MARKING SCHEME

SET 55/2/1

Q. No.	Expected Answer / Value Points	Marks	Total Marks
1.	Anticlockwise / a d c b a	1	1
2.	It is an equipotential surface, [alternatively if the electric field were not normal to the surface, then it would have a component along the surface which would cause work to be done in moving a charge on an equipotential surface.]	1	1
3.	When a charge of 1 C , moving with velocity $1 \mathrm{~m} / \mathrm{s}$, normal to the magnetic field, experiences a force of 1 N , magnetic field is said to be one tesla.	1	1
4.	It is due to conversion of neutron to proton or proton to neutron inside the nucleus. Alternatively:- $\begin{aligned} & { }_{Z}^{A} \mathrm{X} \rightarrow \beta^{-}+{ }_{Z+1}^{A} \mathrm{Y}+\bar{v} \\ & { }_{Z}^{A} \mathrm{X} \rightarrow \beta^{+}+{ }_{Z-1}^{A} \mathrm{Y}+\bar{v} \end{aligned}$	1	1
5.	Microwave < Infrared < Ultraviolet < γ - rays	1	1
6.	Negative; As charge is displaced against the force exerted by the field.	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
7.	Increase in intensity of the incident radiation corresponds to an increase in the number of incidents photons, resulting in the an increase in the number of photo electrons emitted.	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
8.	$\begin{aligned} & \frac{\sin i}{\sin r}=\mu \\ & \frac{\sin 60^{\circ}}{\sin r}=\sqrt{3} \quad \text { gives } r=30^{\circ} \end{aligned}$ (Note: if a student just gives the answer $\mathbf{3 0}^{\mathbf{}}$, award this 1 mark.)	$1 / 2$ $1 / 2$	1
9.	Calculation of resultant magnetic field $11 / 2$ Direction $1 / 2$$B=\frac{\mu_{0} I r^{2}}{2\left(r^{2}+x^{2}\right)^{3 / 2}}$ Net field at $\mathrm{O}, B_{0}=\sqrt{2} B=\frac{\sqrt{2} \mu_{0} I r^{2}}{2\left(r^{2}+x^{2}\right)^{3 / 2}}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	

	For small $\operatorname{loop}(r \ll x), B_{0}=\frac{\sqrt{2} \mu_{0} I}{2 x^{3}}$ Direction of B_{0} is at 45° with the axis of any of the two loops.	$1 / 2$ $1 / 2$	2
10.	Derivation of current flowing through capacitor To show current leads voltage $11 / 2$ If $V=V_{0} \sin \omega t$ $q=C V=C V_{0} \sin \omega t$ $I=\frac{d q}{d t}=\omega C V_{0} \cos \omega t$ Or $\mathrm{I}=\omega C V_{0} \sin \left(\omega t+\frac{\pi}{2}\right)$ So, the current leads the applied voltage, in phase by $\pi / 2$.	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2
11.	Two points of difference $\quad 1+1$Diamagnetic Paramagnetic 1. Weakly repelled by external magnetic field. 1. Weakly attracted by magnetic field. 2. Align perpendicular to the field 2. Align parallel to the field. 3. Move from stronger to weaker region. 3. Move from weaker to stronger region. 4. Not affected by temperature 4. Affected by temperature. 5. Susceptibility < 5. Susceptibility >0 6. Permeability $\mu_{r}<1$ 6. Permeability $\mu_{r}>1$ (Any two points of difference)	$1+1$	2
12.	Calculation of charge 2$\begin{aligned} & \mathrm{I}=\frac{2 \mathrm{~V}}{30 \Omega}=\frac{1}{15} \mathrm{~A} \\ & V=I R=\frac{2}{3} \mathrm{~V} \\ & q=C V=4 \mu C \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2+1 / 2$	2

15.	Definition 1 Block Diagram of modulator 1 Process of (appropriate) superimposition of low frequency message signal, over a high frequency carrier wave, is called a Modulation. (Note: Award this 1 mark if the student just draws the boxes and writes their functions without writing any mathematical expressions.)	1	2
16.	a) Explanation 1 b) Schematic Diagram 1 a) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field. The oscillating electric and magnetic fields regenerate each other, and this results in the production of e-m waves in space. b)	1	2
17.	Energy level diagrams for n \& p type Marking of donor \& acceptor level $1 / 2+1 / 2$ $1 / 2+1 / 2$		
	reign SET I Page 4 of 18 Final Draft 12/3/2014		

