MARKING SCHEME

SET 55/1/1 (Compartment)

Q.No.	Expected Answer/Value Points	Marks	Total Marks
1.	i. The two point charges $\left(q_{1}\right.$ and $\left.q_{2}\right)$ should be of opposite nature. ii. Magnitude of charge q_{1} must be greater than that of charge q_{2}	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
2.	Random motion of free electrons gets directed towards the point at a higher potential. Alternatively: Random motion becomes a (partially) directed motion.	1	1
3.	Diamagnetic material $\mu_{r}=1+\chi_{m}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
4.	Due to the heating effect of eddy currents set up in the metallic piece.	1	1
5.	Effective power $\alpha \frac{1}{\lambda^{2}}$ (Alternatively: Effective power radiated decreases with an increase in wavelength.)	1	1
6.	Alternatively: Also accept if the student gives only the following diagram:	1	1
7.	Two monochromatic sources, which produce light waves, having a constant phase difference, are known as coherent sources.	1	1
8.	When a constant current flows through a wire, the Potential difference, between any two points on the wire of uniform cross section, is directly proportional to the length of the wire between these points. Alternatively: $V \alpha \ell$ or $d V / d \ell=$ constant	1	1
9	Charges on the inner and outer surfaces Expression for electric field Charge on inner surface $:-\mathrm{Q}$ Charge on outer surface $:+\mathrm{Q}$ Electric field at point P_{1} $\qquad \mathrm{E}=\frac{1}{4 \pi \varepsilon_{o}} \frac{\mathrm{Q}}{r_{1}^{2}}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 \end{aligned}$	2

10.	Drawing of magnetic field lines $1 / 2$ Obtaining the expression for magnetic field $1^{1 / 2}$ Alternatively: Applying Ampere circuital law for the rectangular loop abcd $\begin{aligned} & \oint \vec{B} \cdot \overrightarrow{d l}=\mu_{o} I \\ & \mathrm{Bh}=\mu_{o} I(\mathrm{nh}) \\ & \mathrm{B}=\mu_{o} n I \end{aligned}$	1/2	2
11.	Finding the relation Drawing the graph $E_{v}=\phi_{o}+K_{\max }$ As $\phi_{o}=0$ $\quad \Rightarrow E_{v}=K_{\max }$ $\quad \Rightarrow K_{\max }=\frac{p^{2}}{2 m}=E_{v}$ $\Rightarrow p=\sqrt{2 m E_{v}}$ $\quad \therefore$ wavelength (λ) of emitted electrons, $\lambda=\frac{h}{p}=\frac{h}{\sqrt{2 m E_{v}}}$	$1 / 2$ $1 / 2$ $1 / 2$	

14.	Obtaining the expression for the torque 2 Equivalent magnetic moment of the coil $\vec{m}=\mathrm{IA} \hat{n}$ $\therefore \vec{m}=\mathrm{I} \ell \mathrm{~b} \hat{n}$ ($\hat{n}=$ unit vector \perp to the plane of the coil) $\begin{aligned} \therefore \text { Torque } & =\vec{m} \times \vec{B} \\ & =\mathrm{I} \ell \mathrm{~b} \hat{n} \times \vec{B} \\ & =0 \end{aligned}$ (as \hat{n} and \vec{B} are parallel or antiparallel, to each other) [Note: Also give credit, when student obtains the relation $\tau=m B \sin \theta$, and substitutes $\theta=0$ or 180° and writes $\tau=0$]	$\begin{aligned} & 1 / 2 \\ & \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	2
15.	Drawing the two plots $1 / 2+1 / 2$ Explanation of Behaviour $1 / 2+1 / 2$ (i) Conductor (ii) Semiconductor $\rho=\frac{m}{n e^{2} \tau}$ In conductors, average relaxation time decreases with increase in temperature, resulting in an increase in resistivity. In semiconductors, the increase in number density (with increase in temperature) is more than the decrease in relaxation time; the net result is, therefore, a decrease in resistivity.	$1 / 2+1 / 2$ $1 / 2$ $1 / 2$	2
16.	Calculation ofi. \quad emf induced in the arm PQii. \quad Current induced in the loop $\quad 1$1 i. \quad emf induced \quad $=B \ell v$ $=0.1 \times 10 \times 10^{-2} \times 20 \mathrm{~V}$ $=0.2$ volt ii. \quadCurrent in the loop i $=\frac{e}{R}$ $=\frac{0.2}{2} \mathrm{~A}=0.1 \mathrm{~A}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2

