SSLC Model Examination English Version, 2018-19 February Prepared by Dr.V.S.RaveendraN(ath Mobile 9447206495

Question 1.

The $25^{\text {th }}$ term of an arithmatic sequence is 140 and the $27^{\text {th }}$ term is 166 . What is the common difference? What is the $35^{\text {th }}$ term?

Answer:-

Given $25^{\text {th }}$ term $=140$ and $27^{\text {th }}$ term is 166.
But $x_{27}-x_{25}=2 d \quad$ ie., $2 \mathrm{~d}=166-140=26$

$$
\mathrm{d}=\frac{26}{2}=13
$$

$$
\begin{aligned}
35^{\text {th }} \text { term } & =x_{25}+10 d \\
& =140+(10 \times 13)=140+130=270 .
\end{aligned}
$$

OR
Given $25^{\text {th }}$ term $=140$ and $27^{\text {th }}$ term is 166.
$a+24 d=140$ and $a+26 d=166$.
Solve this equations for a and d
Then we get $\mathrm{d}=13$ and $\mathrm{a}=-172$

$$
\begin{aligned}
\therefore 35^{\text {th }} \text { term } & =a+34 \mathrm{~d} \\
& =-172+34 \times 13 \\
& =-172+442 \\
& =270 .
\end{aligned}
$$

Question 2.

In th figure, the shaded triangle is drawn by joining by the mid point of the sides of large triangle calculate the probability of a dot on the larger triangle to be within the shaded triangle.

Answer:-

In the figure, successively joind the mid points of the lager triangle sides being made four equal triangles and its area also be equal. In the figure, shaded area of the triangle be the one fourth area of the larger triangle .
Hence the probability of the dot in the shaded triangle be $\frac{1}{4}$.

Question 3

In the figure , the sides of the square are parallel to the axes and the origin is the mid point. Coordinates of one vertex of the square is $(3,3)$. Write the coordinates of two other vertices

Answer:-

From the figure , coordinates of $\mathrm{B}=(3,-3)$
coordinates of $A=(-3,-3)$ and coordinates of $D=(-3,3)$.

Question 4.

The age of 10 members of a club are 20, 25, 22, 32, 42, 27, 35, 27, 35 and 30. Find the median age.

Answer:-
Given ages $=20,25,22,32,42,27,35,27,35$ and $30 .$.
Arrange data in assenting order $=20,22,25,27,27,30,32,35,35$ and 42. Median $=\frac{27+30}{2}=28.5$

Question 5.

Draw a circle with radius 4 cm . Draw a triangle with two of its angles 65° and 78° and all vertices on the circle.

Answer:-

Construction :-
Draw a circle radius
$\mathrm{OB}=4 \mathrm{~cm}$. Make an angle $\angle B O C=130^{\circ}(2 \angle B=2 \times 65$ $=130)$ and $\angle \mathrm{AOC}=156^{\circ}$ and marks B and A respectively. Joint $A B, B C$, CA is the required construction.

Question 6.

Answer:-

Consider BP $=\mathrm{x} \mathrm{cm}$
$\therefore \mathrm{AP}=\mathrm{AB}+\mathrm{BP}$
$\Rightarrow 18+\mathrm{x}$
$\mathrm{AP} \times \mathrm{BP}=P Q^{2}$
$\Rightarrow(18+\mathrm{x}) \mathrm{x}=12^{2}$.
$\Rightarrow 18 \mathrm{x}+\mathrm{x}^{2}=144$
$\Rightarrow x^{2}+18 x-144=0$
$\Rightarrow(x-6)(x+24)=0$
ie., $x=6$ or $x=-24 ;-24$ is rejected because -24 is not become the measurement of a line.
Hence $x=6$
$B P=6 \mathrm{~cm}$.

Question 7.

In triangle ABC , the length of AP is 10 cm . What is the length of BP ? What is the length of PC? Calculate the length of BC?

