MARKING SCHEME

SET 55/1/1

Q. No.	Expected Answer / Value Points	Marks	Total Marks
1.	Magnitude of the drift velocity of charge carrier per unit Electric field is called mobility. Alternatively, $\mu=\frac{\left\|v_{d}\right\|}{E}$ or $\frac{e \tau}{m}$ SI unit $=\mathrm{m}^{2} /$ (volt second) or $\mathrm{ms}^{-1} \mathrm{~N}^{-1} \mathrm{C}$	$1 / 2$ $1 / 2$	1
2.	$\begin{aligned} \text { Modulation Index } & =\frac{a_{m}}{a_{c}} \\ & =1 / 2=0.5 \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
3.	If Electric field is not normal, it will have non-zero component along the surface. In that case, work would be done in moving a charge on an equipotential surface.	1	1
4.	Glass. In glass there is no effect of electromagnetic induction, due to presence of Earth's magnetic field, unlike in the case of metallic ball.	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
5.		1	1
6.	20 cm	1	1
7.	$\vec{F}=q(\vec{v} \times \vec{B})$ Perpendicular to the plane formed by \vec{v} and $\vec{B} / \vec{F} \perp \vec{v}$ and $\vec{F} \perp \vec{B}$ [Note: Give full credit for writing the expression.]	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
8.	X: Channel It connects the Transmitter to the Receiver	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & \hline \end{aligned}$	1

\begin{tabular}{|c|c|c|c|}
\hline 9. \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Identification of magnetic material \& \(1 / 2+1 / 2\) \\
Susceptibility \& \(1 / 2+1 / 2\) \\
\hline
\end{tabular} \\
A: Paramagnetic \\
B: Diamagnetic \\
Susceptibility \\
For A: positive \\
For B: negative
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2 \\
\& 1 / 2 \\
\& \\
\& 1 / 2 \\
\& 1 / 2
\end{aligned}
\] \& 2 \\
\hline 10. \& Finding flux in two cases
\[
\begin{aligned}
\phi \& =E A \cos \theta \\
\& =5 \times 10^{3} \times 10^{-2} \cos 0^{0} N C^{-1} \mathrm{~m}^{2} \\
\& =50 \mathrm{NC}^{-1} \mathrm{~m}^{2} \\
\phi \& =5 \times 10^{3} \times 10^{-2} \cos 60^{0} \mathrm{~N} C^{-1} \mathrm{~m}^{2} \\
\& =25 \mathrm{~N}^{-1} \mathrm{~m}^{2}
\end{aligned}
\] \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\) \& 2 \\
\hline 11. \& \begin{tabular}{l}
Explanation of the given statement \\
\(1+1\) \\
In the first case, the overlapping of the contributions of the wavelets from two halves of a single slit produces a minimum because corresponding wavelets from two halves have a path difference of \(\frac{\lambda}{2}\). \\
In the second case, the overlapping of the wavefronts from the two slits produces first maximum because these wavefronts have the path difference of \(\lambda\). \\
(Alternatively, if a student writes the conditions given below, give full credit.) \\
Condition for first minimum in single slit diffraction is, \(\theta \approx \lambda / \mathrm{a}\), Whereas in case of two narrow slits separated by distance a , first maximum occurs at angle \(\theta \approx \lambda / \mathrm{a}\) \\
[Note: Award 1 mark even if the candidate attempts this question partly.]
\end{tabular} \& 1

1 \& 2

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Alternatively, \(\sum \mathrm{i}=0\) \\
Justification : Conservation of charge \\
Loop rule: The Algebraic sum of changes in the potential around any closed loop involving resistors and cells in the loop is zero. \\
Alternatively, \(\Sigma \Delta \mathrm{V}=0\), where \(\Delta \mathrm{V}\) is the changes in potential \\
Justification : Conservation of energy
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$ \& 2

\hline 14. \& | Effect on glow of bulb in Part (i) 1
 Part (ii) 1 |
| :--- |
| (i) Reactance of the capacitor will decrease, resulting in increase of the current in the circuit. Therefore the bulb will glow brighter. |
| (ii) Increased resistance will decrease the current in the circuit, which will decrease glow of the bulb. |
| [Note : Do not deduct any mark for not giving the reasons.] | \& 1

1 \& 2

\hline 15. \& | Underlying principle 1
 Brief working 1 |
| :--- |
| It makes use of the principle that the energy of the charged particles / ions can be made to increase in presence of crossed Electric and magnetic fields. |
| A normal Magnetic field acts on the charged particle and makes them move in a circular path . While moving from one dee to another; particle is acted upon by the alternating electric field, and is accelerated by this field, which increases the energy of the particle. | \& 1