17.	Explanation of parts (i) and (ii) (i) Intensity of incident radiation $\mathrm{I}=\mathrm{nh} v$, where n is number of photons incident per unit time per unit area. For same intensity of two monochromatic radiations of frequency v_{1} and v_{2} $n_{1} h v_{1}=n_{2} h v_{2}$ As $v_{1}>v_{2}$ $\Rightarrow n_{2}>n_{1}$ Therefore the number of electrons emitted for monochromatic radiation of frequency v_{2}, will be more than that for radiation of frequency v_{1} [Alternatively: Also accept if the student says that, for same intensity of incident radiation, the number of emitted electrons is same for each of the two frequencies of incident radiation.] (ii) $\mathrm{h} v=\phi_{o}+K_{\max }$ \therefore For given ϕ_{o} (work function of metal) $K_{\text {max }}$ increases with v \therefore Maximum Kinetic energy of emitted photoelectrons will be more for monochromatic light of frequency v_{1} (as $v_{1}>v_{2}$)	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2
18.	Obtaining the expression for total work done 2 Work done in bringing the charge q_{1} from infinity to position r_{1} $W_{1}=q_{1} V\left(r_{1}\right)$ work done in bringing charge q_{2} to the position r_{2} $W_{2}=q_{2} V\left(r_{2}\right)+\frac{q_{1} q_{2}}{4 \pi \varepsilon_{o} r_{12}}$ Hence, total work done in assembling the two charges $\begin{aligned} & W=W_{1}+W_{2} \\ & =q_{1} V\left(r_{1}\right)+q_{2} V\left(r_{2}\right)+\frac{q_{1} q_{2}}{4 \pi \varepsilon_{o} r_{12}} \end{aligned}$ OR Derivation of relation between Electric field and potential gradient Two important conclusions $1 / 2+1 / 2$ Work done in moving a unit positive charge along distance $\delta \ell$ $\begin{aligned} \left\|E_{l}\right\| \delta l & =V_{A}-V_{B} \\ & =\mathrm{V}-(\mathrm{V}+\delta V) \\ & =-\delta V \\ \mathrm{E} & =-\frac{\delta V}{\delta \ell} \end{aligned}$ (i) Electric field is in the direction in which the potential decreases steepest. (ii) Magnitude of Electric field is given by the change in the magnitude of potential per unit displacement, normal to the equipotential surface at the point.	$1 / 2$ $1 / 2+1 / 2$ $1 / 2$	2

19.	Finding the ratio of i. Net capacitance $11 / 2$ ii. Energy stored i. $11 / 2$ (i) Net capacitance before filling the gap with dielectric slab $\mathrm{C}_{\text {initial }}=\mathrm{C}_{1}+\mathrm{C}_{2}=2 \mathrm{C}_{2}+\mathrm{C}_{2}=3 \mathrm{C}_{2}$ Net capacitance after filling the gap with dielectric slab of dielectric constant ' K ' $\mathrm{C}_{\text {final }}=\mathrm{KC}_{1}+\mathrm{KC}_{2}=2 \mathrm{KC}_{2}+\mathrm{KC}_{2}=3 \mathrm{KC}_{2}$ Ratio of net capacitance, $\frac{\mathrm{C}_{\text {initial }}}{C_{\text {final }}}=\frac{3 C_{2}}{3 K C_{2}}=\frac{1}{K}$ (ii) Energy stored in the combination before introduction of dielectric slab $U_{i n i t i a l}=\frac{Q^{2}}{3 C_{2}}$ Energy stored in the combination after introduction of dielectric slab $U_{\text {final }}=\frac{Q^{2}}{3 K C_{2}}$ Ratio of energy stored $\frac{U_{\text {initial }}}{U_{\text {final }}}=\frac{K}{1}$ [Note: Accept any other alternative correct method for part (ii).)	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	3
20.	a) Circular path + angular frequency expression b) Trace of path; justification a) Force acting on the charged particle, moving with a velocity \vec{v}, in a magnetic field \vec{B} : $\vec{F}=q(\vec{v} \times \vec{B})$ As, $\vec{v} \perp \vec{B}, \mid$ Force $\mid=q v B$ Since, $\vec{F} \perp \vec{v}$, it acts as a centripetal force and makes the particle move in a circular path, in the plane, perpendicular to the magnetic field. $\begin{aligned} & \therefore q v B=\frac{m v^{2}}{r} \\ & \therefore \mathrm{r}=\frac{m v}{q B} \end{aligned}$ Now $\omega=\frac{v}{r} \quad \therefore \omega=\frac{q B}{m}$ b)	$1 / 2$	