Answer:-

In the given figure we can understand that triangle APB be an lossless triangle. So the base angle $\angle B=\angle A=45^{\circ}$ each.
$\therefore \mathrm{AP}=\mathrm{BP}=10 \mathrm{~cm}($ Given $\mathrm{AP}=10 \mathrm{~cm})$

ie., $B P=10 \mathrm{~cm}$

In the figure right angled triangle APL , $\angle \mathrm{C}=30^{\circ}$.
ie., $\tan 30^{\circ}=\frac{\mathrm{AP}}{\mathrm{PC}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{10}{\mathrm{PC}} \quad\left(\tan 30^{\circ}=\frac{1}{\sqrt{3}} \quad\right)$
Hence $P C=10 \sqrt{3}$
From the figure, $\mathrm{BC}=\mathrm{BP}+\mathrm{PC}$

$$
=10+10 \sqrt{3} \mathrm{~cm} .
$$

Question 8.

AP is the tangent to the circle with center at O and radius $4 \mathrm{~cm} . \mathrm{AB}=3 \mathrm{~cm}$. Find the length of OA and the length of the tangent AP.
Answer:-

From the figure $\mathrm{OP}=4 \mathrm{~cm}$ (given radius)
ie., $\mathrm{OP}=\mathrm{OB}=4 \mathrm{~cm}$
$\mathbf{O A}=\mathrm{OB}+\mathrm{AB}$

$$
=4+3=7 \mathrm{~cm} \text { (see the figure) }
$$

Δ APO be right angled triangle, right angle at P (tangent theorem)
By Pythagoras,

$$
\begin{aligned}
\mathrm{AP}^{2}-\mathrm{OA}^{2} & =7^{2}-4^{2} \\
& =49-16=33
\end{aligned}
$$

$\therefore \mathrm{AP}=\sqrt{33} \mathrm{~cm}$.

Question.9.

The radius of two spherical tanks are in the ratio 3:4. The volume of the first tank is 540 litres. Find the volume of the second tank.

Answer:-

Ratio of the radii $=3: 4$.
ie., $r_{1}: r_{2}=3 \mathrm{x}: 4 \mathrm{x}$.
Volume of the first tank $\left(v_{1}\right)=540$.
Let the volume of the Second tank be v_{2}
Volume of the first tank $\left(v_{1}\right)=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \times 3 x \times 3 x \times 3 x$
Volume of the Second tank be $v_{2}=\frac{4}{3} \pi \times 4 x \times 4 x \times 4 x$.
$\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{\frac{4}{3} \pi \times 3 x \times 3 x \times 3 x}{\frac{4}{3} \pi \times 4 x \times 4 x \times 4 x}=\frac{27 \mathrm{x}^{3}}{64 \mathrm{x}^{3}}$
$\Rightarrow \frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{27}{64} \Rightarrow \frac{540}{\mathrm{~V}_{2}}=\frac{27}{64}$
$\therefore \mathrm{V}_{2}=\frac{540 \times 64}{27}=1280$ Liters.
\therefore The volume of the second tank be 1280 Liters.
.drvsr

Question10.

Write $\mathrm{P}(x)=x^{2}-9 x+20$ as a product of two first degree polynomials. Write also the solutions of the equation $\mathrm{P}(x)=0$.

Answer:-
Given $\mathrm{P}(\mathrm{x})=x^{2}-9 x+20$
Product of two first degree polynomial $=(\mathbf{x}-5)(\mathbf{x}-4)$
Solution of the polynomial, Given $\mathrm{P}(\mathrm{x})=0$
ie., $(x-5)(x-4)=0$ (Using zero factor theorem)
Either $\mathrm{x}-5=0$ or $\mathrm{x}-4=0$.
ie., $x=5$ or $x=4$.
Hence the solution be 5 or 4 .
drvsr

Question 11.

Find the slope of line joining $(2,4)$ and $(4,7)$. Write the coordinate of another point on the line. Check whether $(5,8)$ is on this line.

