MARKING SCHEME

SET 55/1

Q. No	Expected Answer / Value Points	Marks	Total Marks
1.	Definition : One ampere is the value of steady current which when maintained in each of the two very long, straight, parallel conductors of negligible cross section and placed one metre apart in vaccum, would produce on each of these conductors a force equal of $2 \times 10^{-7} \mathrm{~N} / \mathrm{m}$ of its length. Alternatively If the student writes $\mathrm{F}=\frac{\mu_{o}}{2 \pi} \frac{I_{1} I_{2}}{R} \mathrm{~L}$ and says that when $I_{1}=I_{2}=1$ ampere $\mathrm{R}=1$ meter and $\mathrm{L}=1$ meter, then $\mathrm{F}=2 \times 10^{-7} \mathrm{~N}$ Award full 1 mark Alternatively If the student draws any one of the two diagram, as shown, Award full 1 mark	1	1
2.	X-rays $/ \gamma$-rays	1	1
3.	Force decreases	1	1
4.	Intensity of radiation depends on the number of photons incident per unit area per unit time. [Note: Also accept the definition: 'number of quanta of radiation per unit area per unit time'. Also accept if the student writes: All photons, of a particular frequency, have the same kinetic energy and momentum, irrespective of the intensity of incident radiation. Alternatively The amount of light energy / Photon energy, incident per metre square per second is called intensity of radiation SI Unit : W/m ${ }^{2}$ or $\mathrm{J} /\left(\mathrm{s}-\mathrm{m}^{2}\right)$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1 1
5.	Clockwise Alternatively	1	1

6.	Neutrinos are neutral (chargeless), (almost) massless particles that hardly interact with matter. Alternatively The neutrinos can penetrate large quantity of matter without any interaction OR Neutrinos are chargeless and (almost) massless particles.	1	1
7.	Any two of the following (or any other correct) reasons : i. AC can be transmitted with much lower energy losses as compared to DC ii. AC voltage can be adjusted (stepped up or stepped down) as per requirement. iii. AC current in a circuit can be controlled using (almost) wattless devices like the choke coil. iv. AC is easier to generate.	$1 / 2+1 / 2$	1
8.	As a diverging lens Light rays diverge on going from a rarer to a denser medium. [Alternatively Also accept the reason given on the basis of lens marker's formula.]	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
9.	Derivation of energy expression Significance of negative sign $11 / 2$ As per Rutherford's model $\begin{aligned} & \frac{m v^{2}}{r}=\frac{1}{4 \pi \epsilon_{o}} \frac{z e^{2}}{r^{2}} \\ & \Rightarrow m v^{2}=\frac{1}{4 \pi \epsilon_{o}} \frac{z e^{2}}{r} \\ & \text { Total energy }=\text { P.E }+ \text { K.E. } \\ &=-\frac{1}{4 \pi \epsilon_{o}} \frac{z e^{2}}{r}+\frac{1}{2} m v^{2} \\ &=-\frac{1}{2} \cdot \frac{1}{4 \pi \epsilon_{o}} \frac{z e^{2}}{r}==-\frac{1}{8 \pi \epsilon_{o}} \frac{z e^{2}}{r} \end{aligned}$ Negative Sign implies that Electron - nucleus form a bound system. Alternatively Electron - nucleus form an attractive system) OR For the electron, we have Bohr's Postulate ($m v r=\frac{n h}{2 \pi}$)	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\frac{m v^{2}}{r}=\frac{1}{4 \pi \epsilon_{o}} \frac{z e^{2}}{r^{2}}
\] \\
and \(m v r=\frac{n h}{2 \pi}\)
\[
\therefore m^{2} v^{2} r^{2}=\frac{n^{2} h^{2}}{4 \pi^{2}}
\] \\
and \(m v^{2} r=\frac{1}{4 \pi \epsilon_{o}} z e^{2}\)
\[
\therefore \mathrm{r}=\frac{\epsilon_{o} n^{2} h^{2}}{\pi z e^{2} m}
\] \\
Bohr's radius \((\) for \(\mathrm{n}=1)=\epsilon_{o} \quad h^{2} / \pi z e^{2} m\)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\) \& 2 \\
\hline 10. \& \begin{tabular}{l}
\begin{tabular}{|lc|}
\hline Formula for energy stored \& \(1 / 2\) \\
New value of capacitance \& \(1 / 2\) \\
Calculation of ratio \& 1 \\
\hline
\end{tabular} \\
Energy stored in a capacitor \(=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{Q^{2}}{C}\) (any one) \\
Capacitance of the (parallel) combination \(=\mathrm{C}+\mathrm{C}=2 \mathrm{C}\) \\
Here, total charge, Q , remains the same \\
\(\therefore\) initial energy \(=\frac{1}{2} \frac{Q^{2}}{C}\) \\
And final energy \(=\frac{1}{2} \frac{Q^{2}}{2 C}\) \\
\(\therefore \frac{\text { final energy }}{\text { initial energy }}=\frac{1}{2}\) \\
[Note : If the student does the correct calculations by assuming the voltage across the \\
(i) Parallel or (ii) Series combination to remain constant \((=\mathrm{V})\) and obtain the answers as (i) \(2: 1\) or (ii) 1:2, award full marks]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$ \& 2