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Component of velocity \(\vec{v}\) parallel to magnetic field, will make the particle move along the field. \\
Perpendicular component of velocity \(\vec{v}\) will cause the particle to move along a circular path in the plane perpendicular to the magnetic field. \\
Hence, the particle will follow a helical path, as shown \\
OR \\
Schematic sketch and brief description of working \(1+1\) Justification \\
When a current, I, flows through the coil, a torque \(\tau=N I A B\) acts on it. \\
A spring provides a counter torque (\(K \varphi\)) which balances the deflecting torque \\
\(\therefore K \varphi=N I A B\)
\[
\varphi=\left(\frac{N A B}{K}\right) I ; \text { or } \varphi \propto I
\] \\
Current sensitivity \(=\frac{N A B}{K}\) \\
Voltage sensitivity \(=\frac{N A B}{K R}\) \\
On increasing number of turns, the resistance of the coil increases proportionally. \\
\(\therefore\) Increase in current sensitivity does not necessarily increase voltage sensitivity.
\end{tabular} \& 1

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 3

\hline 21. \& | Answers of part (i), (ii) and (iii) |
| :--- |
| $1+1+1$ |
| (i) Consider a plane perpendicular to the direction of propagation of the wave. An electric charge, on the plane, will be set in motion by the electric and magnetic fields of em wave, incident on this plane. This illustrates that em waves carry energy and momentum. |
| (ii) Microwaves are produced by special vacuum tubes like the klystron,/ Magnetron/ Gunn diode. |
| The frequency of microwaves is selected to match the resonant frequency of water molecules, so that energy is transferred efficiently to the kinetic energy of the molecules. |
| (iii) |
| a. Associated with the green house effect. |
| b. In remote switches of household electrical appliances. |
| (or any other two uses.) | \& 1

$1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 3

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 22. \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Tracing of the path of the ray \& 1 \\
Calculation of angle of emergence and angle of deviation \& \(1+1\) \\
\hline
\end{tabular} \\
If \(i_{c}\) is the critical angle for the prism/material, \(\quad \mu=\frac{1}{\operatorname{Sin} i_{c}}\)
\[
\begin{aligned}
\& \therefore \sin \mathrm{i}_{\mathrm{c}}=\frac{1}{\mu}=\frac{\sqrt{3}}{2} \\
\& =>i_{c}=60^{\circ}
\end{aligned}
\] \\
Angle of incidence at face AC of the prism \(=60^{\circ}\) \\
Hence, refracted ray grazes the surface AC. \\
\(\Rightarrow\) Angle of emergence \(=90^{\circ}\) \\
\(\Rightarrow\) Angle of deviation \(=30^{\circ}\) \\
[Note: Accept other correct alternative method.]
\end{tabular} \& 1