1 \& 2

\hline 16. \& | Calculation of Potential energy of the dipole $\begin{aligned} & \tau=\mathrm{pE} \sin \theta \\ & 4 \sqrt{3}=\mathrm{pE} \sin 60^{\circ}=p E \frac{\sqrt{3}}{2} \\ & \Rightarrow \mathrm{pE}=8 \end{aligned}$ |
| :--- |
| Potential energy | \& $1 / 2$

$1 / 2$ \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
U \& =-p E \cos \theta \\
\& =-8 \times \cos 60^{\circ}=-4 \mathrm{~J}
\end{aligned}
\] \\
[Give full credit to alternative methods of finding Potential energy.]
\end{tabular} \& \(1 / 2\)
\(1 / 2\) \& 2 \\
\hline 17. \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Part (a) and reason \& \(1 / 2+1 / 2\) \\
Part (b) and reason \& \(1 / 2+1 / 2\) \\
\hline
\end{tabular} \\
(a) de Broglie wavelength is given by
\[
\lambda=\frac{h}{\sqrt{2 m q V}}
\] \\
As mass of proton < mass of deuteron and \(q_{p}=q_{d}\) and \(v\) is same \(\Rightarrow \lambda p>\lambda_{d}\) for same accelerating potential. \\
(b) Momentum \(=\frac{h}{\lambda}\)
\[
\because \lambda_{\mathrm{p}}>\lambda_{\mathrm{d}}
\] \\
\(\therefore\) momentum of proton will be less, than that of deuteron
\end{tabular} \& \(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$

$1 / 2$ \& 2

\hline 18. \& | (a) Estimation of no. of photons per second |
| :--- |
| (b) Plot showing the variation |
| (a) Power $=n h v$, where $\mathrm{n}=$ no. of photons per second $\begin{aligned} 2.0 \times 10^{-3}= & n \times 6.6 \times 10^{-34} \times 6 \times 10^{14} \\ \mathrm{n} & =\frac{2.0 \times 10^{-3}}{6.6 \times 10^{-34} \times 6 \times 10^{14}} \\ & =0.050 \times 10^{17}=5 \times 10^{15} \text { photons / second } \end{aligned}$ |
| [Note: Even if the student doesn't write the formula but calculates correctly, give full credit to this part] | \& $1 / 2$

$1 / 2$ \&

\hline
\end{tabular}

	(b)	1	2
19.	$\begin{aligned} & \text { Finding maximum energy level of hydrogen at } \\ & \text { Calculation of wavelengths } \\ & \qquad E_{n}=\frac{-13.6}{n^{2}} \mathrm{eV} \end{aligned}$ Energy required to excite hydrogen atoms from ground state to the second excited state $\begin{aligned} & =\mathrm{E}_{\text {final }}-\mathrm{E}_{\text {initial }} \\ & =-1.51-(-13.6)=12.09 \mathrm{eV} \end{aligned}$ i.e. hydrogen atoms would be excited upto third energy level(i.e $n=3$) / second excited state.[Note : If the student just writes gaseous hydrogen is made up of the molecule or just writes the formula for E_{n}, award this $1 / 2$ mark.] Alternatively , For Lyman $\begin{aligned} & \frac{1}{\lambda}=\mathrm{R}\left[\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right] \\ & \frac{1}{\lambda}=1.097 \times 10^{7}\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}\right] \\ & \lambda=122 \mathrm{~nm} \end{aligned}$ For Balmer $\begin{aligned} & \frac{1}{\lambda}=1.097 \times 10^{7}\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right] \\ & \lambda=656.3 \mathrm{~nm} \quad[\text { Note : Also accept the answers given in terms of R only }] \end{aligned}$	$1 / 2$	3

\begin{tabular}{|c|c|c|c|}
\hline 20. \& \begin{tabular}{l}
(i) Effect of em waves on health \\
(ii) Values displayed \\
(iii) Estimation of the range \\
(i) Electromagnetic radiations emitted by an antenna can cause \\
(a) Cardiac problem \\
(b) Cancer \\
(c) Giddiness and headache \\
(any one of the above / or any other effect on health) \\
(ii) Scientific temperament, awareness (any one / any other correct value) \\
(iii)
\[
\begin{aligned}
\text { Range } \& =\sqrt{2 h_{T} R} \\
\& =\sqrt{2 \times 20 \times 6.4 \times 10^{6}} \mathrm{~km} \\
\& =\sqrt{4 \times 64 \times 10^{6}}=16 \mathrm{~km}
\end{aligned}
\]
\end{tabular} \& 1
1
1
\(1 / 2\)

