MARKING SCHEME SET 55/1/1

Q. No.	SE1 55/1/1 Expected Answer / Value Points	Marks	Total
			Marks
1.	Magnitude of the drift velocity of charge carrier per unit Electric field is called mobility. Alternatively, $\mu = \frac{ v_d }{E}$ or $\frac{e\tau}{m}$	1/2	
	SI unit = $m^2 / (volt second)$ or $ms^{-1}N^{-1}C$	1⁄2	1
2.	Modulation Index = $\frac{a_m}{a_c}$	1/2	
	= 1/2 = 0.5	1⁄2	1
3.	If Electric field is not normal, it will have non-zero component along the surface. In that case, work would be done in moving a charge on an equipotential surface.	1	1
4.	Glass. In glass there is no effect of electromagnetic induction, due to presence of Earth's magnetic field, unlike in the case of metallic ball.	1/2 1/2	1
5.	Temperature I (K)	1	1
6.	20cm	1	1
7.	$\vec{F} = q(\vec{v} \times \vec{B})$	1/2	
	Perpendicular to the plane formed by \vec{v} and $\vec{B} / \vec{F} \perp \vec{v}$ and $\vec{F} \perp \vec{B}$ [Note: Give full credit for writing the expression.]	1⁄2	1
8.	X: Channel It connects the Transmitter to the Receiver	$\frac{1/2}{1/2}$	1

Delhi SET I Page 1 of 20

9.	Identification of magnetic material $\frac{1}{2} + \frac{1}{2}$ Susceptibility $\frac{1}{2} + \frac{1}{2}$		
	A: Paramagnetic B: Diamagnetic	1/2 1/2	
	Susceptibility For A: positive For B: negative	1/2 1/2	2
10.	Finding flux in two cases 1+1		
	$\phi = EA \cos \theta$	1/2	
	$= 5 \times 10^{3} \times 10^{-2} \cos 0^{0} NC^{-1} m^{2}$ = 50 NC ⁻¹ m ²	1/2	
	$\phi = 5 \times 10^3 \times 10^{-2} \cos 60^0 \ NC^{-1} m^2$ = 25 NC ⁻¹ m ²	1/2 1/2	2
11.	Explanation of the given statement $1+1$		
	In the first case, the overlapping of the contributions of the wavelets from two halves of a single slit produces a minimum because corresponding wavelets from two halves have a path difference of $\frac{\lambda}{2}$.	1	
	In the second case, the overlapping of the wavefronts from the two slits produces first maximum because these wavefronts have the path difference of λ .	1	
	(Alternatively, if a student writes the conditions given below, give full credit.)		
	Condition for first minimum in single slit diffraction is, $\theta \approx \lambda / a$, Whereas in case of two narrow slits separated by distance a, first maximum occurs at angle $\theta \approx \lambda / a$ [Note: Award 1 mark even if the candidate attempts this question partly.]		2