$1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$ \& 3

\hline 23. \& | a) Relation for binding energy |
| :--- |
| b) Plot of BE / A versus mass number A |
| Explanation of release of energy |
| a) $\mathrm{B} . \mathrm{E}=\left[Z M_{P}+(A-Z) M_{n}-{ }_{Z}^{A} M\right] \mathrm{xc}^{2}$ |
| b) |
| From the binding energy per nucleon curve, it is clear that binding energy per nucleon, of the fused nuclei is more than those of the light nuclei taking part in nuclear fusion. Hence energy gets released in the process. | \& 1

1
1
1 \& 3

\hline 24. \& | a) Calculation of radius in $n=3$ orbit |
| :--- |
| b) Finding the |
| i. Kinetic energy |
| ii. Potential energy |
| a) Radius of orbit | \& \&

\hline
\end{tabular}

	$r_{n}=n^{2} r_{o}$ where r_{o} is Bohr's radius $=5.3 \times 10^{-11} \mathrm{~m}$ \therefore radius of $\mathrm{n}=3$ orbit $\begin{aligned} r_{3} & =(3)^{2} \times 5.3 \times 10^{-11} \mathrm{~m} \\ & =47.7 \times 10^{-11} \mathrm{~m} \\ & =4.77 \times 10^{-10} \mathrm{~m} \end{aligned}$ (i) kinetic energy $=-$ Total energy $=-(-3.4) \mathrm{eV}=3.4 \mathrm{eV}$ (ii) Potential energy $=-2 \times$ Kinetic energy (or $2 \times$ total energy) $=-6.8 \mathrm{eV}$	$\begin{aligned} & \hline 1 / 2 \\ & \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	3
25.	(i) Values displayed (ii) Calculation of maximum distance (i) a. Concern b. Scientific temperament c. Keen observer d. Alertness (or any other two correct values.) (ii) $\begin{aligned} \mathrm{d} & =\sqrt{2 h R} \\ & =\sqrt{2 \times 20 \times 6.4 \times 10^{6}} \mathrm{~m} \\ & =2 \times 8 \times 10^{3} \mathrm{~m} \\ & =16 \mathrm{~km} \end{aligned}$	$1+1$ $1 / 2$ $1 / 2$	3
26.		$1 / 2$ $1 / 2$ 1122 $1 / 2$ 112	3

\begin{tabular}{|c|c|c|c|}
\hline 27. \& \begin{tabular}{l}
Calculation of power consumed by the resistance \(R\) \\
For loop ABCDA
\[
\begin{align*}
\& -12+2 \mathrm{I}_{1}+4\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)=0 \\
\& \therefore 3 \mathrm{I}_{1}+2 \mathrm{I}_{2}=6 \quad------- \tag{i}
\end{align*}
\] \\
For loop ADFEA
\[
\begin{align*}
\& -4\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)+6=0 \\
\& \therefore 2 \mathrm{I}_{1}+2 \mathrm{I}_{2}=3 \tag{ii}
\end{align*}
\] \\
Solving (i) and (ii), we get
\[
\begin{aligned}
\mathrm{I}_{1} \& =3 \mathrm{~A} \\
\mathrm{I}_{2} \& =-1.5 \mathrm{~A}
\end{aligned}
\] \\
Hence, power consumed by the resistor \(R=\left(I_{1}+I_{2}\right)^{2} R\)
\[
\begin{aligned}
\& =(1.5)^{2} \times 4 \mathrm{~W} \\
\& =9 \mathrm{watt}
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 3