Answer:-

Given points $=(2,4)$ and $(4,7)$
Slop $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{7-4}{4-2}=\frac{3}{2}$
Another point on the line may be consider , the mid point of the line
So, the mid point of the line $=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

$$
=\left(\frac{4+2}{2}, \frac{7+4}{2}\right)=\left(\frac{6}{2}, \frac{11}{2}\right)=\left(3, \frac{11}{2}\right)
$$

Consider the point $(2,4)$ and $(5,8)$ and find the slop .
Slop $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{8-4}{5-4}=\frac{4}{1}=4$.

Hear the slops are not equal .Hence the point is not on the line $\left(\frac{3}{2} \neq 4\right)$

Question12.

Sum of the first five terms of an arithemetic sequence is 45 . What is the third term ?
The common difference of the sequence is 4 . Write the first two terms. Write another arithemetic sequence having the sum of the first five term 45 .

Answer:-

Given the sum of the first five term of an AP $=45$.
Common difference $=4$
Third term
Sum $=$ middle term \times number of terms
ie., $x_{3} \times 5=45$
$\therefore \quad x_{2}=\frac{45}{5}=9$
Second term $=$ third term - common difference

$$
=9-4=5
$$

First term = Second term - common difference.

$$
=5-4=1 .
$$

The first two terms = 1 and 5 .

If the sum of the first five term of an AP is 45 , then the third term should be 9 but the common difference may be changed. In this condition we can make many AP's.
Hence The AP $=5,7,9,11,13, \ldots .$.

$$
\text { or } \quad=3,6,9,12,15, \ldots \ldots
$$

Question13.

Draw rectangle of area $18 \mathrm{~cm}^{2}$. Draw a square of the same area.
Answer:-

Given area $=18 \mathrm{~cm}^{2}$.
So sides be 6 cm and 3 cm .
Construction
Draw a rectangle $A B C D$ length be 5 cm and breadth be 3 cm . To extant the line $A B$ and mark S as $B S=3 \mathrm{~cm}$. Draw a perpendicular bisector of AS and mark E on AS. Draw a semi circle, center be E and radius is AE. BC extant and meet the semi circle at P . Construct a square Sides are $\mathrm{BP}=\mathrm{PQ}$ $=Q R=B R$. $B P Q R B$ be the required square.
drvsr

Question 14.

Prom all two digit numbers with each digit $1,2,3,4$ or 5 one number is chosen
(a) What is the probability of both digits being the same?
(b) What is the probability of the sum of the digits being 8 ?
(c) What is the probability that it is a multiple of 5 ?

Answer:-

Digits $=1,2,3,4$ or 5.
Two digits numbers which will formed by $1,2,3,4$ and 5 are $11,12,13$, $14,15,21,22,23,24,25,31,32,33,34,35,41,42,43,44,45,51,52,53$, 54, 55.
Total number of two digits number $=25, \mathrm{~N}=25$
a) Both digits being the same $=11,22,33,44,55, \mathrm{~F}=5$.
$\operatorname{Probability}(\mathrm{P})=\frac{\mathrm{F}}{\mathrm{N}}=\frac{5}{25}=\frac{1}{5}$
b) The sun of digits being $8=35,44,53, F=3, N=25$

Probability $(\mathrm{P})=\frac{\mathrm{F}}{\mathrm{N}}=\frac{3}{25}$.
c) Multiples of $5=15,25,35,45,55 . \mathrm{F}=5 ., \mathrm{N}=25$.

Probability $(P)=\frac{F}{N}=\frac{5}{25}=\frac{1}{5}$.

Question 15.

In Iriangle $A B C$, length of $A B=6 \mathrm{~cm} \angle A=70^{\circ}, \angle B=55^{\circ}$
(a) Find $\angle \mathrm{C}$
(b) Find AC
(c) Find the ares of triangle $A B C$ $\left(\sin 70^{\circ}-0,93\right)$

Answer:-

Given $\mathrm{AB}=6 \mathrm{~cm} ., \angle \mathrm{A}=70^{\circ}, \angle \mathrm{B}=55^{\circ}$

a) $\angle \mathrm{C}=180-(70+55)=180-125=55^{0}$.
b) $\triangle \mathrm{ABC}$ is an isosceles triangle
$\therefore A B=A C=6 \mathrm{~cm}$
c) Area of the triangle $=\frac{1}{2} \times \mathrm{AC} \times A B \times \sin 70^{\circ}$.
($\triangle \mathrm{ADB}$ is right angled triangle. Sin 70 is the included angle of sides and AC.)
\therefore Area of the triangle $i \frac{1}{2} \times 6 \times 6 \times 0.93=16.74 \mathrm{~cm}^{2}$.

