CHEMISTRY MARKING SCHEME

SET -56/1/1

Qu es.	Value points	Marks
1	2	1
2	It is a process of removing a dissolved substance from a colloidal solution by means of diffusion through a suitable membrane.	1
3	Hexaamninenickel (II) chloride	1
4	CH ₃ - CH ₂ - CH - CH ₂ - CHO CH ₃	1
5	$ArN_2Cl + H_3PO_2 + H_2O \longrightarrow ArH + N_2 + H_3PO_3 + HCl$ (where Ar is C_6H_5)	1
6.	The external pressure which is applied on solution side to stop the flow of solvent across the semi-permeable membrane.	1
	The osmotic pressure is directly proportional to concentration of the solution. / π = CRT	1
7.	The half-life of a reaction is the time in which the concentration of a reactant is reduced to one-half of its initial concentration.	1
8.	Rate constant is the rate of reaction when the concentration of the reactant is unity.	1+1
	i) Ke ii) F	
9	Disproportionation: The reaction in which an element undergoes self-oxidation and self-	1
	reduction simultaneously. For example –	
	$2Cu^{+}(aq) \longrightarrow Cu^{2+}(aq) + Cu(s)$	1
	(Or any other correct equation)	
	OR	
9	i) Due to presence of unpaired electrons in d-orbitals.ii) Due to incomplete filling of d-orbitals.	1 1
10	,	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/2

	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
11	 i) The defect in which equal number of cations and anions are missing from the lattice. ii) Due to dislocation of smaller ion from its normal site to an interstitial site. iii) Anionic vacancies are occupied by unpaired electron. 	1 1 1
12	i) $\Delta T_f = K_f m$ $\Delta T_f = K_f \frac{w_B \times 1000}{M_B \times w_A}$	1/2 1/2
	$\Delta T_f = \frac{1.86 K kg mol^{-1} x 45g x 1000 g kg^{-1}}{60g mol^{-1} x 600 g}$ $\Delta T_f = 2.325 K \text{ or } 2.325^0 \text{C}$ ii) $T_f^0 - T_f = 2.325^0 \text{C}$ $O^0 \text{C} - T_f = 2.325^0 \text{C}$ $T_f = -2.325^0 \text{C} \text{ or } 270.675 \text{ K}$	1
13	$\log \frac{k_2}{k_1} = \frac{E_{\rm a}}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$	1
	$\log \frac{0.07}{0.02} = \left(\frac{E_{\rm a}}{2.303 \times 8.314 \text{J}K^{-1} \text{mol}^{-1}}\right) \left[\frac{700 - 500}{700 \times 500}\right]$	1
	$0.544 = E_a \times 5.714 \times 10^{-4}/19.15$ $E_a = 0.544 \times 19.15/5.714 \times 10^{-4} = 18230.8 \text{ J}$	1
14	i) The movement of colloidal particles under an applied electric potential towards oppositely charged electrode is called electrophoresis.	1
	ii) The accumulation of molecular species at the surface rather than in the bulk of a solid or liquid is termed adsorption.	1
	reactant and product molecules is called shape-selective catalysis.	
15	i) The impure metal is evaporated to obtain the pure metal as distillate.	1
	ii) This method is based on the principle that the impurities are more soluble in the melt than in	1
	the solid state of the metal. iii) The impure metal is made to act as anode. A strip of the same metal in pure form is used as cathode. They are put in a suitable electrolytic bath containing soluble salt of the same metal. The more basic metal remains in the solution and the less basic ones go to the anode mud. OR	1

