} / \mathrm{s}$ to the right. At the instant shown, the magnitude of the velocity $V(\mathrm{in} \mathrm{m} / \mathrm{s}$) of point Q as it moves along the wall without losing contact is

(A) 5
(B) 6
(C) 8
(D) 10

Key: (A)
Exp: $\quad V_{P}=(I P) \omega$
$\mathrm{V}_{\mathrm{Q}}=(\mathrm{IQ}) \omega$
$\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{\mathrm{Q}}=5 \mathrm{~m} / \mathrm{sec}$

29. The true stress (in MPa) versus true stain relationship for a metal is given by

$$
\sigma=1020 \varepsilon^{0.4}
$$

The cross-sectional area at the start of a test (when the stress and strain values are equal to zero) is $100 \mathrm{~mm}^{2}$. The cross - sectional area at the time of necking (in mm^{2}) is \qquad (correct to two decimal places)
Key: (67.032)
Exp: $\quad \sigma=1020 \epsilon^{0.4}$
$\sigma=K \in^{\mathrm{n}} \quad \mathrm{A}_{\mathrm{i}}=100 \mathrm{~mm}^{2}$
at necking $\mathrm{n}=\in=0.4$
$\epsilon=\ell n\left(\frac{\ell_{\mathrm{f}}}{\ell_{\mathrm{i}}}\right)=\ln \left(\frac{\mathrm{A}_{\mathrm{i}}}{\mathrm{A}_{\mathrm{f}}}\right)$
$0.4=\ln \left(\frac{\mathrm{A}_{\mathrm{i}}}{\mathrm{A}_{\mathrm{f}}}\right) \Rightarrow \mathrm{e}^{0.4}=\frac{100}{\mathrm{~A}_{\mathrm{f}}}$
$\mathrm{A}_{\mathrm{f}}=\frac{100}{\mathrm{e}^{0.4}} \therefore \mathrm{~A}_{\mathrm{f}}=67.032 \mathrm{~mm}^{2}$
30. A bar of circular cross section is clamped at ends P and Q as shown in the figure. A torsional moment $T=150 \mathrm{Nm}$ is applied at a distance of 100 mm from end P . The torsional reactions $\left(\mathrm{T}_{\mathrm{P}}, \mathrm{T}_{\mathrm{Q}}\right)$ in Nm at the ends P and Q respectively are

(All dimensions are in mm)
(A) $(50,100)$
(B) $(75,75)$
(C) $(100,50)$
(D) $(120,30)$

Key: (C)
Exp: $\quad \mathrm{T}=150 \mathrm{~N}-\mathrm{m}$
$\mathrm{T}_{\mathrm{P}}+\mathrm{T}_{\mathrm{Q}}=150 \mathrm{~N}-\mathrm{m}$
$\theta_{1}=\theta_{2}$
$\frac{\mathrm{T}_{\mathrm{P}} \ell_{1}}{\mathrm{GJ}}=\frac{\mathrm{T}_{\mathrm{Q}} \ell_{2}}{\mathrm{GJ}}$
$\mathrm{T}_{\mathrm{P}}(100)=\mathrm{T}_{\mathrm{Q}}(200)$

$\mathrm{T}_{\mathrm{P}}=2 \mathrm{~T}_{\mathrm{Q}} \Rightarrow \mathrm{T}_{\mathrm{Q}}=0.5 \mathrm{~T}_{\mathrm{P}}$
$\mathrm{T}_{\mathrm{P}}+\mathrm{T}_{\mathrm{Q}}=150$
$\mathrm{T}_{\mathrm{P}}+0.5 \mathrm{~T}_{\mathrm{P}}=150$
$\mathrm{T}_{\mathrm{P}}=100 \mathrm{~N}-\mathrm{m}, \mathrm{T}_{\mathrm{Q}}=50 \mathrm{~N}-\mathrm{m}$
$\left(\mathrm{T}_{\mathrm{P}}, \mathrm{T}_{\mathrm{Q}}\right)=(100,50)$
31. Air flows at the rate of $1.5 \mathrm{~m}^{3} / \mathrm{s}$ through a horizontal pipe with a gradually reducing cross-section as shown in the figure. The two cross-sections of the pipe have diameters of 400 mm and 200 mm . Take the air density as $1.2 \mathrm{~kg} / \mathrm{m}^{3}$ and assume inviscid incompressible flow. The change in pressure $\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)$ (in kPa) between sections 1 and 2 is

(A) -1.28
(B) 2.56
(C) -2.13
(D) 1.28

Key: (A)
Exp: $\quad \mathrm{Q}=1.5 \mathrm{~m}^{2} / \mathrm{s}$
Apply Bernoulli's equation b / w (1) \& (2)

$$
\begin{array}{c|c}
\frac{P_{1}}{\gamma}+\frac{\mathrm{V}_{1}^{2}}{2 g}+\mathrm{Z}_{1}=\frac{\mathrm{P}_{2}}{\gamma}+\frac{\mathrm{V}_{2}^{2}}{2 g}+\mathrm{Z}_{2} & \mathrm{~V}=\frac{\mathrm{Q}}{\mathrm{~A}_{1}} ; \mathrm{V}_{1}=\frac{1.5 \times 4}{\pi(0.4)^{2}}=11.936 \mathrm{~m} / \mathrm{s} \\
\frac{P_{1}-P_{2}}{\rho g}=\frac{\mathrm{V}_{2}^{2}-\mathrm{V}_{1}^{2}}{2 \mathrm{~g}} & \mathrm{~V}_{2}=\frac{1.5 \times 4}{\pi \times(0.2)^{2}}=47.746 \mathrm{~m} / \mathrm{s}
\end{array}
$$