$1 / 2$ \& 3

\hline 21. \& | Calculation of potential gradient 2
 Determination of emf of primary cell 1 |
| :--- |
| Current flowing in Potentiometer wire, $\begin{aligned} \mathrm{I} & =\frac{V}{R+R^{\prime}} \\ & =\frac{6}{10+5} \mathrm{~A}=0.4 \mathrm{~A} \end{aligned}$ |
| Potential drop across the potentiometer wire $\begin{aligned} \mathrm{V} & =\mathrm{IR} \\ & =0.4 \times 10 \mathrm{~V}=4.0 \mathrm{~V} \end{aligned}$ |
| Potential Gradient $\mathrm{k}=\mathrm{V} / \ell=4.0 \mathrm{~V} / \mathrm{m}$ $\begin{aligned} \therefore \text { unknown emf of the cell }(\mathrm{E}) & =\mathrm{K} \ell^{\prime} \\ & =4.0 \times 0.4 \mathrm{~V} \\ & =1.6 \mathrm{~V} \end{aligned}$ | \& $1 / 2$

$1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 3

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 23. \& \begin{tabular}{l}
(a) Explanation with the help of suitable diagram \\
(b) Effect of covering of lower half of the mirror \\
(a) \\
Magnification is non-uniform because the position of the image of different parts of the phone, depends on their location with respect to the mirror. From the figure it can be observed that whereas \(\mathrm{BC}=\mathrm{B}^{\prime} \mathrm{C}\), the images of the other parts of the phone , are getting magnified in accordance with their 'object distance' from the mirror. \\
(b) By covering the mirror with an opaque material, the area of the reflecting surface has been reduced (i.e. halved). Therefore, the intensity of the image is reduced to half. \\
(Award full marks even if student writes that there would be no effect on the size and / or position of the image.)
\end{tabular} \& 1

1
1
1 \& 3

\hline 24. \& | (a) Derivation of the expression of energy stored per unit volume |
| :--- |
| (b) Calculation of work done |
| (a) Work done by the source of potential, in storing an additional charge (dq) , is $\mathrm{dW}=\mathrm{V} . \mathrm{dq}$ |
| But $\quad V=q / C$ $\Rightarrow \quad \mathrm{dW}=\frac{q}{C} \mathrm{dq}$ |
| Total work done in storing the charge Q , $\int d W=\int_{0}^{Q} \frac{q}{C} d q$ | \& 1/2 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\(\therefore\) potential difference
\[
V=E d=\frac{Q d}{A \varepsilon_{0}}
\] \\
Capacitance
\[
\mathrm{C}=\frac{Q}{V}=\frac{\varepsilon_{0} A}{d}
\] \\
(b) When the two charged spherical conductors are connected by a conducting wire, they acquire the same potential
\[
\text { i.e } \frac{K q_{1}}{R_{1}}=\frac{K q_{2}}{R_{2}} \Rightarrow \frac{q_{1}}{q_{2}}=\frac{R_{1}}{R_{2}}
\] \\
Hence, ratio of surface charge densities
\[
\begin{aligned}
\frac{\sigma_{1}}{\sigma_{2}} \& =\frac{q_{1} / 4 \pi R_{1}{ }^{2}}{q_{2} / 4 \pi R_{2}{ }^{2}} \\
\& =\frac{q_{1} R_{2}{ }^{2}}{q_{2} R_{1}{ }^{2}} \\
\& =\frac{R_{1}}{R_{2}} \times \frac{R_{2}{ }^{2}}{R_{1}{ }^{2}}=\frac{R_{2}}{R_{1}}
\end{aligned}
\]
\end{tabular} \& 11/2 \& 3 \\
\hline 25. \& \begin{tabular}{l}
(a) Statement of Ampere's circuital Law \\
(b) Calculation of net magnetic field \\
(i) inside and (ii) outside \\
(a) Statement of law \\
Expression of the law in integral form:
\[
\oint \vec{B} \cdot \overrightarrow{d l}=\mu_{0} i
\] \\
(Award 1 mark if the student just writes the integral form of Ampere's circuital law) \\
(b) \(\mathrm{B}=\mu_{\mathrm{o}} \mathrm{n} \mathrm{I}\) \\
Magnitude of net magnetic field inside the combined system on the axis,
\[
\begin{aligned}
\& B=B_{1}-B_{2} \\
\Rightarrow \& B=\mu_{o}\left(n_{1}-n_{2}\right) I
\end{aligned}
\] \\
Also accept if the student writes \(B=\mu_{0}\left(n_{2}-n_{1}\right) I\) \\
(iii)Outside the combined system, the net magnetic field is zero.
\end{tabular} \& 1
\(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$ \& 3