Question 16.

The centre of the circle shown is the origin and the radius is 13.
(a) Check whether each of the points $(12,5),(10,6)$ is inside, outside or on the circle.
(b) Write the coordinates of two other points on the circle.

Answer:-

Given radius $=13$. Given points $=(12,5),(10,6)$. Orgin $=(0,0)$. Distance b/w $(0,0)$. and $(12,5)$
a) Distance $=\sqrt{x^{2}+y^{2}}=\sqrt{12^{2}+5^{2}}=\sqrt{144+25}=\sqrt{169}=13$. Which is equal to the radius. So the point $(12,5)$ be on the circle.
Distance b/w $(0,0)$. and $(10,6)$
Distance $=\sqrt{x^{2}+y^{2}}=\sqrt{10^{2}+6^{2}}=\sqrt{100+36}=\sqrt{136}$. Which is less than the radius 13 . So the point $(10,6)$ be in side the circle.
b) To find other coordinates on the circle be $\sqrt{x^{2}+y^{2}}=13$ $(0,13),(-13,0)$ ctx.
drvsr

Question. 17

Calculate the area and perimetre of a triangle of sides 30 centimetre, 28 centimetre and 26 centimetre. Also calculate the radius of the incircle.

Answer:-

Given sides of the triangl (a, b, c) $=30 \mathrm{~cm}, 28 \mathrm{~cm}, 26 \mathrm{~cm}$ The perimeter of the triangle $=a+b+c=30+28+26=\mathbf{8 4} \mathbf{c m}$.
Area of the triangle (Using Hero's formula)

$$
\begin{aligned}
& \begin{aligned}
= & (2 \times 4-1,2 \times 3-1) ., \text { Where } \mathrm{s}
\end{aligned}=\frac{a+b+c}{2} \\
& \mathrm{~s}=\frac{a+b+c}{2}=(2 \times 8-7,2 \times 8-5)=42
\end{aligned} \begin{aligned}
\text { ie., Area }=\sqrt{42(42-30)(42-28)(42-26)} & =\frac{a+b+c}{2} \\
& =\frac{a+b+c}{2}=336 \mathrm{~cm}^{2}
\end{aligned}
$$

Radius of the semi circle $(\mathbf{r})=(2 \times 2-1,2 \times 4-1)$ (Formula)

$$
=\frac{a+b+c}{2}=4 \mathrm{~cm} .
$$

Question. 18.
A square pyramid of base edge 10 centimetres and height 12 centimetres is to be made of paper.
(a) Calculate the slant height of the pyramid.
(b) What is the area of the paper needed to make square pyramid?

Answer.

Given base edge $(\mathrm{a})=10 \mathrm{~cm}$. Height $(\mathrm{h})=12 \mathrm{~cm}$.
a) Slant height $(\mathrm{l})=\sqrt{h^{2}+\left(\frac{a}{2}\right)^{2}}=\sqrt{12^{2}+\left(\frac{10}{2}\right)^{2}}=\sqrt{144+25}$

$$
=\sqrt{169}=13 \mathrm{~cm} .
$$

b) Paper needed to make the square pyramid = TSA of the pyramid .
\therefore TSA $=a^{2}+2 a l=10^{2}+2 \times 10 \times 13=100+260=360 \mathrm{~cm}^{2}$.
Hence, paper needed to make the square pyramid $=360 \mathrm{~cm}^{2}$. drvsr
Question. 19.
$P(x)=a x^{3}+b x^{2}+c x+d$
(a) Find $\mathrm{P}(-1)$.
(b) If $x+1$ is a factor of $\mathrm{P}(x)$ then prove that $a+c=b+d$.
(c) Write a third degree polynomial having $(x+1)$ as a factor.

