Name : $\qquad$

## Second Year - JUNE 2017

 SAY/IMPROVEMENTTime : $21 / 2$ Hours

Cool-off time : 15 Minutes

## Part - III

## MATHEMATICS (COMMERCE)

Maximum : 80 Scores

## General Instructions to Candidates:

- There is a 'cool-off time' of 15 minutes in addition to the writing time of $21 / 2 \mathrm{hrs}$.
- You are not allowed to write your answers nor to discuss anything with others during the 'cool-off time'.
- Use the 'cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- All questions are compulsory and only internal choice is allowed.
- When you select a question, all the sub-questions must be answered from the same question itself.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.


## 








 உளையி円ி๓ளைை.





1. (i) The condition for a function f from $\mathrm{x} \rightarrow \mathrm{y}$ is an onto function,
(a) range of $\mathrm{f}=$ co-domain of f
(b) range of $f=$ domain of $f$
(c) range of $f \neq$ domain of $f$
(d) range of $\mathrm{f} \neq$ co-domain of f
(Score: 1)
(ii) If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ are defined by $\mathrm{f}(x)=x+1$ and $\mathrm{g}(x)=x^{2}$. Find fog and gof.
(Scores : 2)
(iii) Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a function defined by $\mathrm{f}(x)=3 x+2$, show that f is a bijective function.
(Scores: 2)
2. (i) The principal value of $\cot ^{-1}(\sqrt{3})$ is
(a) $\frac{\pi}{3}$
(b) $\frac{\pi}{2}$
(c) $\frac{\pi}{6}$
(d) $\frac{\pi}{4}$
(Score : 1)
(ii) Solve : $\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}$
(Scores: 3)
3. (i) If $A$ is a matrix of order $5 \times 4$ and $B$ is a matrix of order $4 \times 7$, then the matrix $A B$ has order
(a) $4 \times 4$
(b) $5 \times 7$
(c) $7 \times 5$
(d) $5 \times 4$
(Score: 1)
(ii) If $\mathrm{A}^{\prime}=\left[\begin{array}{cc}-2 & 3 \\ 1 & 2\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{cc}-1 & 0 \\ 1 & 2\end{array}\right]$ then find $(\mathrm{A}+2 \mathrm{~B})^{\prime}$
(Scores: 2)
(iii) Find $\mathrm{A}^{-1}$, if $\mathrm{A}=\left[\begin{array}{cc}-2 & 1 \\ 2 & 3\end{array}\right]$
(Scores: 2)
4. (i) The matrix $\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right]$ is a $\qquad$ matrix.
(a) Symmetric
(b) Skew-symmetric
(c) Singular
(d) Non-singular
(Score: 1)
(ii) Prove that $\left|\begin{array}{ccc}x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y\end{array}\right|=2(x+y+z)^{3}$
(Scores: 3)
 றிறையை
（a）range of $\mathrm{f}=$ co－domain of f
（b）range of $f=$ domain of $f$
（c）range of $f \neq$ domain of $f$
（d）range of $\mathrm{f} \neq$ co－domain of f


（œ円ைงชิพ゚：2）


（œறைుชิペ：2）
 $\qquad$
（a）$\frac{\pi}{3}$
（b）$\frac{\pi}{2}$
（c）$\frac{\pi}{6}$
（d）$\frac{\pi}{4}$
（œறைฺช ：1）

（œฺை


（a） $4 \times 4$
（b） $5 \times 7$
（c） $7 \times 5$
（d） $5 \times 4$



 （๕్ముภిペ：2）
 $\qquad$








5. (i) The value of $\left|\begin{array}{rr}\sin 80^{\circ} & -\cos 80^{\circ} \\ \sin 10^{\circ} & \cos 10^{\circ}\end{array}\right|$ is
(a) 0
(b) 1
(c) -1
(d) None of these
(Score: 1)
(ii) Using matrix method, solve the system of equations
$2 x+3 y+3 z=5$
$x-2 y+z=-4$
$3 x-y-2 z=3$
(Scores: 4)
6. (i) Examine the continuity of the function
(Score: 1)
$\mathrm{f}(x)=\frac{1}{x+5}, x \in \mathrm{R}, x \neq-5$
(ii) Find the points of discontinuity of the function $\frac{x^{2}+6 x+8}{x^{2}-5 x+6}$.
(Scores: 2)
7. (i) If $y=e^{2 x+\log x}$, find $\frac{d y}{d x}$
(Scores: 2)
(ii) If $x=a t^{2}, y=2 a t$, find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$
(Scores : 3)
(iii) Verify the mean value theorem for the function $\mathrm{f}(x)=x(x-2), x \in[1,3]$. (Scores : 3)
8. If a manufacturer's total cost function is $\mathrm{c}(x)=1500+30 x+x^{2}$, then
(i) Find the cost function when $x=5$ units.
(Score: 1)
(ii) Find the marginal cost function.
(Score : 1)
(iii) Find the marginal cost when $x=20$ units.

