MARKING SCHEME SET 55/1/1 (Compartment)

ON-	SET 55/1/1 (Compartment)				
Q.No.	Expected Answer/Value Points	Marks	Total Marks		
1.	i. The two point charges $(q_1 \text{ and } q_2)$ should be of opposite nature.	1/2			
	ii. Magnitude of charge q_1 must be greater than that of charge q_2	1/2	1		
2.	Random motion of free electrons gets directed towards the point at a higher	1			
	potential.				
	Alternatively:		1		
	Random motion becomes a (partially) directed motion.				
3.	Diamagnetic material	1/2			
	$\mu_r = 1 + \chi_m$	1⁄2	1		
4.	Due to the heating effect of eddy currents set up in the metallic piece.	1	1		
5.	Effective power $\alpha \frac{1}{\lambda^2}$	1			
	(Alternatively: Effective power radiated decreases with an increase in		1		
	wavelength.)		1		
6.	Communication System				
0.					
	Information Message Transmitted Received User of				
	Information Source Signal Transmitter Signal Channel Receiver Message Information				
	Signal Signal				
		1			
	Noise				
	Alternatively: Also accept if the student gives only the following diagram:				
	Message Transmitter Receiver				
	Signal		1		
7.	Two monochromatic sources, which produce light waves, having a constant phase	1	1		
	difference, are known as coherent sources.				
8.	When a constant current flows through a wire, the Potential difference, between	1			
	any two points on the wire of uniform cross section, is directly proportional to the				
	length of the wire between these points.				
	<u>Alternatively:</u>				
-	$V \alpha \ell or dV/d\ell = \text{constant}$		1		
9	Charges on the inner and outer surfaces $\frac{1}{2} + \frac{1}{2}$				
	Expression for electric field 1				
	Charge on inner surface : - Q	1/2			
	Charge on outer surface $: +Q$	1/2			
		, 2			
	Electric field at point P ₁				
	$E = \frac{1}{4\pi\varepsilon_o} \frac{Q}{r_1^2}$	1			
	$4\pi\varepsilon_0 r_1^2$		2		

14			
14.	Obtaining the expression for the torque 2		
	Equivalent magnetic moment of the coil		
	$ \vec{m} = IA\hat{n} \therefore \vec{m} = I\ell b\hat{n} $	1⁄2	
	$(\hat{n} = \text{unit vector } \perp \text{ to the plane of the coil})$		
	$\therefore \text{Torque} = \vec{m} \times \vec{B}$	1⁄2	
	$= \operatorname{I}\ell b\hat{n} \times \vec{B}$	$\frac{1/2}{1/2}$	
	= 0 (as \hat{n} and \vec{B} are parallel or antiparallel, to each other) [Note: Also give credit, when student obtains the relation $\tau = mBsin\theta$, and substitutes $\theta = 0$ or 180° and writes $\tau = 0$]	,2	2
15.	Drawing the two plots $\frac{1}{2} + \frac{1}{2}$ Explanation of Behaviour $\frac{1}{2} + \frac{1}{2}$		
	(i) Conductor (ii) Semiconductor		
	$\rho = \frac{m}{ne^{2}\tau}$	1/2 + 1/2	
	In conductors, average relaxation time decreases with increase in temperature, resulting in an increase in resistivity.	1⁄2	
	In semiconductors, the increase in number density (with increase in temperature) is more than the decrease in relaxation time; the net result is, therefore, a decrease in resistivity.	1⁄2	2
16.	Calculation of		
	i.emf induced in the arm PQ1ii.Current induced in the loop1		
	i. emf induced	1⁄2	
	$e = B\ell\nu = 0.1 x 10 x 10^{-2} x 20 V$		
	= 0.2 volt	1⁄2	
	ii. Current in the loop $i = \frac{e}{a}$	1⁄2	
	$i = \frac{e}{R}$ $= \frac{0.2}{2} A = 0.1 A$	1⁄2	2

