Reg. N

Name :

Second Year – JUNE 2016 SAY / IMPROVEMENT

Code No. 2018

Time : $2\frac{1}{2}$ Hours Cool-off time : 15 Minutes

Part – III

MATHEMATICS (SCIENCE)

Maximum : 80 Scores

General Instructions to Candidates :

- There is a 'cool-off time' of 15 minutes in addition to the writing time of $2\frac{1}{2}$ hrs.
- You are not allowed to write your answers nor to discuss anything with others during the 'cool-off time'.
- Use the 'cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- All questions are compulsory and only internal choice is allowed.
- When you select a question, all the sub-questions must be answered from the same question itself.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

നിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിറ്റ് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും. ഈ ۲ സമയത്ത് ചോദ്യങ്ങൾക്ക് ഉത്തരം എഴുതാനോ, മറ്റുളളവരുമായി ആശയവിനിമയം നടത്താനോ പാടില്ല.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- എല്ലാ ചോദ്യങ്ങൾക്കും ഉത്തരം എഴുതണം.
- കഴിഞ്ഞാൽ തെരഞ്ഞെടുത്തു ഉത്തരമെഴുതാൻ ചോദ്യനമ്പർ • ഒരു ഉപചോദ്യങ്ങളും അതേ ചോദ്യനമ്പരിൽ നിന്ന് തന്നെ തെരഞ്ഞെടുക്കേണ്ടതാണ്.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നൽകിയിട്ടുണ്ട്.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാക്യങ്ങൾ കൊടുക്കണം.

കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ചെയ്യാനാകാത്ത പ്രോഗ്രാമുകൾ ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

P.T.O.

HSSLIVE.IN

2018

HSSLIVE.IN HSSLIVE.IN HSSLIVE.IN

If the matrix A is both symmetric and skew-symmetric, then A is a 1. (a)

> zero matrix diagonal matrix **(ii)** (i) scalar matrix square matrix (iv)(iii)

(b) If A = $\begin{bmatrix} 1 & 3 \\ -2 & 4 \end{bmatrix}$, then show that A² – 5A + 10I = 0 Hence find A⁻¹.

(Scores : 2)

(Score : 1)

(Scores : 3)

The value of the determinant -1 is 1 -1 2. (a)

(c)

(ii) 0 (i) - 4

(iv)(iii) 1 4 Using matrix method, solve the system of (b)

> x + y + 2z = 4linear equations, 2x - y + 3z = 93x - y - z = 2

(Score : 1)

(Scores : 4)

HSSLIVE.IN

- If $f : R \to R$ and $g : R \to R$ defined by $f(x) = x^2$ and g(x) = x + 1, then gof (x) is 3. (a) (ii) $x^3 + 1$ (i) $(x+1)^2$ (Score : 1) (iii) $x^2 + 1$ x+1(iv)Consider the function $f: N \to N$, given by $f(x) = x^3$. Show that the function f is (b)(Scores: 2)injective but not surjective.
 - The given table shows an operation * on A = $\{p, q\}$ (c)

Is * a binary operation on A? (i) 2 (Scores: 2)Is * commutative ? Give reason. (ii) 2018

> **HSSLIVE.IN HSSLIVE.IN HSSLIVE.IN**

4. (a) The principal value of $\tan^{-1}(-\sqrt{3})$ is

(Score : 1)

(Scores : 3)

5. (a) Find $\frac{dy}{dx}$, if $x = a \cos^2 \theta$, $y = b \sin^2 \theta$.

(b) Find the second derivative of the function

 $y = e^x \sin x$

(Scores : 3)

(Scores:3)

6. (a) The slope of the normal to the curve, $y = x^3 - x^2$ at (1, -1) is (i) 1 (ii) -1 (iii) 2 (iv) 0 (Score : 1)

(b) Find the intervals in which the function $f(x) = 2x^3 - 24x + 25$ is increasing or decreasing. (Scores : 4)

(a) The rate of change of the area of a circle with respect to radius r, when r = 5 cm (i) $25 \pi \text{ cm}^2/\text{cm}$ (ii) $25 \text{ cm}^2/\text{cm}$

OR

(iii) $10 \pi \text{ cm}^2/\text{cm}$ (iv) $10 \text{ cm}^2/\text{cm}$ (Score : 1)

(b) Show that of all rectangles with a given area, the square has the least perimeter.

(Scores : 4)

(a) $\int \cot x \log \sin x \, dx$

(b) $\int \frac{1}{2 - a} dx$

Find the following :

7.