Truth Table Imput Output A B Y' Y 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 Gate R: OR Gate ½ ½ ½ S: AND Gate ½ ½ Identification 1 1 Truth Table 1 1 P: NAND Gate ½ ½ Q: OR Gate ½ ½ Truth Table 1 1 Imput Output 1 1 A B X 1 0 0 1 1 1 Mathematical Statements of two Laws ½ ½ ½ ½ Statements of two Laws ½ ½ ½ ½ ½ Statements of two Laws ½ ½ ½ ½ ½	Nam	es of gates used		$\frac{1}{2} + \frac{1}{2}$		
Input Output A B Y' Y 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 Gate R: OR Gate S: AND Gate $\frac{1/2}{1/2}$ $\frac{1/2}{1/2}$ OR Identification Truth Table 1 P: NAND Gate Q: OR Gate 0 1 Input Output 1 A B X 0 0 1 1 0 1 1 1 1						
A B Y' Y 0 0 0 0 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 Gate R: OR Gate 1 1 S: AND Gate 1 1 Identification 1 1 Truth Table 1 1 P: NAND Gate 1 1 Q: OR Gate 1 1 Truth Table 1 1 1 0 1 1 1 0 1 1 1 0 1 1 Statements of two Laws $1/2 + 1/2$ 1	Truth	Table				
0 0 0 0 0 0 1						
0 1 1 0 1 1 1 1 1 1 1 1 1 1 <	А					
1 0 1 1 1 1 1 1 1 1 1 Gate R: OR Gate S: AND Gate $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ OR Identification 1 Truth Table 1 1 1 P: NAND Gate 1 1 1 1 P: NAND Gate 1 1 1 1 1 P: NAND Gate 1 1 1 1 1 1 1 1 P: NAND Gate 1 </td <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td>	0	0	0			
1111I111Gate R: OR Gate S: AND Gate $\frac{1}{\sqrt{2}}$ ORIdentification Truth TableP: NAND Gate Q: OR Gate1 $\frac{1}{\sqrt{2}}$	0		1			
Gate R: OR Gate S: AND Gate $\frac{1}{2}$ $\frac{1}{2}$ ORIdentification Truth Table1P: NAND Gate Q: OR Gate1InputOutput ABX0011101111Statements of two Laws $\frac{1}{2} + \frac{1}{2}$	1		1	1		1
Side R. Orosta S: AND Gate $\frac{1}{2}$ ORIdentification Truth Table1P: NAND Gate Q: OR Gate $\frac{1}{2}$ $\frac{1}{2}$ Truth TableInput \overline{A} $\overline{0}$ $\overline{0}$ $\overline{1}$ $\overline{1}$ $\overline{0}$ 1 $\overline{0}$ $\overline{1}$ 1 $\overline{0}$ $\overline{1}$ 1 $\overline{1}$ $\overline{1}$ 1 $\overline{1}$ $\overline{1}$ 1 $\overline{1}$ $\overline{1}$ 1 $\overline{1}$ <	1	1	1	1		
S: AND Gate $\frac{1}{2}$ OR Identification 1 Truth Table 1 P: NAND Gate $\frac{1}{2}$ Q: OR Gate $\frac{1}{2}$ Truth Table 1 Input Output A B X 0 0 1 1 0 1 1 1 1 1 1 1 Statements of two Laws $\frac{1}{2} + \frac{1}{2}$						1/2
S. AND Gate OR Identification 1 Truth Table 1 P: NAND Gate 1 Q: OR Gate 1 Truth Table 1 Imput Output A B X 0 0 1 1 0 1 1 1 1 1 1 1 Statements of two Laws ½ + ½						
Identification Truth Table1P: NAND Gate Q: OR Gate $\frac{1}{2}$ Truth Table $\frac{1}{2}$ Truth Table $\frac{1}{2}$ Truth Table $\frac{1}{2}$ Truth Table 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,	5. AND Gale				/ -
Identification Truth Table1P: NAND Gate Q: OR Gate $\frac{1}{2}$ Truth Table $\frac{1}{2}$ Truth Table $\frac{1}{2}$ Input ABName BN001110111111111111						
Truth Table 1 P: NAND Gate $\frac{1}{2}$ Q: OR Gate $\frac{1}{2}$ Truth Table $\frac{1}{2}$ Input Output A B X 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 Statements of two Laws $\frac{1}{2} + \frac{1}{2}$			OR			
Truth Table 1 P: NAND Gate Q: OR Gate ½ Truth Table ½ Input Output A B X 0 0 1 1 0 1 0 1 1 1 1 1 Statements of two Laws ½ + ½	Iden	tification		1		
P: NAND Gate $\frac{12}{12}$ Q: OR Gate $\frac{12}{12}$ Truth Table $\frac{1}{12}$ <u>Input</u> <u>Output</u> <u>A</u> <u>B</u> X 0 0 1 1 0 1 0 1 1 1 1 1 Statements of two Laws $\frac{1}{12} + \frac{1}{2}$						
P: NAND Gate $\frac{1}{2}$ Q: OR Gate $\frac{1}{2}$ Truth Table $\overline{12}$ Input Output A B X 0 0 1 1 0 1 0 1 1 1 1 1 Statements of two Laws $\frac{1}{2} + \frac{1}{2}$						
Q: OR Gate $\frac{1}{2}$ Truth Table Imput A B X 0 0 1 1 0 1 0 1 1 1 1 1 Statements of two Laws $\frac{1}{2} + \frac{1}{2}$	D. N.	ND Coto				1/2
Truth Table Input Output A B X 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 Statements of two Laws $\frac{1}{12} + \frac{1}{2}$						1/2
Input Output A B X 0 0 1 1 0 1 0 1 1 1 1 1 Statements of two Laws $\frac{1}{2} + \frac{1}{2}$	O: OF					
A B X 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 Statements of two Laws $\frac{1}{2} + \frac{1}{2}$						
0 0 1	Truth		044			
1 0 1 0 1 1 1 1 1 1 1 1 Statements of two Laws	Truth Inpu	ıt				
0 1 1 1 1 1 Statements of two Laws	Truth Inpu A	B	X			
1 1 Statements of two Laws $\frac{1}{2} + \frac{1}{2}$	Truth Inpu A 0	B 0	X 1			1
Statements of two Laws $\frac{1}{2} + \frac{1}{2}$	Truth Inpu A 0 1	B 0 0 0	X 1 1			1
	Truth Inpu A 0 1 0	B 0 0 0 1 1	X 1 1 1 1			1
	Truth Inpu A 0 1 0	B 0 0 0 1 1	X 1 1 1 1			1
Justification $\frac{1}{2} + \frac{1}{2}$	Truth Inpu A 0 1 0	B 0 0 0 1 1	X 1 1 1 1			1
	Truth Inpu A 0 1 0 1	B 0 0 0 1 1	X 1 1 1 1 1	 		1
	Truth Inpu A 0 1 0 1 State	t B 0 0 1 1 1 ements of two Laws	X 1 1 1 1 1			1
	Truth Inpu A 0 1 0 1 State	t B 0 0 1 1 1 ements of two Laws	X 1 1 1 1 1			1
is equal to the sum of currents leaving the junction. $\frac{1}{2}$	Truth Inpu A 0 1 0 1 State Justi	B 0 0 1 1 1 ements of two Laws fication	X 1 1 1 1 1 s	$\frac{1/2 + 1/2}{2}$ of the currents en	ntering the junc	tion

