FIRST YEAR HIGHER SECONDARY IMPROVEMENT EXAMINATION SEPTEMBER 2016

FINALIZED SCHEME FOR VALUATION

PART III PART A BOTANY CODE No. 417

Total Score : 30

	Valu	e points	Score	Total
1.	d) (i) and (iii)		1	1
2.	c) Mitochondria		1	1
3.	It is used in polishing.It is used in filtration of oils	and syrups.	1/2 1/2	1
4.	 Heart wood It is more durable ,thick and resistant to attacks of micro- organisms./any other quality of heart wood. 		1/2 1/2	1
5.	Cyclic electron transport a)Only pigment system I is involved d)Only ATP is formed	Noncyclic electron transport b)ATP and NADP are formed c)Splitting of water occurs	<i>У</i> ₂ X4	2
6.	gamete/ovum to form a zy Triple fusion • Second male gamete/sper	perm fuses with the egg cell/female gote. m fuses with diploid secondary central cell) to form primary endospern	Y2 Y2 Y2	2
7	nucleus.	without the technical terms give full sco		2

-1/3

0	0 0 1	Name de		
8.	i) Coleoptile	The Deep112	1/2 ×4	2
	ii) Plumule iii) Radicle			
	A DAMA A DAMA A DAMA A DAMA A	A. A. A.	1000	
9.	1-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	an sheath		1
2.	the thylakoid lumen.	les and accumulation of protons within	1	2
		DP+ to NADDH 111 mentana and	1	
	 For the reduction of NADP+ to NADPH+ H+, protons are removed from the stroma. 			4
	 During electron transport, protons are removed from stroma and 			
	released into the lumen of thylakoid. (Any two events related to			
	chemiosmotic theory of photosynthesis give full score 2/ diagrammatic representation of chemiosmosis during			
	photosynthesis/ any two	events related to proton gradient)		1
10.	Prokaryotes- 70 S		1/2	2
	Eukaryotes – 80S/70S Ribosomes are present in mitochondria and			
	Chioroplast / Any other related dif	ferences of ribosomes, give full score 1	1	
11.	Protein synthesis Facilitated diffusion			-
11.	i) Uniport		1/2×4	2
				10.
	ii) Antiport			-
12.	ii) Antiport iii) Symport	ential for normal growth and reproduction	Vava	2
12.	ii) Antiport iii) Symport • The element must be esse	ential for normal growth and reproduction.	½x4	2
12.	ii) Antiport iii) Symport The element must be esse Specific , not replaced by	other element.	½x4	2
	ii) Antiport iii) Symport • The element must be esse	other element.	½x4	2
	ii) Antiport iii) Symport The element must be esse Specific , not replaced by Directly involved in the m Mg(Magnesium) A	other element.	1/2x4 1/2x4	
	ii) Antiport iii) Symport The element must be esse Specific , not replaced by Directly involved in the m Mg(Magnesium) A a)Stomata closure	other element. etabolism of the plant.		2
	ii) Antiport iii) Symport The element must be esse Specific , not replaced by Directly involved in the m Mg(Magnesium) A a)Stomata closure b)Citric acid	other element. etabolism of the plant. B V) ABA Jv) Kreb's cycle		
	ii) Antiport iii) Symport The element must be esse Specific , not replaced by Directly involved in the m Mg(Magnesium) A a)Stomata closure b)Citric acid c)Glycolysis	other element. etabolism of the plant. B v) ABA iv)Kreb's cycle i) Cytoplasm		
12.	ii) Antiport iii) Symport The element must be esse Specific , not replaced by Directly involved in the m Mg(Magnesium) A a)Stomata closure b)Citric acid c)Glycolysis d)Heterophylly	other element. etabolism of the plant. B V) ABA Jv) Kreb's cycle		
	ii) Antiport iii) Symport The element must be esse Specific , not replaced by Directly involved in the m Mg(Magnesium) A a)Stomata closure b)Citric acid c)Glycolysis d)Heterophylly Auxin-	other element. etabolism of the plant. B v) ABA iv)Kreb's cycle i) Cytoplasm		
13	ii) Antiport iii) Symport The element must be esse Specific , not replaced by Directly involved in the m Mg(Magnesium) A a)Stomata closure b)Citric acid c)Glycolysis d)Heterophylly Auxin- Apical dominance	other element. etabolism of the plant. B v) ABA iv)Kreb's cycle i) Cytoplasm	<i>1</i> / ₂ x4	2
13	ii) Antiport iii) Symport The element must be esse Specific , not replaced by Directly involved in the m Mg(Magnesium) A a)Stomata closure b)Citric acid c)Glycolysis d)Heterophylly Auxin- Apical dominance Root initiation	other element. etabolism of the plant. B v) ABA iv)Kreb's cycle i)Kreb's cycle i)Plasticity	<i>1</i> / ₂ x4	2
13	ii) Antiport iii) Symport The element must be esse Specific , not replaced by Directly involved in the m Mg(Magnesium) A a)Stomata closure b)Citric acid c)Glycolysis d)Heterophylly Auxin- Apical dominance Root initiation Prevention of premature f	other element. etabolism of the plant. B V) ABA Iv) Kreb's cycle I) Cytoplasm ii) Plasticity	<i>1</i> / ₂ x4	2
13	ii) Antiport iii) Symport The element must be esse Specific , not replaced by Directly involved in the m Mg(Magnesium) A a)Stomata closure b)Citric acid c)Glycolysis d)Heterophylly Auxin- Apical dominance Root initiation Prevention of premature f Promote abscission of old	other element. etabolism of the plant. B V) ABA Iv) Kreb's cycle I) Cytoplasm ii) Plasticity	<i>1</i> / ₂ x4	2
13	ii) Antiport iii) Symport The element must be esse Specific , not replaced by Directly involved in the m Mg(Magnesium) A a)Stomata closure b)Citric acid c)Glycolysis d)Heterophylly Auxin- Apical dominance Root initiation Prevention of premature f Promote abscission of old Gibberellin	other element. etabolism of the plant. B V) ABA Iv) Kreb's cycle I) Cytoplasm ii) Plasticity	<i>1</i> / ₂ x4	2
13	ii) Antiport iii) Symport The element must be esse Specific , not replaced by Directly involved in the m Mg(Magnesium) A a)Stomata closure b)Citric acid c)Glycolysis d)Heterophylly Auxin- Apical dominance Root initiation Prevention of premature f Promote abscission of old Gibberellin Bolting	other element. etabolism of the plant. B V) ABA Iv) Kreb's cycle I) Cytoplasm ii) Plasticity	<i>1</i> / ₂ x4	2
13	ii) Antiport iii) Symport The element must be esse Specific , not replaced by Directly involved in the m Mg(Magnesium) A a)Stomata closure b)Citric acid c)Glycolysis d)Heterophylly Auxin- Apical dominance Root initiation Prevention of premature f Promote abscission of old Gibberellin Bolting Delay of senescence	other element. etabolism of the plant. B V) ABA Iv) Kreb's cycle I) Cytoplasm ii) Plasticity	<i>1</i> / ₂ x4	2
13	ii) Antiport iii) Symport The element must be esse Specific , not replaced by Directly involved in the m Mg(Magnesium) A a)Stomata closure b)Citric acid c)Glycolysis d)Heterophylly Auxin- Apical dominance Root initiation Prevention of premature f Promote abscission of old Gibberellin Bolting Delay of senescence Stem elongation	other element. etabolism of the plant. B V) ABA Iv) Kreb's cycle I) Cytoplasm ii) Plasticity	<i>1</i> / ₂ x4	2
13	ii) Antiport iii) Symport The element must be esse Specific , not replaced by Directly involved in the m Mg(Magnesium) A a)Stomata closure b)Citric acid c)Glycolysis d)Heterophylly Auxin- Apical dominance Root initiation Prevention of premature f Promote abscission of old Gibberellin Bolting Delay of senescence Stem elongation Leaf expansion in tobacco	other element. etabolism of the plant. B V) ABA Iv) Kreb's cycle I) Cytoplasm ii) Plasticity	<i>1</i> / ₂ x4	2