Answer:-

Given $\mathrm{P}(\mathrm{x})=\frac{a+b+c}{2}$
a) $\mathrm{P}(-1)=\frac{a+b+c}{2}$

$$
=(2 \times 4-1,2 \times 3-1)
$$

b) Given $(x+1)$ is a factor of $P(x)$. That means $P(x)=0$.
ie., $-a+b-c+d=0$
$\therefore \mathrm{a}+\mathrm{c}=\mathrm{b}+\mathrm{d}$. Hence proved.
c) Third degree polynomial having $(x+1)$ as factor

$$
=(2 \times 8-7,2 \times 8-5) \text { or }(2 \times 2-1,2 \times 4-1) \text { or } \frac{a+b+c}{2} . \text { etc. }
$$

Question. 20.

$(2,4)$

In the picture, mid points of the sides of the quadrilateral $A B C D$ are joined to draw PQRS.
(a) Find Coordinates of R.
(b) Write Coordinates of all vertices of quadrilateral $A B C D$.

Answer:-

If joining the mid points of a quadrilateral will give a parallelogram .
The coordinates of $\mathrm{R}=(2+8-4,4+8-3)=(6,9)$
b) The coordinates of $\mathrm{A}=(1,1)$.

The coordinates of $\mathrm{B}=(2 \times 4-1,2 \times 3-1)=(7,5)$
The coordinates of $\mathrm{C}=(2 \times 8-7,2 \times 8-5)=9,11)$
The coordinates of $\mathrm{D}=(2 \times 2-1,2 \times 4-1)=(3,7)$

Question:- 21

21. Some households m a liccality are sortod acconding to their electricity usage in the talde below:

Usage of electrxcity (Unit)	Nos of households
$80-100$	8
$1610-120$	12
$120-170$	
$140-160)$	10
$160-180$	9

(a) If the houschold using the least undt of electricity is numberizd as one and the socond least as two and so qn, what is assumed to be usage of electricity of the 21^{21} houschold.
(h) Calculate the median usage of elextricity?

Answer:-

Consumption (Units)	No.of househopds	Consumption (Units)	Cumulative frequency
$80-100$	8	Less than 100	8
$100-120$	12	Less than 120	20
$120-140$	10	Less than 140	30
$140-160$	9	Less than 160	39
$160-180$	6	Less than 180	45

a) The consumption of 10 houses from $21^{\text {st }}$ to $30^{\text {th }}$ house will be $120-140$ units. The 20 unites between 120 and 140 will have 10 subdivisions and the use of electricity will be ths center of each subdivision. The consumption in the $\mathbf{2 1}^{\text {st }}$ house will be 121, between 120 and 122 .
b)Median consumption $=23^{\text {rd }}$ consumption of house.

$$
=21^{\text {st }} \text { consumption of the house }+2 \times 2
$$

$=121+4=\mathbf{1 2 5}$. Units.

Question 22.
(a) Find the least and heighest three digit number which leave a remainder 1 on division by 9 .
(b) How many three digit numbers are there, which leave a remainder one on division by 9 ?
(c) Find the sum of all such numbers,

Answer:-

The smallest three digit number dividing by 9 , the reminder comes up $1=$ $99+1=100$.
The largest three digit number dividing by $9=999-8=991$.
b) $\mathrm{n}=\frac{x_{n}-f}{d}+1=\frac{991-100}{9}+1=\frac{891}{9}+1=99+1=100$.
c) Sum $=\frac{n}{2}\left[f+x_{n}\right]=\frac{100}{2}[100+991]=50 \times 1091=54550$
.drvsr.

Question 23.

In the circle shown, the chords AQ and BP passes through C .
(a) The central angle of arc AXB is 100° calculate $\angle \mathrm{Q}$. The central angle of arc $P Y Q$ is 60°. Find all angles of the triangle $B Q C$.
(b)

In the picture, prove that $\angle A P C$ is half the sum of the central angle of arc $A X C$ and arc BYD.