	Alternatively, $\sum i = 0$		
	Justification : Conservation of charge	1/2	
	Loop rule : The Algebraic sum of changes in the potential around any closed loop involving resistors and cells in the loop is zero.	1/2	
	Alternatively, $\sum \Delta V = 0$, where ΔV is the changes in potential		
	Justification : Conservation of energy	1/2	2
14.	Effect on glow of bulb inPart (i)1Part (ii)1		
	 (i) Reactance of the capacitor will decrease, resulting in increase of the current in the circuit. Therefore the bulb will glow brighter. 	1	
	(ii) Increased resistance will decrease the current in the circuit, which will decrease glow of the bulb.[Neta : Do not deduct any mark for not giving the reasons]	1	2
15.	[Note : Do not deduct any mark for not giving the reasons.]		
	Underlying principle1Brief working1		
	It makes use of the principle that the energy of the charged particles / ions can be made to increase in presence of crossed Electric and magnetic fields.	1	
	A normal Magnetic field acts on the charged particle and makes them move in a circular path .While moving from one dee to another; particle is acted		
	upon by the alternating electric field, and is accelerated by this field, which increases the energy of the particle.	1	2
16.	Calculation of Potential energy of the dipole 2		
	$\tau = pEsin\theta$	1⁄2	
	$4\sqrt{3} = pE\sin 60^0 = pE \frac{\sqrt{3}}{2}$	17	
	$\implies pE = 8$	1/2	
	Potential energy		
Delhi	SET I Page 4 of 20 Final Draft 12/3/2013 2: 0	00 pm	