\hline 28. \& | a) Derivation of expression for amplitude of current and phase angle $1+1$ |
| :--- |
| b) Condition at resonance |
| c) Drawing of plot |
| d) Definition of Q factor and its role in tuning |
| a) |
| From the phasor diagram $\vec{V}=\overrightarrow{V_{L}}+\overrightarrow{V_{R}}+\overrightarrow{V_{C}}$ |
| Magnitude of net voltage $\begin{aligned} & V_{m}=\sqrt{\left(V_{R M}\right)^{2}+\left(V_{C m}-V_{L m}\right)^{2}} \\ & V_{m}=I_{m} \sqrt{\left[R^{2}+\left(X_{C}-X_{L}\right)^{2}\right]} \\ & I_{m}=\frac{V_{m}}{\sqrt{\left[R^{2}+\left(X_{C}-X_{L}\right)^{2}\right]}} \end{aligned}$ |
| From the figure $\begin{aligned} \tan \phi & =\frac{V_{C m}-V_{L m}}{V_{R m}} \\ & =\frac{I_{m}\left(X_{C}-X_{L}\right)}{I_{m} R} \\ \therefore \phi & =\tan ^{-1}\left(\frac{X_{C}-X_{L}}{R}\right) \end{aligned}$ | \& 1/2 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \& 1 \& 5 \\
\hline 29. \& \begin{tabular}{l}
\begin{tabular}{ll}
Ray diagram \& 1 \\
Derivation of relation \(\frac{n_{2}}{v}-\frac{n_{1}}{u}=\frac{n_{2}-n_{1}}{R}\) \& 2 \\
Obtaining the expression \(\frac{1}{f}=\left(\frac{n_{2}}{n_{1}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)\) \& 2
\end{tabular}

 \\
The incident rays coming from the object ' O ' kept in the rarer medium of refractive index \(n_{1}\), incident on the refracting surface NM , produce the real image at I. \\
From the diagram
\[
\begin{aligned}
\angle i \& =\angle N O M+\angle N C M \\
\& =\frac{N M}{O M}+\frac{N M}{M C} \\
\angle r \& =\angle N C M-\angle N I M \\
\& =\frac{N M}{M C}-\frac{N M}{M I}
\end{aligned}
\] \\
From Snell's law
\[
\begin{aligned}
\& \left.\therefore \frac{n_{2}}{n_{1}}=\frac{\sin i}{\sin r} \sim \frac{i}{r} \quad \quad \quad \text { (for small angles } \sin \theta \sim \theta\right) \\
\& \therefore n_{2} r=n_{1} i \\
\& \text { or } n_{2}\left(\frac{N M}{M C}-\frac{N M}{M I}\right)=n_{1}\left(\frac{N M}{O M}+\frac{N M}{M C}\right) \\
\& \text { or } n_{2}\left(\frac{1}{4 R}-\frac{1}{+v}\right)=n_{1}\left(\frac{1}{-u}+\frac{1}{R}\right) \\
\& \text { or } \frac{n_{2}-n_{1}}{R}=\frac{n_{2}}{v}-\frac{n_{1}}{u}
\end{aligned}
\] \\
Lens makers formula
\end{tabular} \& 1

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \&

\hline
\end{tabular}

	Under the influence of the electric field of the incident (unpolarized) wave, the electrons in the molecules acquire components of motion in both these directions Charges, accelerating parallel to the double arrows, do not radiate energy towards the observer since their acceleration has no transverse component. The radiation scattered by the molecule is therefore represented by dots, i.e. it is polarized perpendicular to plane of figure.	1	5
30.	a) Explanation of Depletion Layer and barrier potential. $1+1$ b) Circuit diagram of full wave rectifier 1 \quad Explanation of working and drawing of input and output $1+1 / 2+1 / 2$		
	a) Due to the diffusion of electrons and the holes, from their majority zone to minority zone, a layer of positive and negative space charge region on either side of the junction is formed. This is called the depletion region. The loss of electrons, from n-region and gain of electrons by the p-region, causes a difference of potential across the junction. This tends to prevent the movement of charge carriers across the junction and is, therefore, termed as barrier potential. b) For positive half cycle of input ac, one of the two diodes gets forward biased and conducts and output is obtained across the load R_{L} For negative half cycle of input ac, the other diode gets forward biased and thus output is obtained due to it. Therefore, output is obtained for both the cycles of input ac.	$1 / 2$ $1 / 2$ 1 1 1 1 1 1	

| | 1 | |
| :---: | :---: | :---: | :---: |
| As the switch S_{1} is closed, a surge of collector current flows through coil T_{2},
 which causes a changing magnetic flux around it. Hence a portion of the output
 is fedback to the coil T_{1}, as a result of the positive feedback. The emitter
 current, therefore, also starts oscillating. | $1 / 2$ | |