17			
17.	Explanation of parts (i) and (ii) 1+1		
	(i) Intensity of incident radiation I = nhv, where n is number of photons incident per unit time per unit area. For same intensity of two monochromatic radiations of frequency v_1 and v_2 $n_1hv_1 = n_2hv_2$ As $v_1 > v_2$	1⁄2	
	$\Rightarrow n_2 > n_1$ Therefore the number of electrons emitted for monochromatic radiation of frequency v_2 , will be more than that for radiation of frequency v_1 [Alternatively: Also accept if the student says that, for same intensity of incident radiation, the number of emitted electrons is same for each of the two frequencies of incident radiation.]	1⁄2	
	(ii) $hv = \phi_o + K_{max}$ \therefore For given ϕ_o (work function of metal) K_{max} increases with v	1⁄2	
	* Maximum Kinetic energy of emitted photoelectrons will be more for monochromatic light of frequency v_1 (as $v_1 > v_2$)	1⁄2	2
18.	Obtaining the expression for total work done 2		
	Work done in bringing the charge q_1 from infinity to position r_1 $W_1 = q_1 V(r_1)$ work done in bringing charge q_2 to the position r_2	1⁄2	
	$W_2 = q_2 V(r_2) + \frac{q_1 q_2}{4\pi\varepsilon_0 r_{12}}$ Hence, total work done in assembling the two charges	1/2 +1/2	
	$W = W_1 + W_2$ = $q_1 V(r_1) + q_2 V(r_2) + \frac{q_1 q_2}{4\pi \varepsilon_0 r_{12}}$ OR	1⁄2	2
	Derivation of relation between Electric field and potential gradient1Two important conclusions $\frac{1}{2} + \frac{1}{2}$		
	Work done in moving a unit positive charge along distance $\delta \ell$ $ E_l \ \delta \ell = V_A - V_B$ $= V - (V + \delta V)$	1⁄2	
	$= - \frac{\delta V}{E} = - \frac{\delta V}{\delta \ell}$	1⁄2	
	 (i) Electric field is in the direction in which the potential decreases steepest. (ii) Magnitude of Electric field is given by the change in the magnitude of 	1⁄2	
	potential per unit displacement, normal to the equipotential surface at the point.	1⁄2	
			2

10			
19.	Finding the ratio of		
	i. Net capacitance 1 ¹ / ₂		
	ii. Energy stored 1 ¹ / ₂		
	(i) Net capacitance before filling the gap with dielectric slab		
	$C_{initial} = C_1 + C_2 = 2 C_2 + C_2 = 3C_2$	1⁄2	
	Net capacitance after filling the gap with dielectric slab of dielectric constant 'K'		
	$C_{\text{final}} = \mathbf{K}\mathbf{C}_1 + \mathbf{K}\mathbf{C}_2 = 2\ \mathbf{K}\mathbf{C}_2 + \mathbf{K}\mathbf{C}_2 = 3\mathbf{K}\mathbf{C}_2$	1⁄2	
	Ratio of net capacitance, $\frac{C_{\text{initial}}}{C_{\text{final}}} = \frac{3C_2}{3KC_2} = \frac{1}{K}$	1/	
	ofinal Sho ₂ k	1⁄2	
	(ii) Energy stored in the combination before introduction of dielectric slab		
	$U_{initial} = \frac{Q^2}{3C_2}$	1/2	
		/ _	
	Energy stored in the combination after introduction of dielectric slab		
	Q^2		
	$U_{final} = \frac{Q^2}{3KC_2}$	1⁄2	
	Ratio of energy stored		
	$\frac{U_{initial}}{U_{final}} = \frac{K}{1}$	1/	
	$U_{final} = 1$	1⁄2	3
	[Note: Accept any other alternative correct method for part (ii).)		5
20.			
	a) Circular path + angular frequency expression $1 + \frac{1}{2}$ b) Trace of path; justification $\frac{1}{2} + 1$		
	b) Trace of path; justification $\frac{1}{2}+1$		
	a) Force acting on the charged particle, moving with a velocity \overrightarrow{v} , in a magnetic		
	a) Force acting on the charged particle, moving with a velocity v , in a magnetic field \vec{B} :	1/2	
	$\vec{F} = q(\vec{v} \times \vec{B})$		
	As, $\vec{v} \perp \vec{B}$, Force =qvB		
	Since, $\vec{F} \perp \vec{v}$, it acts as a centripetal force and makes the particle move in a		
	circular path, in the plane, perpendicular to the magnetic field.	1⁄2	
	m_{12}^{2}		
	$qvB = \frac{r}{r}$		
	$r = \frac{mv}{qB}$	1/2	
	Now $\omega = \frac{v}{r} \qquad \therefore \omega = \frac{qB}{m}$	/ 2	
	b)		
1		1	
	(And	1/-	
	100	1⁄2	
		1⁄2	
		1/2	
	t q pitch radius	1/2	