15	$3\text{Fe}_2\text{O}_3 + \text{CO} \rightarrow 2\text{Fe}_3\text{O}_4 + \text{CO}_2$	½ x 4
	(Iron ore)	= 2
	$Fe_3O_4 + CO \rightarrow 3FeO + CO_2$	
	$CaCO_3 \rightarrow CaO + CO_2$	
	(Limestone)	
	$CaO + SiO_2 \rightarrow CaSiO_3$ (Slag)	
	$FeO + CO \rightarrow Fe + CO_2$	
	$C + CO_2 \rightarrow 2CO$	
	Coke	
	$C + O_2 \rightarrow CO_2$	
	FeO + C → Fe + CO (any four correct equations)	
	Cast iron has lower carbon content (about 3%) than pig iron / cast iron is hard & brittle whereas pig iron is soft.	1
16	The steady decrease in atomic radii from La to Lu due to imperfect shielding of 4f – orbital.	1
	Consequences – Nombous of third transition social have almost identical radii as corresponding membous	
	i) Members of third transition series have almost identical radii as coresponding members of second transition series.	
	ii) Difficulty in separation.	1+1
	n) Difficulty in Separation.	111
17	a) Linkage isomerism	1
	b) Optical isomerism	1
	c) Cis - trans / Geometrical isomerism	1
18	a) Butan -2 – ol	1
	b) 2 – bromotoluene	1
19	c) 2, 2-dimethylchlorpropane i)	1
19		1
	$CH_3CH = CH_2 + H_2O \xrightarrow{H^+} CH_3 - CH - CH_3$	1
	ii) OH	
	CH ₂ CI CH ₂ ONa CH ₂ OH	
	+ NaOH — H ⁺	1
	-HCI	1
	iii)	
	Br ₂ in	
	Ethanoic acid +	
	Anisole	1
20	Br	1
20	СООН	1/2 +
		1/2
	A – Benzoic acid	
	A – Benzoic acid	

	CONIL	
	CONH ₂	1/2 +
		1/2
	B – Benzamide	
	NH,	
	C - Aniline	1/2 +
		1/2
21	Fat soluble vitamin- Vitamin A, D	1/2+1/2
	Water soluble vitamin-Vitamin B,C	1/2+1/2
	Vitamin K	1
22	i)	1/2 +
	$CH_2 = CH - CH = CH_2$ and $C_6H_5CH=CH_2$	1/2
	1, 3-Butadiene Styrene	
	ii)	
	CI	1/2 +
	CH ₂ =C-CH=CH ₂	1/2
	Chloroprene /2-Chloro-1, 3-butadiene	
	Property /2 division 1, 5 bactariene	
	iii)	
		1/2 +
	$CF_2 = CF_2$	1/2
	Tetrafluoroethene	
23	i) Aspartame, Saccharin (any one)	1
	ii) No	1
2.1	iii) Social concern, empathy, concern, social awareness (any 2)	2
24	a)i)Molar conductivity of a solution at a given concentration is the conductance of the volume <i>V</i>	1
	of solution containing one mole of electrolyte kept between two electrodes with area of cross	
	section A and distance of unit length.	
	ii) Secondary battery- can be recharged by passing current through it in opposite direction so that	1
	it can be used again.	
	iii) Galvanic cells that are designed to convert the energy of combustion of fuels like hydrogen,	1
	methane, methanol, etc. directly into electrical energy are called fuel cells.	
	b)i) The amount of chemical reaction which occurs at any electrode during electrolysis by a	1
	current is proportional to the quantity of electricity passed through the electrolyte (solution or melt).	1
	ii) Limiting molar conductivity of an electrolyte can be represented as the sum of the individual	
	contributions of the anion and cation of the electrolyte.	1
	OR	
	VII.	