So, $\mathrm{P}_{1}-\mathrm{P}_{2}=1.2 \times\left(\frac{47.746^{2}-11.936^{2}}{2}\right)$
$\mathrm{P}_{1}-\mathrm{P}_{2}=1.28 \mathrm{kPa}$
or $\mathrm{P}_{2}-\mathrm{P}_{1}=-1.28 \mathrm{kPa}$
32. A frictionless circular piston of area $10^{-2} \mathrm{~m}^{2}$ and mass 100kg sinks into a cylindrical container of the same area filled with water of density $1000 \mathrm{~kg} / \mathrm{m}^{3}$ as shown in the figure. The container has a hole of area $10^{-3} \mathrm{~m}^{2}$ at the bottom that is open to the atmosphere. Assuming there is no leakage from the edges of the piston and considering water to be incompressible, the magnitude of the piston velocity (in m / s) at the instant shown is \qquad (correct
 to three decimal places).
Key: (1.456)
Exp: $\quad A_{1} V_{1}=A_{2} V_{2}$
$10^{-2} \mathrm{~V}_{1}=10^{-3} \mathrm{~V}_{2}$
$\mathrm{V}_{2}=10 \mathrm{~V}_{1}$
$\mathrm{P}_{1}=\frac{100 \times 10}{10^{-2}} \mathrm{~N} / \mathrm{m}^{2}$
$\mathrm{P}_{2}=0$
Apply Bernoulli's equation between (1) \& (2)
$\frac{\mathrm{P}_{1}}{\gamma}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{1}=\frac{\mathrm{P}_{2}}{\gamma}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{2}$

$\frac{10^{5}}{10^{3} \times 10}+\frac{\mathrm{V}_{1}^{2}}{2 \times 10}+0.5=0+\frac{100 \mathrm{~V}_{1}^{2}}{2 \times 10}+0$
$\frac{99 \mathrm{~V}_{1}^{2}}{20}=10+0.5$
$\mathrm{V}_{1}=1.456 \mathrm{~m} / \mathrm{s}$
33. A 0.2 m thick infinite black plate having a thermal conductivity of $3.96 \mathrm{~W} / \mathrm{m}-\mathrm{K}$ is exposed to two infinite black surfaces at 300 K and 400 K as shown in the figure. At steady state, the surface
temperature of the plate facing the cold side is 350 K . The value of Stefan-Boltzmann constant, σ, is $5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$. Assuming 1-D heat conduction, the magnitude of heat flux through the plate (in W/m ${ }^{2}$) is \qquad (correct to two decimal places).

Key: (391.58)
Exp: 1-D study state \& Black Surfaces $(\varepsilon=1)$

$$
\begin{aligned}
& \text { Heat flux }(\mathrm{q})=\sigma\left(\mathrm{T}_{1}^{4}-\mathrm{T}_{2}^{4}\right) \\
& =5.67 \times 10^{-8}\left(350^{4}-300^{4}\right) \\
& =391.58 \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

34. A steel wire is drawn from an initial diameter $\left(d_{i}\right)$ of 10 mm to a final diameter $\left(\mathrm{d}_{\mathrm{f}}\right)$ of 7.5 mm . The half cone angle (α) of the die is 5° and the coefficient of friction (μ) between the die and the wire is 0.1 . The average of the initial and final yield stress $\left[\left(\sigma_{\mathrm{Y}}\right) \mathrm{avg}\right]$ is 350 MPa . The equation for drawing stress σ_{f}, $(\mathrm{in} \mathrm{MPa})$ is given as:

$$
\sigma_{\mathrm{f}}=\left(\sigma_{\mathrm{Y}}\right)_{\text {avg }}\left\{1+\frac{1}{\mu \cot \alpha}\right\}\left[1-\left(\frac{\mathrm{d}_{\mathrm{f}}}{\mathrm{~d}_{\mathrm{i}}}\right)^{2 \mu \cot \alpha}\right]
$$

The drawing stress (in MPa) required to carry out this operation is \qquad (correct to two decimal places).
Key: (316.24)
Exp: $d_{i}=10 \mathrm{~mm}, \alpha=5^{\circ}, \sigma_{y}=350 \mathrm{MPa}$
$\mathrm{d}_{\mathrm{f}}=7.5 \mathrm{~mm} \quad \mu=0.1$
$\sigma_{\mathrm{f}}=\left(\sigma_{\mathrm{y}}\right)_{\text {avg }}\left[1+\frac{1}{\mu \cot \alpha}\right]\left[1-\left(\frac{\mathrm{d}_{\mathrm{t}}}{\mathrm{d}_{\mathrm{i}}}\right)^{2 \mu \cot \alpha}\right]$
$=350\left[1+\frac{1}{0.1 \cot 5^{\circ}}\right]\left[1-\left(\frac{7.5}{10}\right)^{2 \times 0.1 \times \cot 5^{\circ}}\right]=316.24 \mathrm{MPa}$
35. The arc lengths of a directed graph of a project are as shown in the figure. The shortest path length from node 1 to node 6 is \qquad

Key: (7)
Exp: Shortest Path is
(1) - (2) - (5) - (4) - (6)
$\&$ length of shortest path $=2+2+1+2=7$
36. The problem of maximizing $\mathrm{z}=\mathrm{x}_{1}-\mathrm{x}_{2}$ subject to constraints $\mathrm{x}_{1}+\mathrm{x}_{2} \leq 10, \mathrm{x}_{1} \geq 0, \mathrm{x}_{2} \geq 0$ and $\mathrm{x}_{2} \leq 5$ has
(A) no solution
(B) one solution
(C) two solutions
(D) more than two solutions