## OR

(i) The function $\mathrm{f}(x)=x^{2}$ in $(-\infty, 0)$ is $\qquad$ .
(a) increasing
(b) decreasing
(c) neither increasing nor decreasing
(d) constant
(Score: 1)
(ii) Find the equations of tangent and normal to the given curve $\mathrm{y}=x^{3}$ at $(1,1)$.
(Scores: 3)

5．（i）$\left|\begin{array}{rr}\sin 80^{\circ} & -\cos 80^{\circ} \\ \sin 10^{\circ} & \cos 10^{\circ}\end{array}\right|$ कூல Nी巳 $\qquad$ ®றள5．
（a） 0
（b） 1
（c）-1

（๙ฺைృరి：1）

$2 x+3 y+3 z=5$
$x-2 y+z=-4$
$3 x-y-2 z=3$

（セ઼ை

（ตฺைைరి：1）




（ตฺふ

（セ઼่





（セ઼ைロరి：1）

（ণฺைைరి：1）
 ๔๐ดํㅜஜிธ்
 $\qquad$ ๔ฺஸ゙．



（d）พทาிロm๐வை
（ণฺைைరి：1）


9. (i) $\int \frac{1}{\sqrt{x}} \mathrm{~d} x$ is $\qquad$ .
(a) $\frac{1}{2 \sqrt{x}}+c$
(b) $2 \sqrt{x}+c$
(c) $\sqrt{x}+c$
(d) $\quad \log |x|+\mathrm{c}$
(Score: 1)
(ii) Evaluate $\int \sin ^{3} x \mathrm{~d} x$ (Scores : 2)
(iii) Evaluate $\int x \log x d x$
OR
(i) $\int_{0}^{1} e^{x} \mathrm{~d} x=$ $\qquad$ .
(a) e
(b) $\mathrm{e}+1$
(c) $\mathrm{e}-1$
(d) 0
(Score: 1)
(ii) Show that $\int_{0}^{\pi / 2} \cos ^{2} x \mathrm{~d} x=\frac{\pi}{4}$
(Scores: 2)
(iii) Evaluate $\int_{0}^{1} x \mathrm{e}^{x} \mathrm{~d} x$
(Scores: 2)
10. Consider the curves $\mathrm{y}=x^{2}$ and $\mathrm{y}^{2}=8 x$
(i) Find the $x$ co-ordinates of points of intersection of the given two curves.
(Score: 1)
(ii) Find the area of the region enclosed by the given two curves.
(Scores: 3)
11. Consider the differential equation $x \frac{\mathrm{dy}}{\mathrm{d} x}+\mathrm{y}=x \log x$
(i) Write the differential equation in linear form.
(Score: 1)
(ii) Find the integrating factor of the differential equation.
(Score: 1)
(iii) Hence solve the differential equation.
(Scores : 2)
12. (i) Let $\mathrm{A}(1,2,4)$ and $\mathrm{B}(2,-1,3)$ be two points
(a) Find $\overrightarrow{A B}$
(Score: 1)
(b) Find a unit vector in the direction of $\overrightarrow{\mathrm{AB}}$.
(ii) Prove that $\vec{a} \cdot(\vec{b}+\vec{c}) \times(\vec{a}+\vec{b}+\vec{c})=0$

9．（i） $\int \frac{1}{\sqrt{x}} \mathrm{~d} x=$ $\qquad$ ๔ฺฺฺ．
（a）$\frac{1}{2 \sqrt{x}}+c$
（b） $2 \sqrt{x}+c$
（c）$\sqrt{x}+\mathrm{c}$
（d）$\quad \log |x|+c$
（œறைைชి：1）



