Navas cheemadan

Model/2018/HSEII ZOOLOGY MODEL EXAMINATION ANSWER KEY FEB-2018

HSE-II

QN	Answer	Value point
1	Myometrium	1
2	Trichoderma polysporum	1
3	Salmonella typhi	
4	1.Gamete Intra fallopian transfer	1
	2. a. Collect egg from a donor	1
	b. Transfer the egg into the fallopian tube of another female who cannot produce one, but	
	can provide suitable environment for fertilisation and further development.	
5		2
	Vasortomy	
	Vasectomy	
	a)Sterilisation procedure in the male	
	a)sternisation procedure in the male	
	b)Here a small part of the vas deferens is b)a small part of the fallopian tube is removed	
	removed or tied up through a small incision or tied up through a small incision in the	
	on the scrotum. abdomen or through vagina.	
~		
6	a)	1.5
	violet color conte color	
	gamete W	
	Fi www violet color	
	WW × WW	
	violet color Violet color	
	samate (W) (W) (W)	
	W W 3violet: 3 whok	
	(N) violet viole	
	(ev) volet evides	0.5
	b) Test cross	
7	a)Yes	0.5
	b)Genotype of Ramu's Father and mother are either I ^A I ^A or I ^A i and I ^B I ^B or I ^B i respectively.	
	Genotype of AB blood group is I ^A I ^B . AB blood group is heterozygous but here both alleles	
	express their own type of sugar, it an example for codominance, It is an deviation from	1.5
	Mendelian principle.	
8	a)Down's Syndrome	1
-	b)Turner's Syndrome	1
9	A-Digestion of DNA by restriction endonucleases.	0.5
	B-Transferring (blotting) of separated DNA fragment to synthetic membranes, such as nitrocellulose or nylon.	