Key: (B)
Exp: \because slope of objective function is not equal to slope of any one constraint so, unique optional solution
37. Ambient air is at a pressure of 100 kPa , dry bulb temperature of $30^{\circ} \mathrm{C}$ and 60% relative humidity. The saturation pressure of water at $30^{\circ} \mathrm{C}$ is 4.24 kPa . The specific humidity of air (in g / kg of dry air) is \qquad (correct to two decimal places).
Key: (16.24)
Exp: $\quad P_{t}=100 \mathrm{kPa}, \phi=60 \%$

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{db}}=30^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{vs}}=4.424 \mathrm{kPa} \\
& \begin{aligned}
\phi= & \frac{\mathrm{P}_{\mathrm{v}}}{\mathrm{P}_{\mathrm{vs}}} \Rightarrow \mathrm{P}_{\mathrm{v}}=\phi \times \mathrm{P}_{\mathrm{vs}} \\
& =0.6 \times 4.24=2.544 \mathrm{kPa}
\end{aligned}
\end{aligned}
$$

$\operatorname{Specific} \operatorname{humidity}(w)=0.622 \frac{P_{v}}{P_{t}-P_{v}}$

$$
\begin{aligned}
& =0.622 \times \frac{2.544}{100-2.544} \\
& =0.016236^{\mathrm{kgW} \cdot \mathrm{v}} / \mathrm{kgd} \cdot \mathrm{a} \\
& =16.24 \mathrm{gmw} \cdot \mathrm{v} / \mathrm{kgd} \cdot \mathrm{a}
\end{aligned}
$$

38. A standard vapor compression refrigeration cycle operating with a condensing temperature of $35^{\circ} \mathrm{C}$ and an evaporating temperature of $-10^{\circ} \mathrm{C}$ develops 15 kW of cooling. The $p-h$ diagram shows the enthalpies at various states. If the isentropic efficiency of the compressor is 0.75 , the magnitude of compressor power (in kW) is \qquad (correct to two decimal places).

Key: (10)
Exp: R.E $=15 \mathrm{~kW} \mid \mathrm{h}_{1}=400 \mathrm{~kJ} / \mathrm{kg}$
$\eta_{\text {isent }_{\mathrm{C}}}=0.75 \left\lvert\, \begin{aligned} & \mathrm{h}_{2}=475 \mathrm{~kJ} / \mathrm{kg} \\ & \mathrm{h}_{4}=250 \mathrm{~kJ} / \mathrm{kg}\end{aligned}\right.$
C.O.P $=\frac{\mathrm{h}_{1}-\mathrm{h}_{4}}{\mathrm{~h}_{2}-\mathrm{h}_{1}}=\frac{400-250}{475-400}=\frac{150}{75}=2$

But C.O.P $=\frac{\text { R.E }}{W_{\text {in }}}$
$\mathrm{W}_{\text {in }}=\frac{15}{2}=7.5 \mathrm{~kW}$

\because Isotropic efficiency of compressor is given, actual compressor power required
$=\frac{\mathrm{W}_{\text {in }}}{\eta_{\text {isent }_{\mathrm{C}}}}=\frac{7.5}{0.75}=10 \mathrm{~kW}$
39. For sand-casting a steel rectangular plate with dimensions $80 \mathrm{~mm} \times 120 \mathrm{~mm} \times 20 \mathrm{~mm}$, a cylindrical riser has to be designed. The height of the riser is equal to its diameter. The total solidification time for the casting is 2 minutes. In Chvorinov's law for the estimation of the total solidification time, exponent is to be taken as 2 . For a solidification time of 3 minutes in the riser, the diameter (in mm) of the riser is \qquad (correct to two decimal places).
Key: (51.84)
Exp: Given, $t_{c}=2$ min $\quad A_{r}=\frac{\pi}{2} d^{2}+\pi d^{2}$

$$
\mathrm{t}_{\mathrm{r}}=3 \min \quad \mathrm{~A}_{\mathrm{r}}=\frac{3}{2} \pi \mathrm{~d}^{2}
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{c}}=80 \times 120 \times 20=192000 \mathrm{~mm}^{3} \\
& \mathrm{~V}_{\mathrm{r}}=\frac{\pi}{4} \mathrm{~d}^{3} \\
& \mathrm{~A}_{\mathrm{c}}=2((80 \times 120)+(120 \times 20)+(20 \times 80))=27200 \mathrm{~mm}^{2} \\
& \frac{t_{c}}{t_{r}}=\left(\frac{\mathrm{V}_{\mathrm{c}}}{\mathrm{~A}_{\mathrm{c}}} \times \frac{\mathrm{A}_{\mathrm{r}}}{\mathrm{~V}_{\mathrm{r}}}\right)^{2} \\
& \frac{2}{3}=\left(\frac{192000}{27200} \times \frac{\frac{3}{2} \pi \mathrm{~d}^{2}}{\frac{\pi}{4} d^{3}}\right)^{2} \\
& \frac{2}{3}=\left(\frac{42.352}{\mathrm{~d}}\right)^{2} \Rightarrow \mathrm{~d}=51.84 \mathrm{~mm}
\end{aligned}
$$