24	a) Degree of dissociation is the extent to which electrolyte gets dissociated into its constituent	1
24	ions.	1
	$\alpha = \frac{\Lambda_m}{\Lambda_m^{\circ}}$	
	$I_{\mathbf{m}}$	
	b) E^{0} cell = $E^{0}_{Ag+/Ag}$ - $E^{0}_{Ni2+/Ni}$ = $0.80V - 0.25V$	
	= 0.80 V - 0.23 V = 0.55 V	1/2
		1/2
	$\log K_{\rm c} = \left(\frac{nE^0 cell}{0.059}\right)$	
	$=\frac{2x0.55V}{0.059}$	1/2
	$\log K_c = 18.644$	1/2
	$\Delta G^0 = - nFE^0 cell$	/2
	$= -2x96500 \text{ Cmol}^{-1} \times 0.55\text{V}$	1
	$=-106,150 \text{ Jmol}^{-1}$	
	$Max.work = +106150 \text{ Jmol}^{-1} \text{ or } 106.150 \text{ Jmol}^{-1}$	
25	$_{\rm a)\ i)}$ 3Cu + 8 HNO ₃ (dilute) \rightarrow 3Cu(NO ₃) ₂ + 2NO + 4H ₂ O	1
	$_{ii)}P_4 + 3NaOH + 3H_2O \rightarrow PH_3 + 3NaH_2PO_2$	
	b) i) Due to absence of d-orbital, nitrogen cannot expand its valency beyond four.	1
	ii) Because of $p\pi - p\pi$ multiple bonding in dioxygen which is absent in sulphur.	1
	iii) Due to excitation of electron by absorption of radiation from visible region.	1
25	$\frac{OR}{a) i)} 2Ca(OH)_2 + 2Cl_2 \rightarrow Ca(OCl)_2 + CaCl_2 + 2H_2O$	1
		1
	$_{\rm ii)}$ C + 2H ₂ SO ₄ (conc.) \rightarrow CO ₂ + 2 SO ₂ + 2 H ₂ O	
	b) It is manufactured by Contact Process which involves following steps:	
	i) burning of sulphur or sulphide ores in air to generate SO ₂ .	
	ii) conversion of SO_2 to SO_3 by the reaction with oxygen in the presence of a catalyst (V_2O_5)	
	iii) absorption of SO_3 in H_2SO_4 to give <i>Oleum</i> ($H_2S_2O_7$). The oleum obtained is diluted to give	1
	sulphuric acid	1
	$2SO_2(g) + O_2(g) \xrightarrow{V_2O_5} 2SO_3(g)$	
	Reaction condition – pressure of 2 bar and temperature of 720 K	
	Catalyst used is V_2O_5	1
	Yield – 96 – 98% pure	
26	a) i) Carboxylic acids lose carbon dioxide to form hydrocarbons when their sodium salts are	1
	heated with sodalime (NaOH and CaO).	
	NaOH & CaO	
	$R-\frac{\text{COONa}}{\text{Heat}} \rightarrow R-H + \text{Na}_2\text{CO}_3$	
	ii) When the alkyl / acyl group is introduced at ortho and para positions by reaction	
	with alkyl halide / acyl halide in the presence of anhydrous aluminium chloride (a Lewis	
	acid) as catalyst.	

1 OCH, OCH, OCH₃ (Note: Award full marks if correct equation is given) b) i) COOH COCI CHO 1 H₂/Pd-BaSO₄ ii) NO₂ NO₂ 1 1 $CH_3CH_2OH \xrightarrow{CrO_3} CH_3-CHO \xrightarrow{\text{dil. NaOH}} CH_3-CH-CH_2-CHO$ (or any other correct method) OR i) When the acyl groups are introduced at ortho and para positions by reaction with acyl halide in the 1 26 presence of anhydrous aluminium chloride (a Lewis acid) as catalyst. + H_3C -C-Cl $\xrightarrow{Anhyd. AlCl_3}$ ii) Aldehydes and ketones having at least one ∝-hydrogen undergo a reaction in the presence of dilute alkali as catalyst to form \propto -hydroxy aldehydes (aldol) or \propto -hydroxy ketones (ketol), 1 respectively. $2 \text{ CH}_3\text{-}\overrightarrow{\text{CHO}} \xrightarrow{\text{dil. NaOH}} \text{CH}_3\text{-}\text{CH-CH}_2\text{-}\overrightarrow{\text{CHO}}$ (Note: Award full marks if correct equation is given) b)i) 1 ΟН

ii)	
O_2N_{χ}	
СНО	1
iii) CH₃COCI	1