Reg. No.

Name : ...

# **Code No. 1015**

Time : 2 Hours Cool-off time : 15 Minutes

# Second Year – March 2016

Part – III

## PHYSICS

Maximum : 60 Scores

## General Instructions to Candidates :

- There is a 'cool-off time' of 15 minutes in addition to the writing time of 2 hrs.
- You are not allowed to write your answers nor to discuss anything with others during the 'cool-off time'.
- Use the 'cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- All questions are compulsory and only internal choice is allowed.
- When you select a question, all the sub-questions must be answered from the same question itself.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

## നിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിറ്റ് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും. ഈ സമയത്ത് ചോദ്യങ്ങൾക്ക് ഉത്തരം എഴുതാനോ, മറ്റുളളവരുമായി ആശയവിനിമയം നടത്താനോ പാടില്ല.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- എല്ലാ ചോദ്യങ്ങൾക്കും ഉത്തരം എഴുതണം.
- ഒരു ചോദ്യനമ്പർ ഉത്തരമെഴുതാൻ തെരഞ്ഞെടുത്തു കഴിഞ്ഞാൽ ഉപചോദ്യങ്ങളും അതേ ചോദ്യനമ്പരിൽ നിന്ന് തന്നെ തെരഞ്ഞെടുക്കേണ്ടതാണ്.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നൽകിയിട്ടുണ്ട്.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാക്യങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

**P.T.O.** 

- $\vec{A}$ . (a) A receiver in a communication system must have
  - (i) pick-up antenna (ii) demodulator
  - (iii) amplifier (iv) all of these (Score : 1)
  - (b) Which of the following statements is wrong?
    - (i) The attenuation of surface waves increases with increase in frequency.
    - (ii) The phenomenon involved in sky wave propagation is similar to total internal reflection.
    - (iii) Space wave mode of propagation is used in satellite communication.
    - (iv) Sky wave propagation is useful only in the range of frequencies 30 to 40 MHz. (Score:1)

An equipotential surface is a surface with constant value of potential at all points on the surface.

- (a) What is the amount of work done in moving a 2 μc charge between two points at 3 cm apart on an equipotential surface ? (Score : 1)
- (b) Two capacitors are connected as shown in figure below



If the equivalent capacitance of the combination is  $4 \, \mu F$ 

- (i) Calculate the value of C.
- (ii) Calculate the charge on each capacitor.
- (iii) What will be the potential drop across each capacitor ? (Scores : 3)

2

(*i*) Two metallic spheres of same radii, one hollow and one solid, are charged to the same potential. Which will hold more charge ?

- (i) Solid sphere
- (ii) Both will hold same charge
- (iii) Hollow sphere
- (iv) Cannot predict

1015

Ą.

(Score : 1)

- (A) The following question has choice : 3.
  - Which of the following obeys Ohm's law? (a)

| (i) | Transistor | (ii) | Nichrome |  |
|-----|------------|------|----------|--|
|-----|------------|------|----------|--|

- (Score: 1) . (iv) Liquid electrolyte (iii) Diode
- A wire has a resistance of 10  $\Omega$ . It is stretched by 10% of its original length, (b) what will be the new resistance?
  - $11 \Omega$ (ii)  $10 \Omega$ (i)
  - (iv)  $12.1 \Omega$ 9Ω (iii)
- With the help of a circuit diagram describe the method to find the value of (c) (Scores: 4) an unknown resistance using meter bridge arrangement.

### OR

- Which of the following material is used to make wire wound standard (BB) *k*a) resistors?
  - Germanium (ii) Manganin (i)
  - (iv) Carbon (Score:1)(iii) Copper
  - A bread toaster and a bulb are connected parallel in a circuit. The toaster **(6**) produces more heat than the bulb. Which of the following statements is true?
    - Resistance of toaster is greater than resistance of bulb. (i)
    - Resistance of bulb is same as the resistance of toaster. (ii)
    - Resistance of bulb is greater than resistance of toaster. (iii)
    - Cannot predict. (iv)

### (Score:1)

(Score : 1)

- With the help of a circuit diagram describe the method to find the internal (c) (Scores: 4) resistance of a cell using potentiometer.
- The work function of a metal is 6 eV. If two photons each having energy 4 eV  $(\mathbf{a})$ strike with the metal surface
  - will the emission be possible? (i)

(ii) why?