40. A welding operation is being performed with voltage $=30 \mathrm{~V}$ and current $=100 \mathrm{~A}$. The cross sectional area of the weld bead is $20 \mathrm{~mm}^{2}$. The work-piece and filler are of titanium for which the specific energy of melting is $14 \mathrm{~J} / \mathrm{mm}^{3}$. Assuming a thermal efficiency of the welding process 70% the welding speed (in mm / s) is \qquad (correct to two decimal places).
Key: (7.5)
Exp: $\quad H_{m} \cdot A . V=\eta . V . I$
$14 \times 20 \times V=0.7 \times 30 \times 100$
$\mathrm{V}=7.5 \mathrm{~m} / \mathrm{s}$
41. For a position vector $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ the norm of the vector can be defined as $|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$. Given a function $\phi=\ln |\overrightarrow{\mathrm{r}}|$, its gradient $\nabla \phi$ is
(A) $\overrightarrow{\mathrm{r}}$
(B) $\frac{\overrightarrow{\mathrm{r}}}{|\overrightarrow{\mathrm{r}}|}$
(C) $\frac{\overrightarrow{\mathrm{r}}}{\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{r}}}$
(D) $\frac{\overrightarrow{\mathrm{r}}}{|\overrightarrow{\mathrm{r}}|^{3}}$

Key: (C)
Exp: Given $\overrightarrow{\mathrm{r}}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}}$
$\Rightarrow|\overrightarrow{\mathrm{r}}|=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$
Also given; $\phi=\ell \mathrm{n}|\overrightarrow{\mathrm{r}}|$

$$
\begin{aligned}
& =\ell \operatorname{n}\left[\sqrt{x^{2}+y^{2}+z^{2}}\right] \\
& =\frac{1}{2} \ln \left(x^{2}+y^{2}+z^{2}\right)
\end{aligned}
$$

\therefore gradient of $\phi=\nabla \phi$
$=\sum \hat{\mathrm{i}} \frac{\partial}{\partial \mathrm{x}}\left[\frac{1}{2} \ell \mathrm{n}\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)\right]$

$$
\begin{aligned}
& =\sum \hat{i} \frac{1}{2}\left(\frac{1}{x^{2}+y^{2}+z^{2}}\right)(2 x) \\
& =\sum \hat{i}\left[\frac{x}{x^{2}+y^{2}+z^{2}}\right] \\
& =\hat{i}\left[\frac{x}{x^{2}+y^{2}+z^{2}}\right]+\hat{j}\left[\frac{y}{x^{2}+y^{2}+z^{2}}\right]+\hat{k}\left[\frac{z}{x^{2}+y^{2}+z^{2}}\right] \\
& =\frac{x \hat{i}+y \hat{j}+z \hat{k}}{x^{2}+y^{2}+z^{2}}=\frac{\vec{r}}{\vec{r} \cdot \vec{r}}
\end{aligned}
$$

42. A bar is subjected to a combination of a steady load of 60 kN and a load fluctuating between 10 kN and 90 kN . The corrected endurance limit of the bar is 150 MPa , the yield strength of the material is 480 MPa and the ultimate strength of the material is 600 MPa . The bar cross-section is square with side a. If the factor of safety is 2 , the value of a (in mm), according to the modified Goodman's criterion, is \qquad (correct to two decimal places).
Key: (31.62)
Exp: $\quad P_{\text {static }}=60 \mathrm{kN}, \quad \sigma_{y t}=480 \mathrm{MPa}$
$P_{\text {max }}=90 \mathrm{kN}, \quad \sigma_{u t}=600 \mathrm{MPa}$
$\mathrm{P}_{\text {min }}=-10 \mathrm{kN}, \quad \sigma_{\mathrm{e}}=150 \mathrm{MPa}, \mathrm{F} . \mathrm{S}=2$
Considering Static varying load

$$
\begin{aligned}
& P_{\text {max }}=90+60=150 \mathrm{kN} \\
& \mathrm{P}_{\text {min }}=60-10=50 \mathrm{kN} \\
& \mathrm{P}_{\text {mean }}=\frac{150+50}{2}=100 \mathrm{kN} \\
& \mathrm{P}_{\mathrm{v}}=\frac{150-50}{2}=50 \mathrm{kN} \\
& \sigma_{\text {mean }}=\frac{\mathrm{P}_{\text {mean }}}{\mathrm{a}^{2}} \\
& \sigma_{\mathrm{v}}=\frac{\mathrm{P}_{\mathrm{v}}}{\mathrm{a}^{2}}
\end{aligned}
$$

Good man equation
$\frac{\sigma_{\text {mean }}}{\sigma_{\text {ut }}}+\frac{\sigma_{v}}{\sigma_{e}}=\frac{1}{\text { F.S }}$
$=\frac{\frac{100 \times 10^{3}}{\mathrm{a}^{2}}}{600}+\frac{\frac{50 \times 10^{3}}{\mathrm{a}^{2}}}{150}=\frac{1}{2}$
$a^{2}=1000$
$a=31.62 \mathrm{~mm}$
43. A bimetallic cylindrical bar of cross sectional area $1 \mathrm{~m}^{2}$ is made by bonding steel (Young's modulus $=210 \mathrm{GPa}$) and Aluminium (Young's modulus $=70 \mathrm{GPa}$) as shown in the figure. To maintain tensile axial strain of magnitude 10^{-6} in Steel bar and compressive axial strain of magnitude 10^{-6} in Aluminium bar, the magnitude of the required force P (in kN) along the indicated direction is