Component of velocity \overline{v} parallel to magnetic field, will make the particle move along the field. Perpendicular component of velocity \overline{v} will cause the particle to move along a circular path in the plane perpendicular to the magnetic field. Hence, the particle will follow a helical path, as shown OR	1	3
Schematic sketch and brief description of working1+1Justification1		
Scale Pointer Permanent magnet	1	
^{magnetic field} When a current, I, flows through the coil, a torque $\tau = NIAB$ acts on it. A spring provides a counter torque ($K\varphi$) which balances the deflecting torque $\therefore K\varphi = NIAB$	1⁄2	
$\varphi = \left(\frac{NAB}{K}\right)I; \text{ or } \varphi \propto I$ Current sensitivity = $\frac{NAB}{K}$	1/2	
Voltage sensitivity $=\frac{NAB}{KR}$	1⁄2	
On increasing number of turns, the resistance of the coil increases proportionally. .: Increase in current sensitivity does not necessarily increase voltage sensitivity.	1⁄2	3
21. Answers of part (i), (ii) and (iii) 1+1+1		
 (i) Consider a plane perpendicular to the direction of propagation of the wave. An electric charge, on the plane, will be set in motion by the electric and magnetic fields of em wave, incident on this plane. This illustrates that em waves carry energy and momentum. 	1	
 (ii) Microwaves are produced by special vacuum tubes like the klystron,/ Magnetron/ Gunn diode. The frequency of microwaves is selected to match the resonant frequency of 	1⁄2	
water molecules, so that energy is transferred efficiently to the kinetic energy of the molecules. (iii)	1⁄2	
a. Associated with the green house effect.b. In remote switches of household electrical appliances.	1/2 1/2	3
(or any other two uses.)		

22.		1	
22.	Tracing of the path of the ray 1		
	Calculation of angle of emergence and angle of deviation $1 + 1$		
	A G G B C	1	
	If <i>i</i> is the critical angle for the prism/material $\mu = \frac{1}{1}$		
	If i_c is the critical angle for the prism/material, $\mu = \frac{1}{\sin i_c}$		
	$\therefore \sin i_c = \frac{1}{\mu} = \frac{\sqrt{3}}{2}$	1⁄2	
	$=>i_{c}=60^{o}$		
	Angle of incidence at face AC of the prism = 60°	1/2	
	Hence, refracted ray grazes the surface AC.	, <u> </u>	
	\Rightarrow Angle of emergence = 90°	1⁄2	
	\Rightarrow Angle of deviation = 30°	1⁄2	
	[Note: Accept other correct alternative method.]		3
23.	a) Relation for binding energy1b) Plot of BE/A versus mass number A1Explanation of release of energy1		
	a) B.E = $[ZM_P + (A - Z)M_n - {}^A_ZM] \ge c^2$	1	
	b)		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	
	From the binding energy per nucleon curve, it is clear that binding energy per	1	
	nucleon, of the fused nuclei is more than those of the light nuclei taking part in	1	3
24	nuclear fusion. Hence energy gets released in the process.		
24.	a) Calculation of radius in n = 3 orbit 1 b) Finding the		
	i. Kinetic energy		
	ii. Potential energy 1+1		
	a) Radius of orbit		