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 26. \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Part (a) \& 1 \\
Part (b) \& 1 \\
Part (c) \& 1 \\
\hline
\end{tabular} \\
(a) Microwaves \\
Frequency range: \(10^{10}\) to \(10^{12} \mathrm{~Hz}\) \\
[Note : If the student correctly identifies the name of the em wave award full marks.] \\
(b) Average surface temperature will be lower , Because there will be no green house effect in absence of atmosphere. \\
(c) Since electromagnetic waves carry both energy and momentum, therefore, they exert pressure on the surface on which they are incident. (Award one mark for any other correct answer)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$
1 \& 3

\hline 27. \& | (a) Derivation of the law of Radioactive decay |
| :--- |
| (b) (i) Processes expressing β^{+}decay |
| (ii) Identification as isotope / isobar |
| (a) $\begin{gathered} \frac{d N}{d t}=-\lambda N \\ \int_{N_{0}}^{N} \frac{d N}{N}=\int_{0}^{t}-\lambda d t \\ {\left[\log _{\mathrm{e}} N\right]_{N_{0}}^{N}=-\lambda[t]_{0}^{t}} \\ \log _{e} \frac{N}{N_{0}}=-\lambda t \\ N=N_{0} e^{-\lambda t} \end{gathered}$ |
| (b) |
| (i) ${ }_{11}^{22} \mathrm{Na} \rightarrow{ }_{10}^{22} \mathrm{Ne}+e^{+}+v$ |
| Also accept, if a student does not identify the product nucleus and writes as ${ }_{11}^{22} N a \rightarrow{ }_{10}^{22} X+e^{+}+v$ |
| Basic process $\mathrm{p} \rightarrow n+e^{+}+v$ |
| (ii) Isobar | \& $1 / 2$

$1 / 2$
$1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 3

\hline
\end{tabular}

(a) Description of an experiment/activity showing the polarity of emf				
induce				
(b) Plots showing variation of				
(i)	Magnetic flux vs current			
(ii)	Induced emf vs dI/dt			
(iii)	Magnetic Potential energy vs current	$	$	(a)
:---	:---			
(a)				

Alternatively, When I is increasing at constant value. [Note : If the student draws induced emf vs $\frac{\boldsymbol{d I}}{\boldsymbol{d} t}$ graph of any shape, while keeping induced emf -ve, award this 1 mark.] (iii) Magnetic energy stored [Note: If a student writes only the mathematical formulae for these cases, award $1 / 2$ mark for each case]	1	5

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
 \\
[Note : Give credit of \(1 / 2\) mark for each case for writing the mathematical expressions without plotting the graphs.] \\
(b)A choke coil reduces the volatge across the fluorescent tube without wastage of power. \\
[Note : Award these \(1 / 2\) marks if the student gives any other significant reason.]
\end{tabular} \& \(1 / 2\) \& 5 \\
\hline 30 \& \begin{tabular}{l}
(a) Processes involved in the formation of depletion region \\
(b) Circuit diagrams
\[
1 / 2+1 / 2
\] \\
V-I characteristics in forward biasing and reverse biasing \(1 / 2+1 / 2\) Use of the characteristics in rectification \\
Two processes involved during the formation of \(\mathrm{p}-\mathrm{n}\) junction are diffusion and drift. Due to the concentration gradient, across \(p\) and \(n\) sides of the junction, holes diffuse from \(\mathrm{p} \rightarrow \mathrm{n}\), and electrons from \(\mathrm{n} \rightarrow \mathrm{p}\). This movement of charge carriers leaves behind ionised acceptors on the p-side and donors on the n - side of the junction. This space charge region on either
\end{tabular} \& 1

1 \&

\hline
\end{tabular}

	nearly 0.6 volt and 1.0 volt.] (c) When a small sinusoidal voltage is superposed on the dc base bias , the base current will have sinusoidal variation superimposed on the value of I_{B} As a consequence , the collector current also will have sinusoidal variations, superimposed on the value of I_{C}, producing corresponding (amplified) changes in the value of V_{0}. ac current gain $\beta_{a c}=\left(\frac{\Delta I_{c}}{\Delta I_{b}}\right)_{V_{C E}}$	$11 / 2$	5