(A) 70
(B) 140
(C) 210
(D) 280

Key: (D)

$$
\text { Exp: } \begin{array}{ll}
& \epsilon_{\mathrm{al}}=\epsilon_{\mathrm{st}}=10^{-6} \\
& \epsilon_{\mathrm{st}}=\epsilon_{\mathrm{al}} \\
& \frac{\mathrm{P}_{\mathrm{st}}}{\mathrm{~A}_{\mathrm{st}} \cdot \mathrm{E}_{\mathrm{st}}}=\frac{\mathrm{P}_{\mathrm{al}}}{\mathrm{~A}_{\mathrm{al}} \cdot \mathrm{E}_{\mathrm{al}}} \\
\mathrm{P}_{\mathrm{st}}=\frac{210}{70} \mathrm{P}_{\mathrm{al}} \Rightarrow \mathrm{P}_{\mathrm{st}}=3 \mathrm{P}_{\mathrm{al}} \\
\sigma_{\mathrm{st}}=3 \sigma_{\mathrm{al}} \\
\sigma_{\mathrm{st}}=\epsilon_{\mathrm{st}} \times \epsilon_{\mathrm{st}} \\
=210 \times 10^{3} \times 10^{-6}=0.21 \mathrm{MPa} \\
& \sigma_{\mathrm{al}}=70 \times 10^{3} \times 10^{-6}=0.07 \\
\mathrm{P}=\left(\sigma_{\mathrm{st}}+\sigma_{\mathrm{al}}\right) \mathrm{A} \\
& =(0.21+0.07) \times 10^{6}=280 \mathrm{kN}
\end{array}
$$

44. A vehicle powered by a spark ignition engine follows air standard Otto cycle $(\gamma=1.4)$. The engine generates 70 kW while consuming $10.3 \mathrm{~kg} / \mathrm{hr}$ of fuel. The calorific value of fuel is $44,000 \mathrm{~kJ} / \mathrm{kg}$. The compression ratio is \qquad (correct to two decimal places).
Key: (7.61)
Exp: $\quad \gamma=1.4, \mathrm{~W}=70 \mathrm{~kW}$
$\mathrm{m}_{\mathrm{f}}=10.3 \mathrm{~kg} / \mathrm{h}$
C.V $=44000 \mathrm{KJ} / \mathrm{kg}$
$\mathrm{r}_{\mathrm{c}}=$?
For Otto cycle
$\eta=1-\frac{1}{\left(r_{c}\right)^{\gamma-1}}$

But $\eta=\frac{\text { W.D }}{\text { H.S }}$
$\Rightarrow \frac{\text { W.D }}{\text { H.S }}=1-\frac{1}{\left(\mathrm{r}_{\mathrm{c}}\right)^{\gamma-1}}$
$\frac{70}{\frac{10.3}{3600} \times 44000}=1-\frac{1}{\left(r_{c}\right)^{1.4-1}}$
$r_{c}=7.61$
45. Steam in the condenser of a thermal power plant is to be condensed at a temperature of $30^{\circ} \mathrm{C}$ with cooling water which enters the tubes of the condenser at $14^{\circ} \mathrm{C}$ and exits at $22^{\circ} \mathrm{C}$. The total surface area of the tubes is $50 \mathrm{~m}^{2}$, and the overall heat transfer coefficient is $2000 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. The heat transfer (in MW) to the condenser is \qquad (correct to two decimal places).
Key: (1.15)
Exp:

$$
\begin{aligned}
& \theta_{1}=\mathrm{t}_{\mathrm{h}_{1}}-\mathrm{t}_{\mathrm{c}_{1}}=30-14=16^{\circ} \mathrm{C} \mid \mathrm{A}=50 \mathrm{~m}^{2} \\
& \theta_{2}=\mathrm{t}_{\mathrm{h}_{2}}-\mathrm{t}_{\mathrm{c}_{2}}=30-22=8^{\circ} \mathrm{C} \mid \mathrm{U}=2000 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K} \\
& \operatorname{LMTD}\left(\theta_{\mathrm{m}}\right)=\frac{\theta_{1}-\theta_{2}}{\ln \left(\frac{\theta_{1}}{\theta_{2}}\right)} \\
& \quad=\frac{16-8}{\ln \left(\frac{16}{8}\right)}=11.54^{\circ} \mathrm{C}
\end{aligned}
$$

\therefore Heat Transfer $(\mathrm{Q})=\mathrm{UA} \theta_{\mathrm{m}}$

$$
=2000 \times 50 \times 11.54=1154156 \mathrm{~W}=1.15 \mathrm{MW}
$$

46. Air is held inside a non insulated cylinder using a piston (mass $M=25 \mathrm{~kg}$ and area $\mathrm{A}=100 \mathrm{~cm}^{2}$) and stoppers (of negligible area), as shown in the figure. The initial pressure P_{i} and temperature T_{i} of air inside the cylinder are 200 kPa and $400^{\circ} \mathrm{C}$, respectively. The ambient pressure P_{∞} and temperature T_{∞} are 100 kPa and $27^{\circ} \mathrm{C}$, respectively. The temperature of the air inside the cylinder $\left({ }^{\circ} \mathrm{C}\right)$ at which the piston will begin to move is \qquad (correct to two decimal places).

[^3]

Key: (147.63)
Exp:

Total pressure on the piston $=\mathrm{P}_{\infty}+$ pressure due to weight of piston

$$
\begin{aligned}
& =\mathrm{P}_{\infty}+\left(\frac{\mathrm{mg}}{\mathrm{~A}}\right) \\
& =100+\left(\frac{25 \times 10 \times 10^{-3}}{100 \times 10^{-4}}\right)=125 \mathrm{kPa}
\end{aligned}
$$

Internal pressure of air $=200 \mathrm{kPa}$
The pressure at which the piston can move is 125 kPa
Let T_{2} the temperature corresponding to $\mathrm{P}_{2}=125 \mathrm{KPa}$
\therefore From $\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$

$$
\begin{aligned}
& \frac{200}{673}=\frac{125}{\mathrm{~T}_{2}} \quad(\because \text { volume of air constant }) \\
& \mathrm{T}_{2}=420.625 \mathrm{~K} \\
& =147.625^{\circ} \mathrm{C} \cong 147.63^{\circ} \mathrm{C}
\end{aligned}
$$