#### (Scores: 2)

The waves associated with matter is called matter waves. Let  $\lambda_e$  and  $\lambda_p$  be the (X) de -Broglie wavelengths associated with electron and proton respectively. If they are accelerated by same potential, then

(i) 
$$\lambda_e > \lambda_p$$
  
(ii)  $\lambda_p > \lambda_e$   
(iv)  $\lambda_e = \frac{1}{\lambda_p}$   
(Score : 1)

1015

Ą.

- 5. (a) The core of a transformer has the following properties :
  - (i) core is laminated.
  - (ii) hysterisis loop is narrow. (Scores : 2)
  - Explain the significance of each property.
  - (b) What is meant by resonance in an LCR circuit ?
- 6. (\*) Which of the following symbol represents a universal gate ?



(b) Shown below is an experimental set up with a semiconductor diode



- (i) identify the experiment
- (iii) draw the resulting graph

(Scores:2)

(Score : 1)

- (c) With the help of neat circuit diagram obtain an expression for voltage gain of a transistor amplifier in C-E configuration.
   (Scores: 3)
- 7. A moving charge can produce a magnetic field.

| (a)<br>(b) | How does a current loop behaves like a magnetic dipole ?<br>Draw the magnetic field lines for a current loop to support your answer. | (Score : 1)<br>(Scores : 2) |
|------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| (c)        | <ul><li>(i) What is a cyclotron ?</li><li>(ii) Write down the expression for cyclotron frequency.</li></ul>                          | (Scores : 2)                |
| (a)        | List out any two limitations of Bohr atom model.                                                                                     | (Scores : 2)                |

1015

8.