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
- Sky wave propagation is due to ionospheric reflection of radio waves back to the earth. \\
- Space wave propagation is by line of sight propagation ,directly between transmitter to receiver / or by satellite. \\
- Frequency Range of sky wave - few MHz to 40 MHz \\
- Frequency Range of space wave - above 40 MHz
\end{tabular} \& \begin{tabular}{l}
\[
1 / 2+1 / 2
\] \\
\(1 / 2\) \\
\(1 / 2\) \\
\(1 / 2\) \\
\(1 / 2\)
\end{tabular} \& 3 \\
\hline 23. \& \begin{tabular}{l}
a) Description with the help of diagram \(11 / 2\) \\
b) Derivation of expression \\
(a) Diagram \\
This experiment confirms the wave nature of electron.
\end{tabular} \& 1

$1 / 2$ \&

\hline \& reign SET I Page 9 of 18 Final Draft 12/3/2014 \& 4:23 PM \&

\hline
\end{tabular}

	$\begin{aligned} & \text { (b) } \lambda=\frac{h}{p}=\frac{h}{\sqrt{2 m K}} \\ & \because \quad \text { But K }=\text { K.E. }=\mathrm{eV} \\ & \therefore \quad \lambda=\frac{h}{\sqrt{2 m e V}} \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$	3
24.	a) Two values displayed by Puja and her father b) Stating the phenomenon$1+1$ 1 (a) Any one of the values displayed by Puja - curiosity / observation etc. Any one of the values displayed by father - concern / knowledge / sense of duty etc. (b) Interference of sunlight due to the soap bubble.	1 1 1	3
25.	a) Reason of heavily doping of p and n sides $\quad 1$ b) Circuit diagram Working (a) Due to heavy doping, the depletion layer become very thin and electric field, across the junction, becomes very high even for a small reverse bias voltage. (b) Circuit diagram Any increase/ decrease in the input voltage results in increase/ decrease of the	1	
	Foreign SET I Page 10 of 18 Final Draft 12/3/2014	P	

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
voltage drop across \(\mathrm{R}_{\mathrm{s}}\), without any change in the voltage across the Zener diode. \\
OR \\
a) Fabrication of photodiode \\
1 \\
b) (i) Working of photo diode \\
(ii) V - I characteristics \\
1 \\
(a) Photo diode is fabricated with a transparent window to allow light to fall on the diode. \\
(b) (i) \\
Working:- When reversed biased photo diode is illuminated with light of energy greater than the forbidden energy gap (Eg), electron hole pairs are generated in, or near, the depletion region. Due to junction field, electrons are collected on the \(n\)-side and holes on p -side, giving rise to a potential difference. \\
(b)(ii)
\[
\mathrm{I}_{2}>\mathrm{I}_{1}
\]
\end{tabular} \& 1

1 \& 3

\hline 26. \& | i) Distinction | 1 |
| :--- | :--- |
| ii) Polaroid \& its working | $1 / 2+1 / 2$ |
| iii) Polarization of sunlight - explanation | 1 | \& \&

\hline \& oreign SET I Page 11 of 18 Final Draft 12/3/2014 \& P \&

\hline
\end{tabular}

28.
a) Expression for total energy of electron
3
b) Calculation of wavelengths

$$
\begin{aligned}
& \text { a) } m v r=\frac{n h}{2 \pi} \\
& \frac{m v^{2}}{r}=\frac{1}{4 \pi \epsilon_{o}} \frac{e^{2}}{r^{2}} \\
& r=\frac{e^{2}}{4 \pi \epsilon_{o} m v^{2}} \\
& r=\frac{z e^{2}}{4 \pi \epsilon_{o} m\left(\frac{n h}{2 \pi m r}\right)^{2}} \\
& \Rightarrow r=\frac{\epsilon_{o} n^{2} h^{2}}{\pi m e^{2}}
\end{aligned}
$$

$$
\text { Potential energy } \mathrm{U}=-\frac{1}{4 \pi \epsilon_{o}} \cdot \frac{e^{2}}{r}
$$

$$
=-\frac{m e^{4}}{4 \epsilon_{o} n^{2} h^{2}}
$$

$$
\mathrm{KE}=\frac{1}{2} m v^{2}=\frac{1}{2} m\left(\frac{n h}{2 \pi m r}\right)^{2}
$$

$$
=\frac{n^{2} h^{2} \pi^{2} m^{2} e^{4}}{8 \pi^{2} m \epsilon_{o}{ }^{2} n^{4} h^{4}}
$$

$$
\mathrm{KE}=\frac{m e^{4}}{8 \epsilon_{o}^{2} n^{2} h^{2}}
$$

$$
\mathrm{TE}=\mathrm{KE}+\mathrm{PE}
$$

$$
=-\frac{m e^{4}}{8 \epsilon_{o}^{2} n^{2} h^{2}}
$$

(Note: If a candidate does not use Bohr's postulates and writes the final expression for the energy in terms of r award 1 mark.)
b) Rydberg formula :For first member of Lyman series

$$
\begin{aligned}
& \frac{1}{\lambda}=R\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right) \\
& \lambda=\frac{4}{3 R}
\end{aligned}
$$