47. In a cam-follower, the follower rises by h as the cam rotates by δ (radians) at constant angular velocity $\omega(\mathrm{radians} / \mathrm{s})$. The follower is uniformly accelerating during the first half of the rise
period and it is uniformly decelerating in the latter half of the rise period. Assuming that the magnitudes of the acceleration and deceleration are same, the maximum velocity of the follower is
(A) $\frac{4 \mathrm{~h} \omega}{\delta}$
(B) $\mathrm{h} \omega$
(C) $\frac{2 \mathrm{~h} \omega}{\delta}$
(D) $2 \mathrm{~h} \omega$

Key: (C)
Exp: $\quad \mathrm{S}=\mathrm{h}, \theta=\delta$
$\mathrm{t}=\frac{\theta}{\omega}=\frac{\delta}{\omega}$
$\mathrm{V}=\mathrm{u}+\mathrm{at} \Rightarrow \mathrm{V}=\mathrm{a} \times \frac{\delta}{2 \omega}$
$S=u t+\frac{1}{2} a t^{2}$
$\frac{\mathrm{h}}{2}=\frac{1}{2} \times \mathrm{a} \times\left(\frac{\mathrm{t}}{2}\right)^{2}$
$\frac{\mathrm{h}}{2}=\frac{1}{2} \times \mathrm{a} \times\left(\frac{\delta}{2 \omega}\right)^{2}$
$a=\frac{4 \omega^{2} h}{\delta^{2}}$
$\mathrm{V}=\mathrm{a} \times \frac{\delta}{2 \omega}=\frac{4 \omega^{2} \mathrm{~h}}{\delta^{2}} \times \frac{\delta}{2 \omega}$
$\therefore \mathrm{V}=\frac{2 \omega \mathrm{~h}}{\delta}$
48. A thin-walled cylindrical can with rigid end caps has a mean radius $\mathrm{R}=100 \mathrm{~mm}$ and a wall thickness of $\mathrm{t}=5 \mathrm{~mm}$. The can is pressurized and an additional tensile stress of 50 MPa is imposed along the axial direction as shown in the figure. Assume that the state of stress in the wall is uniform along its length. If the magnitudes of axial and circumferential components of stress in the can are equal, the pressure (in MPa) inside the can is \qquad (correct to two decimal

Key: (5)
Exp: $\quad \mathrm{t}=5 \mathrm{~mm}$
$\mathrm{R}=100 \mathrm{~m} \Rightarrow \mathrm{D}=200 \mathrm{~mm}$
Additional $\sigma=50 \mathrm{MPa}$
$\sigma_{\mathrm{t}}=\sigma_{\mathrm{L}}+50$
$\frac{\mathrm{PD}}{2 \mathrm{t}}=\frac{\mathrm{PD}}{4 \mathrm{t}}+50$
$\frac{\mathrm{PD}}{4 \mathrm{t}}=50$
$\mathrm{P}=\frac{50 \times 4 \times 5}{200}=5 \mathrm{MPa}$
49. In a rigid body in plane motion, the point R is accelerating with respect to point P at $10 \angle 180^{\circ}$ $\mathrm{m} / \mathrm{s}^{2}$. If the instantaneous acceleration of point Q is zero, the acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) of point R is

(A) $8 \angle 233^{\circ}$
(B) $10 \angle 255^{\circ}$
(C) $10 \angle 217^{\circ}$
(D) $8 \angle 217^{\circ}$

Key: (D)
Exp: $\quad a_{P R}=\vec{a}_{R}-\vec{a}_{P}, \quad P R=20$
$10=(\mathrm{PR}) \omega^{2}$
$\omega^{2}=\frac{10}{20} \Rightarrow \omega=\frac{1}{\sqrt{2}}$
$\mathrm{a}_{\mathrm{QR}}=(\mathrm{QR}) \omega^{2}$
$=16 \times\left(\frac{1}{\sqrt{2}}\right)^{2}=8 \mathrm{~m} / \sec ^{2}$
$\triangle \mathrm{PQR} \Rightarrow \sin \theta=\frac{120}{20}$
$\theta=\sin ^{-1}(0.6)=36.86^{\circ}$.
$180+36.86=216.86=217^{\circ}$
$8 \angle 217^{\circ}$
50. A force of 100 N is applied to the centre of a circular disc, of mass 10 kg and radius 1 m , resting on a floor as shown in the figure. If the disc rolls without slipping on the floor, the linear acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) of the centre of the disc is \qquad (correct to two decimal places).

Key: (6.66)
Exp: $\quad \mathrm{r}=1 \mathrm{~m}$
$\Sigma \mathrm{F}_{\mathrm{x}}=\mathrm{ma} \Rightarrow(100-\mathrm{F})=\mathrm{ma}$
$(100-F)=10 \times a$
$(100-10 a)=F$
Torque, $\mathrm{I} \alpha=\mathrm{F} \times \mathrm{r}$
$\left[\frac{1}{2} \mathrm{mr}^{2}\right] \alpha=(100-10 \mathrm{a}) \times 1$
$\left[\frac{1}{2} \times 10 \times 1^{2}\right] \alpha=(100-10 \mathrm{a})$