Navas Cheemadan

	as cheemadan Model/2018/HSI	EII
	c-Any 2 uses of DNA Finger printing such as	
	• Test of paternity.	1
	 Identify the criminals (Rape/Murder etc) 	
	 Population diversity determination. 	
	 Determination of genetic diversity. 	
10	a) 1-A genetic material should be able to generate its replica	1
	3-A genetic material should be able to express itself in the form of Mendelian	
	Characters.	
	b) A genetic material should provide the scope for slow changes (mutation) that are	1
	required for evolution	
11	1) DNA Replication	0.5
	2) DNA dependent DNA Polymerase	0.5
	3) DNA ligase	0.5
	4) S-Phase	0.5
		0.5
12	1) A CH	1
12	1) A-CH ₄	T
	B-NH ₃	4
	2) Sugar, Fat, Pigments	1
13	Before industrialisation set in (1850), thick growth of almost white-coloured lichen covered	
15	thetrees - in that background the white winged moth survived but the dark-coloured moth	
	were picked out by predators. the lichens can be used as industrial pollution indicators They	
	will not grow in areas that are polluted. Hence, moths that were able to camouflage	2
	themselves, i.e., hide in the background, survived.	2
	During post industrialization period (1920), the tree trunks became dark due to industrial	
	smoke and soots. Under this condition the white-winged	
	moth did not survive due to predators, darkwinged or melanised moth survived.	
	This showed that in a mixed population, those that can better-adapt, survive(Natural	
	selection) and increase in population size	
1.4	1 Drower's Vesset (Seecheromycoco corvision)	1
14	1.Brewer's Yeast (Saccharomyces cervisiae)	1
14	1.Brewer's Yeast (Saccharomyces cervisiae) 2. Monascus purpureus	1 1
	2. Monascus purpureus	1
14 15	2. Monascus purpureus Ramapithecus-Australopithecines-Homo Habilis-Homo erectus-Neanderthal man-Homo	_
	2. Monascus purpureus	1
15	2. <i>Monascus purpureus</i> Ramapithecus-Australopithecines-Homo Habilis-Homo erectus-Neanderthal man-Homo sapiens	1 6×0.5 =3
	2. <i>Monascus purpureus</i> Ramapithecus-Australopithecines-Homo Habilis-Homo erectus-Neanderthal man-Homo sapiens <u>Symptoms of Cancer</u> : Uncontrolled growth of cell, Metastasis etc.	1 6×0.5 =3 1
15	 2. Monascus purpureus Ramapithecus-Australopithecines-Homo Habilis-Homo erectus-Neanderthal man-Homo sapiens Symptoms of Cancer : Uncontrolled growth of cell, Metastasis etc. Detection : Biopsy and histopathological studies , CT scan, MRI scan, Antibodies against 	1 6×0.5 =3
15	2. Monascus purpureus Ramapithecus-Australopithecines-Homo Habilis-Homo erectus-Neanderthal man-Homo sapiens Symptoms of Cancer : Uncontrolled growth of cell, Metastasis etc. Detection : Biopsy and histopathological studies , CT scan, MRI scan, Antibodies against cancer-specific antigens etc.	1 6×0.5 =3 1 1
15	2. Monascus purpureus Ramapithecus-Australopithecines-Homo Habilis-Homo erectus-Neanderthal man-Homo sapiens Symptoms of Cancer : Uncontrolled growth of cell, Metastasis etc. Detection : Biopsy and histopathological studies , CT scan, MRI scan, Antibodies against cancer-specific antigens etc. Treatment: surgery, radiation therapy and immunotherapy.	1 6×0.5 =3 1 1
15	2. Monascus purpureus Ramapithecus-Australopithecines-Homo Habilis-Homo erectus-Neanderthal man-Homo sapiens Symptoms of Cancer : Uncontrolled growth of cell, Metastasis etc. Detection : Biopsy and histopathological studies , CT scan, MRI scan, Antibodies against cancer-specific antigens etc. Treatment: surgery, radiation therapy and immunotherapy. Yes,	1 6×0.5 =3 1 1 1 0.5
15	 2. Monascus purpureus Ramapithecus-Australopithecines-Homo Habilis-Homo erectus-Neanderthal man-Homo sapiens Symptoms of Cancer : Uncontrolled growth of cell, Metastasis etc. Detection : Biopsy and histopathological studies , CT scan, MRI scan, Antibodies against cancer-specific antigens etc. Treatment: surgery, radiation therapy and immunotherapy. Yes, Write an account on Habitat loss and fragmentation, Over exploitation, Alien species 	1 6×0.5 =3 1 1
15	2. Monascus purpureus Ramapithecus-Australopithecines-Homo Habilis-Homo erectus-Neanderthal man-Homo sapiens Symptoms of Cancer : Uncontrolled growth of cell, Metastasis etc. Detection : Biopsy and histopathological studies , CT scan, MRI scan, Antibodies against cancer-specific antigens etc. Treatment: surgery, radiation therapy and immunotherapy. Yes,	1 6×0.5 =3 1 1 1 0.5
15	 2. Monascus purpureus Ramapithecus-Australopithecines-Homo Habilis-Homo erectus-Neanderthal man-Homo sapiens Symptoms of Cancer : Uncontrolled growth of cell, Metastasis etc. Detection : Biopsy and histopathological studies , CT scan, MRI scan, Antibodies against cancer-specific antigens etc. Treatment: surgery, radiation therapy and immunotherapy. Yes, Write an account on Habitat loss and fragmentation, Over exploitation, Alien species 	1 6×0.5 =3 1 1 1 0.5
15 16 17	 2. Monascus purpureus Ramapithecus-Australopithecines-Homo Habilis-Homo erectus-Neanderthal man-Homo sapiens Symptoms of Cancer : Uncontrolled growth of cell, Metastasis etc. Detection : Biopsy and histopathological studies , CT scan, MRI scan, Antibodies against cancer-specific antigens etc. Treatment: surgery, radiation therapy and immunotherapy. Yes, Write an account on Habitat loss and fragmentation, Over exploitation, Alien species invasion, Co Extinction 1) A-RNA 	1 6×0.5 =3 1 1 1 0.5 2.5 0.5
15 16 17	 2. Monascus purpureus Ramapithecus-Australopithecines-Homo Habilis-Homo erectus-Neanderthal man-Homo sapiens Symptoms of Cancer : Uncontrolled growth of cell, Metastasis etc. Detection : Biopsy and histopathological studies , CT scan, MRI scan, Antibodies against cancer-specific antigens etc. Treatment: surgery, radiation therapy and immunotherapy. Yes, Write an account on Habitat loss and fragmentation, Over exploitation, Alien species invasion, Co Extinction 1) A-RNA B-RNA Polymerase 	1 6×0.5 =3 1 1 1 0.5 2.5
15 16 17	 2. Monascus purpureus Ramapithecus-Australopithecines-Homo Habilis-Homo erectus-Neanderthal man-Homo sapiens Symptoms of Cancer : Uncontrolled growth of cell, Metastasis etc. Detection : Biopsy and histopathological studies , CT scan, MRI scan, Antibodies against cancer-specific antigens etc. Treatment: surgery, radiation therapy and immunotherapy. Yes, Write an account on Habitat loss and fragmentation, Over exploitation, Alien species invasion, Co Extinction A-RNA B-RNA Polymerase a)Capping : In Eukaryotes an unusual nucleotides mGPPP (methyl guanosine triphosphate) 	1 6×0.5 =3 1 1 1 0.5 2.5 0.5 0.5
15 16 17	 2. Monascus purpureus Ramapithecus-Australopithecines-Homo Habilis-Homo erectus-Neanderthal man-Homo sapiens Symptoms of Cancer : Uncontrolled growth of cell, Metastasis etc. Detection : Biopsy and histopathological studies , CT scan, MRI scan, Antibodies against cancer-specific antigens etc. Treatment: surgery, radiation therapy and immunotherapy. Yes, Write an account on Habitat loss and fragmentation, Over exploitation, Alien species invasion, Co Extinction 1) A-RNA B-RNA Polymerase 	1 6×0.5 =3 1 1 1 0.5 2.5 0.5 0.5