For first member of Balmer Series
$\frac{1}{\lambda}=R\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)$

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Alternatively: \\
Also accept if the student takes \(\mathrm{N}=25 \% \mathrm{~N}_{\mathrm{o}}=\frac{1}{4} \mathrm{~N}_{\mathrm{o}}\) and does the calculations as follows.
\end{tabular} \& \(1 / 2\)

$1 / 2$

$1 / 2$
$1 / 2$ \& 5

\hline 29. \& | (a) Principle of potentiometer $1 / 2$
 \quad Definition of potential gradiant $1 / 2$
 Expression for potential gradiant
 (b) Determination of 1
 i. $\frac{e_{1}}{e_{2}}$ $11 / 2$
 ii. Position of null point for cell E E_{1} only $11 / 2$ |
| :--- |
| (a) Principle: When a steady current flows through a wire of uniform cross -section, the potential drop across any segment is directly proportional to the length of the segment of the wire i.e. $\mathrm{V} \propto l$ |
| Potential gradiant is the potential drop across the wire per unit length of the wire i.e. $K=\frac{V}{l}$ |
| Potential gradient $\mathrm{K}=\frac{V}{l}=\frac{I R}{l}$ | \& $1 / 2$

$1 / 2$

$1 / 2$ \&

\hline \& Foreign SET I Page 15 of 18 Final Draft 12/3/2014 \& 3 P \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{K}=\frac{I \rho \frac{l}{A}}{l} \\
\& \mathrm{~K}=\frac{I \rho}{A}
\end{aligned}
\] \\
(b) (i) \(\frac{e_{1}-e_{2}}{e_{1}+e_{2}}=\frac{120}{300}=\frac{2}{5}\)
\[
\frac{e_{1}}{e_{2}}=\frac{7}{3}
\] \\
(ii) \(\frac{e_{1}+e_{2}}{e_{1}}=\frac{300}{x}\)
\[
\Rightarrow x=210 \mathrm{~cm}
\] \\
(where \(x\) is the position of null point with cell \(e_{1}\) only.) \\
OR \\
(a) Drift velocity - The average velocity gained by free electrons, when a unit electric field is applied across the conductor.
\[
\begin{aligned}
\& I=n e A v_{d} \\
\& =n e A \frac{e E}{m} \tau
\end{aligned}
\] \\
\(\therefore\) current density \(\mathrm{J}=\frac{\mathrm{I}}{A}=\frac{n e^{2} E \tau}{m}\) \\
(b) \(P=I^{2} R\) \\
Current flowing through the resistance \(2 \Omega\)
\[
I=\sqrt{\frac{200}{2}}=10 \mathrm{~A}
\] \\
\(\therefore\) Potential drop across the \(2 \Omega\) resistor \(=20 \mathrm{~V}\) \\
Therefore Potential across parallel combination of \(40 \Omega\) and \(10 \Omega=80 \mathrm{~V}\) \\
Current through \(5 \Omega ; I=\frac{80}{10} \mathrm{~A}=8 \mathrm{~A}\) \\
\(\therefore\) Power dissipated in the \(5 \Omega\) resistor \(=(8)^{2} X 5 W=320 \mathrm{~W}\)
\end{tabular} \& \(1 / 2\)

1
1
$1 / 2$
1
1
$1 / 2$
$1 / 1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
1
1 \& 5

\hline \& ign SET I Page 16 of 18 Final Draft 12/3/2014 \& 3 P \&

\hline
\end{tabular}

30.	(a) Labelled ray diagram Considerations required in selection of lenses (i) for large magnifying power (ii) high Resolution (b) Calculation of the distance between objective and eye piece 2 (a) Alternatively (Note : deduct 1 mark for not labelling of the diagram) For large magnifying power f_{0} should be large and f_{e} should be small. For higher resolution diameter of the objective should be large. (b) $\frac{1}{v_{0}}-\frac{1}{u_{0}}=\frac{1}{f_{0}}$ $\begin{aligned} & \frac{1}{v_{0}}=\frac{1}{f_{0}}+\frac{1}{u_{0}}=\frac{1}{1.25}-\frac{1}{2.5}=\frac{1}{2.5} \\ & v_{0}=2.5 \mathrm{~cm} \\ & L=\left\|f_{0}\right\|+\left\|f_{e}\right\| \quad\left(\because v_{o}=f_{o}\right) \\ & \quad=(2.5+5.0) \mathrm{cm}=7.5 \mathrm{~cm} \end{aligned}$	2	
	Foreign SET I Page 17 of 18 Final Draft 12/3/2014	23	