(Scores : 2)

HSSLIVE.IN HSSLIVE.IN HSSLIVE.IN HSSLIVE.IN

The degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^2 + \cos\left(\frac{dy}{dx}\right) = 0$ is (a) 8. (ii) (i) (Score : 1) Not defined (iv) (iii) 0 (b) Solve $\frac{dy}{dx}$ + 2y tan x = sin x, y = 0, when x = $\frac{\pi}{3}$. (Scores : 5) The projection of the vector $\vec{i} - \vec{j}$ on the vector $\vec{i} + \vec{j}$ is (a) 9:

> 0 (ii) (Score:1)(iii) 2 (iv)____] Find the area of the parallelogram whose adjacent sides are given by the vectors (b) $\vec{a} = 3\vec{i} + \vec{j} + 4\vec{k}$ and $\vec{b} = \vec{i} - \vec{j} + \vec{k}$ (Scores: 2)

OR

(Scores:4)

0 (11) (i) (Score : 1) (iv) -1(iii) 2

Find the area of the region bounded by the curves $y^2 = 4ax$ and $x^2 = 4ay$, a > 0. (b)

(Scores : 5)

(a) $(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b})$ is equal to 12.

(iii) $\vec{a} \times \vec{b}$

 $\overrightarrow{0}$ (i)

(ii) $|\vec{a}|^2 - |\vec{b}|^2$

 $2(\vec{a} \times \vec{b})$ (iv)

6

(Score : 1)

HSSLIVE.IN HSSLIVE.IN HSSLIVE.IN

HSSLIVE.IN

2018

A(1, 2, 7), B(2, 6, 3) and C(3, 10, -1) are collinear.

Using vectors, show that the points

(Scores : 2)

(Scores : 2)

(b) If \vec{a} and \vec{b} are any two vectors, then prove that $(\vec{a} \times \vec{b})^2 = 1$

 $\begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b} \end{vmatrix}$

13. (a) The equation of the line which passes through the point (1, 2, 3) and parallel to

the vector $3\hat{i} + 2\hat{j} - 2\hat{k}$ is

(i) $3\hat{i} + 2\hat{j} - 2\hat{k} + \lambda(\hat{i} + 2\hat{j} + 3\hat{k})$

(ii) $\hat{2i} - 5k + \lambda(3i + 2j - 2k)$

(iii) $\hat{i} + 2\hat{j} + 3\hat{k} + \lambda(-2\hat{i} + 4\hat{j} - 2\hat{k})$

(iii) $\frac{4}{\sqrt{3}}$ units

(c)

(iv) $\hat{i} + 2\hat{j} + 3\hat{k} + \lambda(3\hat{i} + 2\hat{j} - 2\hat{k})$

(Score : 1)

(Scores : 3)

(b) Find the angle between the pair of lines

 $\overrightarrow{r} = 2\hat{i} - 5\hat{j} + \hat{k} + \lambda(3\hat{i} + 2\hat{j} + 6\hat{k}) \text{ and}$ $\overrightarrow{r} = 7\hat{i} - 6\hat{k} + \mu(\hat{i} + 2\hat{j} + 2\hat{k})$

14. (a) The distance of the plane x + y + z + 1 = 0 from the point (1, 1, 1) is

(i) 4 units (ii) $\frac{1}{\sqrt{3}}$ units

(Score:1)

(b) Find the equation of the plane passing through (1, 0, -2) and perpendicular to each of the planes 2x + y - z = 2 and x - y - z = 3. (Scores : 3)

8

(iv) $\frac{1}{4\sqrt{3}}$ units

2018

HSSLIVE.IN HSSLIVE.IN HSSLIVE.IN HSSLIVE.IN

15. Consider the following L.P.P. Z = 3x + 9yMaximise, $x + 3y \le 60$ Subject to the constraints

 $x + y \ge 10$ $x \leq y$

 $x \ge 0, y \ge 0$

(Scores:3)

Draw its feasible region. (a)

Find the corner points of the feasible region. (b)

(Scores : 3)

16. (a) If $P(A) = \frac{7}{13}$, $P(B) = \frac{9}{13}$ and $P(A \cap B) = \frac{4}{13}$ then P(A/B) is

(ii) $\frac{16}{13}$ (i) $\frac{9}{4}$

(iv) $\frac{11}{13}$

(iii) $\frac{4}{9}$

(b)

(ii)

Probability of solving a specific problem independently by A and B are $\frac{1}{2}$ and $\frac{1}{3}$

(Score : 1)

respectively. If both try to solve the problem independently, then (Scores: 2)Find the probability that the problem is solved. (i)

Find the probability that exactly one of them solves the problem. (Scores : 2)

OR

A die is thrown 6 times. If getting an odd number is a success

- Find probability of success and failure (i)
- Find the probability of 5 success. (ii)

(iii) Find the probability of atleast 5 successes.

(Score : 1)

(Scores : 2)

(Scores : 2)

2018

HSSLIVE.IN

10

HSSLIVE.IN HSSLIVE.IN HSSLIVE.IN