## ๙ฺญููฑา๙

（i） $\int_{0}^{1} e^{x} \mathrm{~d} x=$ $\qquad$
（a） e
（b） $\mathrm{e}+1$
（c） $\mathrm{e}-1$
（d） 0
（œறைல๙ ：1）
（ii） $\int_{0}^{\pi / 2} \cos ^{2} x \mathrm{~d} x=\frac{\pi}{4}$ ळ๐றృృ๐．






（œறைை๙ ：1）





（œญைふ๙ ：1）

（๔พ్మురి ：1）




（œறைைชิ：1）

（œறைைชิペ：2）


13. (i) Show that the acute angle between any two diagonals of a cube is $\cos ^{-1}\left(\frac{1}{3}\right)$.
(ii) Find the equation of the plane with intercepts $2,3,4$ on the $x, y, z$ axes respectively.
(Scores: 2)

## OR

(i) Find the shortest distance between the lines
$\vec{r}=\hat{i}+2 \hat{j}+\hat{k}+\lambda(\hat{i}-\hat{j}+\hat{k})$ and
$\vec{r}=2 \hat{i}-\hat{j}+\hat{k}+\mu(2 \hat{i}+\hat{j}+2 \hat{k})$
(Scores : 3)
(ii) Find the distance of the plane $2 x-3 y+4 z-6=0$ from the origin.
14. A cloth manufacturing company produces shirts and trousers. Three machines A, B, C be used for the production of these clothes. Machines A and C are available for operation atmost 12 hours, whereas B must be operated for atleast 5 hours a day. The time required for construction of one cloth on the 3 machines are given in the following table :

| Cloth | Hours required |  |  |
| :--- | :---: | :---: | :---: |
|  | A | B | C |
| Shirt | 3 | 2 | 1 |
| Trousers | 4 | 3 | 2 |

Company sells are the clothes and get a profit of ₹ 150 and ₹ 200 on a cloth of shirt and trouser respectively. Company wants to know how many number of each item to be produced to maximize the profit?

To formulate a linear programming problem,
(i) Write the objective function
(ii) Write all constraints







（i）$\vec{r}=\hat{i}+2 \hat{j}+\hat{k}+\lambda(\hat{i}-\hat{j}+\hat{k})$ ，
$\vec{r}=2 \hat{i}-\hat{j}+\hat{k}+\mu(2 \hat{i}+\hat{j}+2 \hat{k})$ 毋毋） Bுும0 ఉறร్నూ










| வ（mo |  |  |  |
| :---: | :---: | :---: | :---: |
|  | A | B | C |
| กัชิรั | 3 | 2 | 1 |
| （5ワm®or | 4 | 3 | 2 |







（œறைゝ๙ ：1）

（๕றைృชิพ゚：3）
15. Consider the linear programming problem :

Maximize $Z=3 x+2 y$
Subject to

$$
\begin{aligned}
& x+2 y \leq 10 \\
& 3 x+y \leq 15 \\
& x, y \geq 0
\end{aligned}
$$

(i) Draw the graphs of the lines $x+2 \mathrm{y}=10$ and $3 x+\mathrm{y}=15$ in the same plane.
(Scores: 2)
(ii) Solve this linear programming problem graphically.
16. Two students A and B appearing an examination, such that the probability of passing the examination of A is $\frac{3}{7}$ and that of B is $\frac{5}{7}$.
(i) Find the probability of A and B not passing the examination.
(Score: 1)
(ii) Find the probability that exactly one of them passing the examination.
(Scores: 2)
(iii) Find the probability that both A and B passing the examination.
17. A random variable $x$ has the following probability distribution :

| $x$ | 0 | 1 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}(x)$ | 0 | k | 2 k | 3 k | 4 k |

(i) Find the value of k .
(Score: 1)
(ii) Find $\mathrm{P}(x<3)$.
(Scores: 2)
(iii) Find the mean of the random variable $x$.

Maximize $Z=3 x+2 y$
Subject to

$$
\begin{aligned}
& x+2 y \leq 10 \\
& 3 x+y \leq 15 \\
& x, y \geq 0
\end{aligned}
$$




（๕พை







（œறைoชిペ：2）

（œᄄைృชิペ：2）



| $x$ | 0 | 1 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}(x)$ | 0 | k | 2 k | 3 k | 4 k |