Answer:-

Center angle of the arc $\mathrm{AXB}=100^{\circ}$

$$
\begin{aligned}
& \angle \mathrm{Q}=\frac{1}{2} \times \angle \mathrm{AOB} \\
& \quad=\frac{1}{2} \times 100=50^{\circ} .(\text { Center }
\end{aligned}
$$

angle relation, arc and opposite arc relation)
Center angle of arc QYP $=60^{\circ}$.
ie., $\angle \mathrm{B}=\frac{60}{2}=30^{\circ}$
$\angle \mathrm{BCQ}=180-(\angle \mathrm{Q}+\angle \mathrm{B})$

$$
=180-(50+30)
$$

$$
=180-80=100^{\circ} .
$$

The angles of the $\triangle \mathrm{BQC}, \angle \mathrm{B}=30^{\circ}, \angle \mathrm{Q}=50^{\circ}, \angle \mathrm{C}=100^{\circ}$.
b)

Join C and B .
In $\triangle \mathrm{PBC}$, the exterior angle $\angle \mathrm{APC}=\angle \mathrm{B}+\angle \mathrm{C}$ (sum of the interior opposite angles) $\angle \mathrm{APC}=1 / 2$ [Center angle of the arc AXC + Center angle of the arc BYD] Henc the $\angle \mathrm{APC}$ is the half sum of the center angles of the arc AXC and BYD.
drvsr

Question. 24.

From the rotangle ABCD of bradth 1 mistre, the largest porsible spuare APQD is cat ofl. The remasining rectangle is FPCQ
(a) laking the tergth of ABCD as x, write the length and broatth of PBCO.
(b) The ratho of length ind broadth of the rectanglot ABCD sond PRCQ ane same. Firal length of AB.

Answer:-

a) Let the length of the rectangle ABCD be x m . length of the rectangle PBCQ $=1 \mathrm{~m}$ Breadth $=\mathrm{x}-1 \mathrm{~m}$.
b) Given that the ratio of length and breadth of the recangle $A B C D$ and PBCQ are same.
ie., $x: 1=1: x-1$ (The product of means is equal to the product of extreme)
ie., $x(x-1)=1$
$x^{2}-x=1 \Rightarrow x^{2}-x-1=0$ is a quadratic equation and find the
solution
$\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
=
$$

$$
\frac{1 \pm \sqrt{ } 5}{2}
$$

$\mathrm{x}=\frac{1+\sqrt{5}}{2}$ - ve value rejected.
drvsr

Question. 25

A man standing on the top of a ligh hotse wes a shop approwhing the stawhere at an angle
 thes it at an angle of depressign of at- The ship stres theme
(a) Draw a ruugh sketch
(b) Aow far is the ship from the light houre.
(a) Find the height of light hnase-

$$
\tan 22-0.4, \tan 9 I-0.0
$$

Answer:- a)

c) Height of the light house $=\frac{a \tan \mathrm{~A} \cdot \tan \mathrm{~B}}{\tan \mathrm{~A}-\tan b}=\frac{100 \times \tan 31 \times \tan 22}{\tan 31-\tan 22}$

$$
=\frac{100 \times 0.6 \times 0.4}{0.6-0.4}=\frac{24}{0.2}=120 \mathrm{~m} .
$$

b) How far is the ship from the light house

$$
\tan 31=\frac{\mathrm{AD}}{\mathrm{AB}} \Rightarrow \mathrm{AB}=\frac{\mathrm{AD}}{\tan 31} \Rightarrow \mathrm{AB}=\frac{120}{0.6}=200 \mathrm{~m}
$$

The ship from the light house $=200 \mathrm{~m}$.
.drvsr

Question:- 26.

Draw a triangle of sides 6 centimetre, 7 centimetre and 8 centimetre. Draw a circle which touches all sides of the triangle and measure its radius.

Answer:-

Construction:

Construct the triangle in the given measurement.
Draw any two angle bisector and intersect it at a point O. Draw the circle OP as the radius .

Question:- 27.
A cone is made from sector of radius 10 centimetre and central angle 216°
(a) What is slant height and radius of the cone?
(b) Find the volume of the cone.