6

|                | <ul> <li>(b) According to de-Broglie's explanation of Bohr's second postulate of quantize the standing particle wave on a circular orbit for n = 4 is given by</li> </ul> |                                                                                                                                           |                                              |                     |                                                                         |                                                         |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------|-------------------------------------------------------------------------|---------------------------------------------------------|--|
|                |                                                                                                                                                                           | (i) $2\pi r_n = 4/\lambda$                                                                                                                |                                              | (ii)                | $\frac{2\pi}{\lambda} = 4r_n$                                           |                                                         |  |
|                |                                                                                                                                                                           | (iii) $2\pi r_n = 4\lambda$                                                                                                               |                                              | ( <b>H</b> )        | $\frac{\lambda}{2\pi} = 4r_{\rm n}$                                     | (Score : 1)                                             |  |
| 9 <del>.</del> | ( <del>á)</del>                                                                                                                                                           | What do you me                                                                                                                            | (Score : 1)                                  |                     |                                                                         |                                                         |  |
| ι.             | ( <b>b</b> )                                                                                                                                                              | Write down the e                                                                                                                          | (Score : 1)                                  |                     |                                                                         |                                                         |  |
|                | (c)                                                                                                                                                                       | Two nuclei have nuclear radii?                                                                                                            | the ratio of their<br>(Scores : 2)           |                     |                                                                         |                                                         |  |
| 1Ø.            | (f) How much greater is one micro coulomb compared to an electronic charge                                                                                                |                                                                                                                                           |                                              |                     |                                                                         |                                                         |  |
| <u>د</u> د     |                                                                                                                                                                           | (j) $10^{13}$ times                                                                                                                       |                                              | (ii)                | 10 <sup>10</sup> times                                                  | :                                                       |  |
|                |                                                                                                                                                                           | (iii) $10^{11}$ times                                                                                                                     |                                              | (iv)                | 10 <sup>6</sup> times                                                   | (Score : 1)                                             |  |
|                | (b)                                                                                                                                                                       | A point charge of 2 $\mu$ c is placed at the centre of a cubic Gaussian surface of sic 0.5 cm. What is the net flux through the surface ? |                                              |                     |                                                                         |                                                         |  |
|                |                                                                                                                                                                           | (Given $\varepsilon_0 = 8.85$                                                                                                             | $\times 10^{-12} \text{C}^2/\text{N/m}^2.$ ) |                     |                                                                         | (Scores : 2)                                            |  |
| 11.            | (a)                                                                                                                                                                       | State Gauss' law for magnetism.                                                                                                           |                                              |                     |                                                                         | (Score : 1)                                             |  |
|                | (b)                                                                                                                                                                       | How this differs                                                                                                                          | (Score : 1)                                  |                     |                                                                         |                                                         |  |
|                | (c)                                                                                                                                                                       | Why is the differ                                                                                                                         | (Score : 1)                                  |                     |                                                                         |                                                         |  |
| J2.            | Mate                                                                                                                                                                      | ch the following :                                                                                                                        |                                              |                     |                                                                         |                                                         |  |
| -              | ( <b>i</b> )                                                                                                                                                              | X-rays                                                                                                                                    | Water purifier $\mathcal{L}$                 | 1                   |                                                                         |                                                         |  |
|                | ( <b>i</b> i)                                                                                                                                                             | Infrared                                                                                                                                  | Cancer treatmen                              | t١                  |                                                                         |                                                         |  |
|                | (iii)                                                                                                                                                                     | Microwave                                                                                                                                 | Remote switch                                | 2                   |                                                                         |                                                         |  |
|                | (ïv)                                                                                                                                                                      | Ultraviolet                                                                                                                               | Radar 🍇 B                                    |                     |                                                                         | (Scores : 2)                                            |  |
| ¥3.            | (a)                                                                                                                                                                       | The electrical an                                                                                                                         | alog of mass is                              |                     |                                                                         |                                                         |  |
|                |                                                                                                                                                                           | (i) diode                                                                                                                                 |                                              | (ii)                | capacitance                                                             |                                                         |  |
|                |                                                                                                                                                                           | (iii) inductance                                                                                                                          |                                              | (iv)                | resistance                                                              | (Score : 1)                                             |  |
|                | (b)                                                                                                                                                                       | A 2 m long soler<br>turns wound clo<br>the two coils.                                                                                     | noid having diamete<br>sely near its mid-po  | er 6 cm<br>oint. Ca | and 2000 turns has a local and 2000 turns has a local and the mutual in | a secondary of 500<br>nductance between<br>(Scores : 2) |  |

.

14. (A) The following questions has choice :

- (a) Unpolarized light is incident on a plane glass surface. What should be the angle of incidence so that the reflected and refracted rays are perpendicular to each other ? (Given n = 1.5) (Scores : 2)
- (b) Using Huygen's concept of wave front, derive Snell's law of refraction.

(Scores: 3)

### OR

- (B) (a) Light waves from two coherent sources having intensities I and 2I cross each other at a point with a phase difference of 60°. What is the resultant intensity at the point ? (Scores : 2)
  - (b) With the help of a diagram obtain an expression for finding the distance between two consecutive bright or dark fringes in the interference pattern produced by double slits. (Scores : 3)
- 15. (A) The following is a choice question :
  - (a) If the focal length of a double convex lens is 12 cm and radii of curvatures of faces are 10 cm and 15 cm respectively, what is the refractive index of the lens ?
     (Scores: 2)
  - (b) (i) Draw the ray diagram showing the formation of image by a compound microscope. (Scores : 2)
    - (ii) Show that in order to achieve large magnification in a compound microscope the magnitude of focal length of objective and eye piece should be small. (Scores : 3)

#### OR

- (B) (a) What is the structure of an optical fibre ? (Scores : 2)
  - (b) What is the principle used for transmitting audio and video signals using optical fibre ? Explain the principle. (Scores : 2)
  - (c) With the help of a neat diagram arrive at an expression for finding the refractive index of a prism. (Scores : 3)

1015

10