$r_n = n^2 r_o$ where r_o is Bohr's radius = 5.3 x 10 ⁻¹¹ m \therefore radius of n=3 orbit $r_3 = (3)^2 \times 5.3 \times 10^{-11}m$ $= 47.7 \times 10^{-11}m$ $= 4.77 \times 10^{-10}m$ (i) kinetic energy = - Total energy = -(-3.4)eV = 3.4 eV (ii) Potential energy = - 2 x Kinetic energy (or 2 × total energy)	$\frac{1/2}{1/2}$ $\frac{1/2}{1/2}$ $\frac{1/2}{1/2}$	
= -6.8 eV	1/2	3
25. (i) Values displayed 1+1 (ii) Calculation of maximum distance 1		
(i) a. Concern b. Scientific temperament c. Keen observer d. Alertness	1+1	
(or any other two correct values.) (ii) $d = \sqrt{2hR}$ $= \sqrt{2 \times 20 \times 6.4 \times 10^6} m$ $= 2 \ge 8 \ge 10^3 m$	1/2	
$= 2 \times 8 \times 10 \text{ m}$ = 16 km	1/2	3
26. Explanation of part (i) and (ii) 1	¹ / ₂ + 1 ¹ / ₂	
(i) In diffraction pattern, intensity will be minimum at an angle \therefore There will be a first minimum at an angle $\theta = \lambda/a$, on eit central maximum		
$\therefore \text{ width of central maxima} = 2\lambda/a,$	1/2	
(ii) whereas the width of other minimum/ maximum $\approx \lambda/a$ (iii) The intensity of maxima decreases as the order (n) or diffract		
maxima increases. This is because, on dividing the slit into o of parts, the contributions of the corresponding (outermost) each other, leaving behind the contribution of only the inner segment. For example, for first maximum, dividing slit into out of these three parts of the slit, the contributions from first	pairs cancel ¹ / ₂ most three parts	
cancel each other; only $\frac{1}{3}$ rd portion of the slit contributes to t	the maxima ¹ / ₂	
of intensity. Similarly for, second maxima, dividing slit into five parts, co of first four parts will be zero(as they cancel each other). Th		
$\frac{1}{5}$ th portion, only, will contribute for maxima; and so on.		3

27.			
21.	Calculation of power consumed by the resistance R 3		
	For loop ABCDA		
	$-12 + 2I_1 + 4(I_1 + I_2) = 0$	1⁄2	
	$\therefore 3 I_1 + 2I_2 = 6 \qquad (i)$		
	For loop ADFEA - $4(I_1 + I_2) + 6 = 0$	1⁄2	
	$\therefore 2 I_1 + 2I_2 = 3$ (ii)		
	Solving (i) and (ii), we get	1/2	
	$I_1 = 3A$ $I_2 = -1.5A$	1/2	
	$I_2 = -1.5A$ Hence, power consumed by the resistor $R = (I_1 + I_2)^2 R$	1⁄2	
	$= (1.5)^2 \times 4 \text{ W}$	17	2
	= 9 watt	1/2	3
28.	a) Derivation of expression for emplitude of expression disks and have engle 1+1		
	 a) Derivation of expression for amplitude of current and phase angle 1+1 b) Condition at resonance ¹/₂ 		
	c) Drawing of plot 1		
	d) Definition of Q factor and its role in tuning $1 + \frac{1}{2}$		
	a)		
	$v_{c_m} - v_{L_m}$		
	T T		
		1/2	
	Jun vin	72	
	Ywt		
	$\nabla \mathbf{V}_{c} + \mathbf{V}_{L}$		
	From the phasor diagram \rightarrow		
	$\overrightarrow{V} = \overrightarrow{V_L} + \overrightarrow{V_R} + \overrightarrow{V_C}$		
	Magnitude of net voltage		
	$V_m = \sqrt{(V_{RM})^2 + (V_{Cm} - V_{Lm})^2}$	1/2	
	$V_m = I_m \sqrt{[R^2 + (X_C - X_L)^2]}$	72	
	$I_m = \frac{V_m}{\sqrt{[R^2 + (X_C - X_L)^2]}}$		
	$\sqrt{\left[R^2 + (X_C - X_L)^2\right]}$ From the figure	1⁄2	
	$V_{Cm} - V_{Lm}$		
	$\tan \varphi = \frac{1}{V_{Rm}}$		
	$-\frac{I_m(X_c-X_L)}{I_m(X_c-X_L)}$		
	$\tan \phi = \frac{V_{Cm} - V_{Lm}}{V_{Rm}}$ $= \frac{I_m(X_c - X_L)}{I_m R}$ $\therefore \phi = \tan^{-1} \left(\frac{X_c - X_L}{R}\right)$		
	$\dot{\phi} = \tan^{-1}\left(\frac{X_c - X_L}{R}\right)$	1/2	
		12	

$\begin{array}{c c} & T_1 \\ \hline & T_1 \\ \hline & T_2 \\ \hline & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	1	
$ S_1 (Switch)$		
As the switch S_1 is closed, a surge of collector current flows through coil T_2 , which causes a changing magnetic flux around it. Hence a portion of the output is fedback to the coil T_1 , as a result of the positive feedback. The emitter	1t 1/2	5
current, therefore, also starts oscillating.		5