·			
	$\mathbf{U} = -\mathbf{p}\mathbf{E}\cos\boldsymbol{\theta}$	1⁄2	
	$= -8 \ge 60^{\circ} = -4J$	1/2	
	[Give full credit to alternative methods of finding Potential energy.]		2
17.	Part (a) and reason $\frac{1}{2} + \frac{1}{2}$ Part (b) and reason $\frac{1}{2} + \frac{1}{2}$		
	(a) de Broglie wavelength is given by		
	$\lambda = \frac{h}{\sqrt{2mqV}}$	1/2	
	As mass of proton < mass of deuteron and $q_p = q_d$ and v is same		
	$_{=>}\lambda p > \lambda_d$ for same accelerating potential.	1⁄2	
	(b) Momentum $= \frac{h}{\lambda}$	1⁄2	
	$\therefore \lambda_p > \lambda_d$		
	\therefore momentum of proton will be less , than that of deuteron	1⁄2	2
18.			
	(a) Estimation of no. of photons per second1(b) Plot showing the variation1		
	(a) Power = nhv , where n = no. of photons per second	1/2	
	$2.0 \ge 10^{-3} = n \times 6.6 \times 10^{-34} \times 6 \times 10^{14}$		
	$n = \frac{2.0 \times 10^{-3}}{6.6 \times 10^{-34} \times 6 \times 10^{14}}$		
	$= 0.050 \text{ x } 10^{17} = 5 \text{ x } 10^{15} \text{ photons / second}$	1/2	
	[Note: Even if the student doesn't write the formula but calculates correctly, give full credit to this part]		

20.			
	(i)Effect of em waves on health1(ii)Values displayed1(iii)Estimation of the range1		
	 (i) Electromagnetic radiations emitted by an antenna can cause (a) Cardiac problem 		
	(b) Cancer(c) Giddiness and headache	1	
	 (any one of the above / or any other effect on health) (ii) Scientific temperament, awareness (any one / any other correct value) 	1	
	(iii) Range = $\sqrt{2h_T R}$	1⁄2	
	$=\sqrt{2 \times 20 \times 6.4 \times 10^6} \text{ km}$		
	$=\sqrt{4 \times 64 \times 10^6} = 16 \text{ km}$	1⁄2	3
21.	Calculation of potential gradient2Determination of emf of primary cell1Current flowing in Potentiometer wire,		
	$I = \frac{V}{R + R'}$	1⁄2	
	$=\frac{6}{10+5}$ A = 0.4 A	1⁄2	
	Potential drop across the potentiometer wire		
	V = IR = 0.4 x 10 V = 4.0 V	1⁄2	
	Potential Gradient k = V/ ℓ = 4.0 V/m	1⁄2	
	∴ unknown emf of the cell (E) = $K\ell'$	1⁄2	
	= 4.0 x 0.4 V = 1.6 V	1⁄2	3