10.0

1	·	and the	
50	0.105	3.314	1
100	Concerts.	THAT	1
118	10.00	C BILL	1.

2.4.3.

-

	Total Score	30	30
	Phosphoenol pyruvic acid Pyruvic acid		
	 2-phosphoglyceric acid 		
	 1,3- bisphosphoglyceric acid/1,3- bisphosphoglyceric acid 		
3.	 Glucose- 6-phosphate Fructose-1,6-biphosphate / Fructose-1,6-bisphosphate 		
	Glucose- 6-phosphate	½X6=3	
	OR	OR	
R	(Anyother related points)		
	 Presence of loosely arranged cells with inter cellular spaces 		
	 Presence of stomata and lenticels on the surface of plants 		
	plants is not great as living cells in a plant are located quite close to the surface of the plant.		
	 The distance for which the gases diffuse, even in large, bulky plants is not grant as living calls in a plant. 	+	
	released within the cell during photosynthesis.	1	
	availability of oxygen is not a problem, because oxygen is		
	rate of respiration is far lower than that of animals. The	1	
	 Plant do not have great demands for gaseous exchange, the 		
	and there is very little transport of gases from one part of the plant to another.	1	2
	 Every part of the plant take care of its own gas exchange needs and there is your little transport of more former former. 	1	3
7.			
	any two other correct features of anaphase)		
	cell		
	 Movement of daughter chromosomes towards the opposite poles of the 		
	Centromere split and chromatids separate.		
	B-Anaphase	1/2	
		1/2	
	tany two other correct reatures of metaphase.	1/2	
	 Spindle fibres are attached to kinetochore of chromosome (any two other correct features of metaphase.) 		
	 Chromosomes are arranged at the equator of spindle apparatus Spindle fibres are attached to kinetechers of 	1/2	
	Formation of spindle apparatus./ Metaphase plate	1/2	
.0.	A-Metaphase	1/2	
DR 16.	OR	OR	
20			-
	Reduction in the number of chromosomes OR any two other significances		
	generation of a species		
	Conservation of specific chromosome number in successive		
1.	 Increase genetic variability/ leads to evolution 	12	
	 Formation of haploid gametes. 	1/2	
	Significances-	1/2	
	d) Diakinesis		
	b) Pachytene c) Zygotene		
	a) Diplotene	1/2×4	3

-3-/3