$\longleftarrow \mathrm{F}$
51. A test is conducted on a one-fifth scale model of a Francis turbine under a head of 2 m and volumetric flow rate of $1 \mathrm{~m}^{3} / \mathrm{s}$ at 450 rpm . Take the water density and the acceleration due to gravity as $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and $10 \mathrm{~m} / \mathrm{s}^{2}$, respectively. Assume no losses both in model and prototype turbines. The power (in MW) of a full sized turbine while working under a head of 30 m is
\qquad (correct to two decimal places).
Key: (29.025)
Exp: $\frac{D_{1}}{D_{2}}=\frac{D_{m}}{D_{p}}=\frac{1}{5}$

$$
\begin{aligned}
& \text { (1) } \\
& \mathrm{H}_{1}=2 \mathrm{~m} \\
& \mathrm{Q}_{1}=1 \mathrm{~m}^{3} / \mathrm{s}, \mathrm{~N}_{1}=450 \mathrm{rpm} \\
& \mathrm{H} \propto \mathrm{~N}^{2} \mathrm{D}^{2} \\
& \frac{\mathrm{H}_{2}}{\mathrm{H}_{1}}=\left(\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}}\right)^{2} \times\left(\frac{\mathrm{D}_{2}}{\mathrm{D}_{1}}\right)^{2} \\
& \frac{30}{2}=\left(\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}}\right)^{2} \times 5^{2} \Rightarrow \frac{\mathrm{~N}_{2}}{\mathrm{~N}_{1}}=0.774 \\
& \frac{\mathrm{Q}_{2}}{\mathrm{Q}_{1}}=\left(\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}}\right)\left(\frac{\mathrm{D}_{2}}{\mathrm{D}_{1}}\right)^{3} \\
& \frac{\mathrm{Q}_{2}}{1}=0.774 \times 5^{3} \\
& \mathrm{Q}_{2}=96.75=\mathrm{m}^{3} / \mathrm{s} \\
& \mathrm{P}_{2}=\rho g \mathrm{Q}_{2} \mathrm{H}_{2}=1000 \times 10 \times 96.75 \times 30=29.025 \mathrm{MW}
\end{aligned}
$$

52. Given the ordinary differential equation

$$
\frac{d^{2} y}{d x x^{2}}+\frac{d y}{d x}-6 y=0
$$

With $\mathrm{y}(0)=0$ and $\frac{\mathrm{dy}}{\mathrm{dx}}(0)=1$, the value of $\mathrm{y}(1)$ is \qquad (correct to two decimal places).

Key: (1.47)
Exp: Given D.E
$\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-6 y=0$
$\Rightarrow\left(\mathrm{D}^{2}+\mathrm{D}-6\right) \mathrm{y}=0$
The Auxiliary equation is $m^{2}+m-6=0$

$$
\begin{aligned}
& \Rightarrow \mathrm{m}^{2}+3 \mathrm{~m}-2 \mathrm{~m}-6=0 \\
& \Rightarrow \mathrm{~m}(\mathrm{~m}+3)-2(\mathrm{~m}+3)=0 \\
& \Rightarrow(\mathrm{~m}+3)(\mathrm{m}-2)=0 \\
& \Rightarrow \mathrm{~m}=2,-3 . \quad \text { [Roots are real and distinct }]
\end{aligned}
$$

The solution is
$y=C_{1} e^{-3 x}+C_{2} e^{2 x}$
given $y(0)=0$
from $(\mathrm{i}) \Rightarrow 0=\mathrm{C}_{1}+\mathrm{C}_{2}$
from $(\mathrm{i}) \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=-3 \mathrm{C}_{1} \mathrm{e}^{-3 \mathrm{x}}+2 \mathrm{C}_{2} \mathrm{e}^{2 \mathrm{x}}$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=1$ at $\mathrm{x}=0$
$1=-3 \mathrm{C}_{1}+2 \mathrm{C}_{2} \rightarrow$ (iii)
$\Rightarrow 1=-3 \mathrm{C}_{1}+2\left(-\mathrm{C}_{1}\right) \quad[\because \operatorname{From}(\mathrm{ii})]$
$\Rightarrow C_{1}=-1 / 5 \Rightarrow C_{2}=1 / 5\left[\because C_{2}=-C_{1}\right]$
\therefore The required solution is $\mathrm{y}=\frac{-1}{5} \mathrm{e}^{-3 \mathrm{x}}+\frac{1}{5} \mathrm{e}^{2 \mathrm{x}}$
$\Rightarrow \mathrm{y}(1)=\frac{-1}{5} \mathrm{e}^{-3}+\frac{1}{5} \mathrm{e}^{2}$
$\Rightarrow \mathrm{y}(1)=\frac{1}{5}\left[\mathrm{e}^{2}-\mathrm{e}^{-3}\right]$
$\therefore \mathrm{y}(1) \cong 1.47$
53. Let z be a complex variable. For a counter-clockwise integration around a unit circle C centred at origin,

$$
\oint_{\mathrm{C}} \frac{1}{5 \mathrm{z}-4} \mathrm{dz}=\mathrm{A} \pi \mathrm{i}
$$

the value of A is
(A) $2 / 5$
(B) $1 / 2$
(C) 2
(D) $4 / 5$

Key: (A)
Exp: Singular point is $z=4 / 5$, which lies inside the unit circle C : $|z|=1$
By Cauchy's integral formula:

$$
\begin{aligned}
\oint_{C} \frac{1}{5 z-4} \mathrm{dz}=\oint_{\mathrm{C}} \frac{1}{5(\mathrm{z}-4 / 5)} \mathrm{dz} & =\frac{1}{5}[2 \pi \mathrm{i}(1)] \\
& =\frac{2}{5} \pi \mathrm{i}
\end{aligned}
$$

But given $\oint_{C} \frac{1}{5 z-4} d z=A \pi i$
$\Rightarrow \frac{2}{5} \pi \mathrm{i}=\mathrm{A} \pi \mathrm{i} \quad(\because \operatorname{from}(\mathrm{i}))$
$\Rightarrow \mathrm{A}=2 / 5$
54. Let X_{1} and X_{2} be two independent exponentially distributed random variables with means 0.5 and 0.25 , respectively. Then $\mathrm{Y}=\min \left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$ is
(A) exponentially distributed with mean $1 / 6$
(B) exponentially distributed with mean 2
(C) normally distributed with mean 3/4
(D) normally distributed with mean $1 / 6$