Answer:-

Given the sector radius $=10 \mathrm{~cm}$ and the center angle be 216°.
a)

Slant height (l) of the cone $=$ Radius of the sector $=10 \mathrm{~cm}$ (given) Let the radius of the cone be r
a) ie., $\frac{r}{l}=\frac{x^{0}}{360}$ (formula)

$$
\Rightarrow \frac{r}{10}=\frac{216}{360} \Rightarrow r=\frac{216 \times 10}{360}=6 \mathrm{~cm} .
$$

Slant height $=10 \mathrm{~cm}$ and radius $=6 \mathrm{~cm}$.

b) Volume of the cone $=\frac{1}{3} \pi r^{2} h$
$\mathrm{r}=6 \mathrm{~cm}, \mathrm{~h}=$?
$\mathrm{h}=\sqrt{l^{2}-r^{2}} \quad \sqrt{10^{2}-6^{2}}=\sqrt{100-36}=\sqrt{64}=8 \mathrm{~cm}$
Volume $=\frac{1}{3} \times \pi \times 6^{2} \times 8=96 \pi \mathrm{~cm}^{3}$. $=301.44 \mathrm{~cm}^{3}$.

Question 28.
Find the length of line joining $A(-2,-3)$ and $B(4,5)$. Write the equation of circle whose diametre is $A B$.

Answer:-

Given points $\mathrm{A}(-2,-3), \mathrm{B}(4,5)$
$\mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ (distance formula)

$$
=\sqrt{(4+2)^{2}+(5+3)^{2}}=\sqrt{36+64}=\sqrt{100}=10 \text { (diameter) }
$$

Radius of the circle $=\frac{10}{2}=5$.

Center of the circle $=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{2}+y_{1}}{2}\right)($ mid point form $)$

$$
=\left(\frac{-2+4}{2}, \frac{-3+5}{2}\right)=(1,1)
$$

Equation of the circle $=(x-a)^{2}+(y-b)^{2}=r^{2}$

$$
\begin{aligned}
& =(x-1)^{2}+(y-1)^{2}=5^{2} \\
= & x^{2}-2 x+1+y^{2}-2 y+1=25 \\
= & x^{2}+y^{2}-2 x-2 y+2-25=0 \\
= & =x^{2}+y^{2}-2 x-2 y-23=0 .
\end{aligned}
$$

Question:29.
Read the mathematical concept given below carefully and understand it. Then answer the following questions.

Diagonal of a polygon is a line joining two non-adjacent vertices see this tables.

Number of sitdes of polygon	Number of diagonals dtrawn from one vertex	Total Number of Diagonals
Triangle 3	0	$0=\frac{3 \times 0}{2}$
Quadriateral +	1	$2=\frac{4 \times 1}{2}$
Pentagon 5	2	$5=\frac{5 \times 2}{2}$

From the above table, we see the relationship between the number of sides of a polygan and the number of diagonals.
Answer the question's given below :
(a) Which polygon has the same number of sides and diagonals?
(b) How many diagonals can be drawn from a single vertex of an B - sided polygon?
(c) How many diagonals does 20 sided polygon have?

Answer.

Polygon	No. of Sides	No. of diagonals drawn from a vertex	Total no,of diagonals
Triangle	3	0	$0=\frac{(3 \times 0)}{2}$
Quaddrlateral	4	1	$2=\frac{(4 \times 1)}{2}$
Pentagon	5	2	$5=\frac{(5 \times 2)}{2}$
Hexgon	6	3	$9=\frac{(6 \times 3)}{2}$
Polygon	n	$n-3$	$\frac{n(n-3)}{2}$

a) No.of sides $=$ No.of diagonals $=$ Pentagon (see yhe table)
b) $8-3=5$.
c) $\frac{n(n-3)}{2}$ (formula)

$$
=\frac{20(20-3)}{2}=\frac{20 \times 17}{2}=170 .
$$

Prepared by Dr.V.S.RaveendraNath
Mobile : 9447206495, 7012030930.