Delhi SET I Page 9 of 20

∴ potential difference		
	1⁄2	
$V = Ed = \frac{Qd}{A\varepsilon_0}$		
Capacitance $Q = \varepsilon_0 A$	1	
$C = \frac{Q}{V} = \frac{\varepsilon_0 A}{d}$		
(b) When the two charged spherical conductors are connected by a		
conducting wire, they acquire the same potential Kq_1 Kq_2 q_1 R_1	1⁄2	
i.e $\frac{Kq_1}{R_1} = \frac{Kq_2}{R_2} \implies \frac{q_1}{q_2} = \frac{R_1}{R_2}$		
Hence, ratio of surface charge densities $\sigma = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^2$		
$\frac{\sigma_1}{\sigma_2} = \frac{q_1 / 4\pi R_1^2}{q_2 / 4\pi R_2^2}$		
$=rac{q_1 R_2^2}{q_2 R_1^2}$		
$-\frac{1}{q_2R_1^2}$		
$= \frac{\frac{R_1}{R_2}}{\frac{R_2}{R_1}^2} \times \frac{\frac{R_2^2}{R_1^2}}{\frac{R_2}{R_1}} = \frac{R_2}{R_1}$	1/2	3
$= \frac{1}{R_2} \times \frac{1}{R_1^2} = \frac{1}{R_1}$		
25.		
(a) Statement of Ampere's circuital Law 1 ¹ / ₂		
(b) Calculation of net magnetic field		
(i) inside and (ii) outside 1 ¹ / ₂		
(a) Statement of law	1	
Expression of the law in integral form: $\vec{r} = \vec{r} \cdot \vec{r}$	1⁄2	
$\oint \vec{B} \cdot \vec{dl} = \mu_0 i$	/2	
(Award 1 mark if the student just writes the integral form of Ampere's	1/	
circuital law)	1⁄2	
(b) $B = \mu_0 n I$		
Magnitude of net magnetic field inside the combined system on the axis,		
$\mathbf{B} = \mathbf{B}_1 - \mathbf{B}_2$	1/2	
$\Rightarrow B = \mu_0(n_1 - n_2) I$		
Also accept if the student writes $B = \mu_0(n_2 - n_1) I$		
(iii)Outside the combined system, the net magnetic field is zero.	1⁄2	3

26.	1		
20.	Part (a) 1		
	Part (b) 1		
	Part (c) 1		
	(a) Microwaves $10^{10} \pm 10^{12}$ H	17	
	Frequency range: 10^{10} to 10^{12} Hz	$\frac{1/2}{1/2}$	
	[Note : If the student correctly identifies the name of the em wave award full marks.]	72	
	(b) Average surface temperature will be lower,		
	Because there will be no green house effect in absence of	1/2	
	atmosphere.	1/2	
	(c) Since electromagnetic waves carry both energy and momentum,	/2	
	therefore, they exert pressure on the surface on which they are	1	
	incident. (Award one mark for any other correct answer)	-	3
27.		- <u> </u>	
	(a) Derivation of the law of Radioactive decay $1\frac{1}{2}$		
	(a) Derivation of the law of Radioactive decay 1.72 (b) (i) Processes expressing β^+ decay $\frac{1}{2} + \frac{1}{2}$		
	(i) Identification as isotope / isobar $\frac{1}{2}$		
	(ii) identification as isotope / isobai /2		
	(a) $\frac{dN}{dt} = -\lambda N$	1⁄2	
	$\frac{dt}{dt} = -\lambda N$		
	$\int_{N_0}^{N} \frac{dN}{N} = \int_{0}^{t} -\lambda dt$		
	$[\log_e N]_{N_0}^N = -\lambda[t]_0^t$	1⁄2	
	$\log_e \frac{N}{N_0} = -\lambda t$	1/	
	$N = N_0 e^{-\lambda t}$	1⁄2	
	(b) $(22)^{22} + 22^{22} + 32^{22} $		
	(i) $^{22}_{11}Na \rightarrow ^{22}_{10}Ne + e^+ + v$	1/2	
	Also accept, if a student does not identify the product nucleus		
	and writes as		
	$^{22}_{11}Na \rightarrow ^{22}_{10}X + e^+ + v$		
	Basic process		
	$p \rightarrow n + e^+ + v$	1⁄2	
	(ii) Isobar	1⁄2	3

Delhi SET I Page 14 of 20

Delhi SET I Page 15 of 20

Final Draft 12/3/2013 2: 00 pm

Delhi SET I Page 18 of 20