Key: (A)
Exp: We know that, if X_{1} and X_{2} are independent and exponential R. V's with parameters λ_{1} and λ_{2} then $\mathrm{X}=\min \left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$ is exponential R.V with parameter $\lambda=\lambda_{1}+\lambda_{2}$.

$$
\begin{array}{c|c}
\text { Given } \mathrm{E}\left(\mathrm{X}_{1}\right)=0.5 & \mathrm{E}\left(\mathrm{X}_{2}\right)=0.25 \\
\Rightarrow \text { parameter of } \mathrm{X}_{1}=\lambda_{\mathrm{X}_{1}}=\frac{1}{0.5} & \Rightarrow \lambda_{\mathrm{X}_{2}}=\frac{1}{0.25}=4 \\
\Rightarrow \lambda_{\mathrm{X}_{1}}=2
\end{array}
$$

\therefore parameter of $\mathrm{Y}=\lambda_{\mathrm{X}_{1}}+\lambda_{\mathrm{X}_{2}}=2+4=6$
Mean of $Y=E(Y)=\frac{1}{6}$
55. Taylor's tool life equation is used to estimate the life of a batch of identical HSS twist drills by drilling through holes at constant feed in 20 mm thick mild steel plates. In test 1 , a drill lasted 300 holes at 150 rpm while in test 2 , another drill lasted 200 holes at 300 rpm . The maximum number of holes that can be made by another drill from the above batch at 200 rpm is \qquad (correct to two decimal places).
Key: (254)
(1)

Exp: $\quad T_{1}=300$ holes
$\mathrm{N}_{1}=150 \mathrm{rpm}$
$\mathrm{T}_{2}=200$ holes
$\mathrm{N}_{2}=300 \mathrm{rpm}$
At $\mathrm{N}_{3}=200 \mathrm{rpm}, \mathrm{T}_{3}=$?
$\because \mathrm{VT}^{\mathrm{n}}=\mathrm{C} \Rightarrow \mathrm{V}_{1} \mathrm{~T}_{1}^{\mathrm{n}}=\mathrm{V}_{2} \mathrm{~T}_{2}^{\mathrm{n}}$
$\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)^{\mathrm{n}} \Rightarrow \frac{150}{300}=\left(\frac{200}{300}\right)^{\mathrm{n}}$
$0.5=\left(\frac{2}{3}\right)^{\mathrm{n}} \Rightarrow 0.67^{\mathrm{n}}=0.5$
$\log _{0.67}^{0.5}=\mathrm{n} \Rightarrow \mathrm{n}=1.73$
$\mathrm{V}_{1} \mathrm{~T}_{1}^{\mathrm{n}}=\mathrm{V}_{3} \mathrm{~T}_{3}^{\mathrm{n}}$
$\left(\frac{\mathrm{T}_{3}}{\mathrm{~T}_{1}}\right)=\left(\frac{\mathrm{N}_{1}}{\mathrm{~N}_{3}}\right)^{1 / n} \Rightarrow\left(\frac{\mathrm{~T}_{3}}{300}\right)=\left(\frac{150}{200}\right)^{1 / 1.73}$
$\mathrm{T}_{3}=254$ holes

What Next after GATE? IIT|PSU|M.Tech

Evaluate your GATE performance with key and explanation available at www.gateforum.com

After applying for all eligible courses and jobs, prepare for written tests and Interviews

Follow the latest notifications from IITs, NITs and PSUs and be ready with required documents.

Keep your options open by applying to Private universities, Government and Private jobs recruiting without GATE

Online Post GATE guidance session by GATEFORUM Experts

To know more visit www.gateforum.com

Our Offerings for GATE 19/20

Our Network

Agartala 9856034530 |Agra 9760012902 | Ahmedabad 8401699466 | Ajmer 9829075765 | Aligarh 9761636422 | Allahabad $9839330710 \mid$ Amravati 8237551611 | Bangalore 9886600010 | Bilaspur 9993973456 | Calicut 9961969988 | Chandigarh 9317607007 | Chennai 9677030010 | Coimbatore 8883332556 | Delhi (Pitampura) 9718612147 | Delhi (Saket) 8587010876 | Ghaziabad 9910101602 | Gorakhpur 8574598018 | Greater Noida 9891990434 Hyderabad (Abids) 9989477436 | Hyderabad (Dilsukhnagar) 9581626677 | Indore 9826010276 | Jaipur 8290089245 | Jalandhar 7696197007 | Kanchipuram 8695554546 | Kanpur 9839234875 | Kochi 8113020304 | Kolhapur 9763631729 | Kolkata (Minto Park) 9007889898 | Kolkata (Vip Road) 9831891898 | Kollam 9048497233 | Madurai 8754029058 | Mumbai (Dadar) 9967897127 | Mumbai (Thane) 7893336874 | Mysore 9980155550 | Nagpur 7767001955 | Nanded 9172263930 | Nashik 8888559922 | Noida 9560983851 | Pune 9561133868 | Rajkot 9909986464 | Ranchi 8804445566 | Silchar 9957577496 | Surat 9377859870 | Srinagar 9906475295 Trichy 7667369058 | Trivandrum 9447132291 | V V Nagar 7778829064 | Vadodara 8401646906
www.gateforum.com

[^0]: © All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

[^1]: © All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

[^2]: © All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

[^3]: © All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