\hline 11. \& | Statement of Ampere's circuital law $1 / 2$
 Showing inconsistency during the process of charging 1
 Displacement Current $1 / 2$ |
| :--- |
| According to |
| Ampere's circuital Law $\oint \vec{B} d \vec{l}=\mu_{0} I$ |
| (a) |
| (b) |
| (c) |
| Applying ampere's circuital law to fig (a) we see that, during charging, the right hand side in Ampere's circuital law equals $\mu_{0} I$ |
| However on applying it to the surfaces of the fig (b) or fig (c), the right hand side is zero. | \& $1 / 2$

$1 / 2$
$1 / 2$ \&

\hline
\end{tabular}

	Hence, there is a contradiction. We can remove the contradiction by assuming that there exists a current (associated with the changing electric field during charging), known as the displacement current. When this current ($=\frac{d \emptyset_{E}}{d t}$) is added on the right hand side, Ampere's circuital law, the inconsisitency disappears. It was, therefore necessary, to generalize the Ampere's circuital law, as $\oint \vec{B} d \vec{l}=\mu_{0} I_{c}+\mu_{0} \in_{o} \frac{d \emptyset_{E}}{d t}$ [Note : If the student does the reasoning by using the (detailed) mathematics, relevant to displacement current, award full 2 marks]	1/2	2
12.	Relation between V and I $1 / 2$ Graph $1 / 2$ Determination of emf and internal resistance $1 / 2+1 / 2$ The relation between V and I is $\mathrm{V}=\mathrm{E}-\mathrm{Ir}$ Hence, the graph, between V and I, has the form shown below. For point $\mathrm{A}, \mathrm{I}=0$, Hence, $\mathrm{V}_{\mathrm{A}}=\mathrm{E}$ For point $\mathrm{B}, \mathrm{V}=0$, Hence, $\mathrm{E}=\mathrm{I}_{\mathrm{B}}$ r Therefore, $\mathrm{r}=\frac{E}{I_{B}}$ Alternatively: emf (E) equals the intercept on the vertical axis. Internal resistance (r) equals the negative of the slope of the graph.	$1 / 2$ $1 / 2$ $1 / 2$	2
13.	Circuit diagram 1 Working 1	1	

	Working: During one half of the input AC, the diode is forward biased and a current flows through R_{L}. During the other half of the input AC, the diode is reverse biased and no current flows through the load R_{L}. Hence, the given AC input is rectified [Note: If the student just draws the waveforms, for the input AC voltage and output voltage (without giving any explanation) (award $1 / 2$ mark only for "working")	$1 / 2$ $1 / 2$	2
14.	Formula Substitution and calculation $1 / 2$ $1 / 2$ $\mathrm{I}=\mathbf{n e A} \mathbf{V}_{\mathbf{d}}$ $\mathbf{V}_{\mathbf{d}}=\frac{I}{\text { neA }}=\frac{1.5}{9 \times 10^{28} \times 1.6 \times 10^{-19} \times 1.0 \times 10^{-7}} \mathrm{~m} / \mathrm{s}$ $=1.048 \times 10^{-3} \mathrm{~m} / \mathrm{s}(\approx 1 \mathrm{~mm} / \mathrm{s})$	$1 / 2$ $1 / 2$	2
15.	Tracing of Path of Ray 1 1 Tracing of Path of Ray 2 1 [Note : If the student just writes (without drawing any diagram) that angle of incidence for both rays ' 1 ' and ' 2 ' on face AC equals 45°, and says that it is less than critical angle for ray ' 1 ' (which therefore gets refracted) and more than critical angle for ray ' 2 ' (which undergoes total internal reflection), award only $1 / 2+1 / 2$ marks.]	1	2
16.	Function of Transducer 1 Function of Repeater 1 Transducer : Any device that converts one form of energy to another. Repeater : A repeater accepts the signal from the transmitter, amplifies and retransmits it to the receiver.	1 1	2

\begin{tabular}{|c|c|c|c|}
\hline 17. \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Diagrams \& \(1 / 2+1 / 2\) \\
Explanations \& \(1 / 2+1 / 2\) \\
\hline
\end{tabular} \\
A paramagnetic material tends to move from weaker to stronger regions of the magnetic field and hence increases the number of lines of magnetic field passing through it. \\
[Alternatively: A paramagnetic material, dipole moments are induced in the direction of the field.] \\
A diamagnetic material tends to move from stronger to weaker regions of the magnetic field and hence, decreases the number of lines of magnetic field passing through it. \\
[Alternatively: A diamagnetic material, dipole moments are induced in the opposite direction of the field.] \\
[Note: If the student just writes that a paramagnetic material has a small positive susceptibility \((0<\mathrm{X}<\varepsilon)\) and a diamagnetic material has a negative susceptibility \((-1 \leq X<0)\), award the \(1 / 2\) mark for the second part of the question.]
\end{tabular} \& 1/2 \& 2 \\
\hline 18. \& \begin{tabular}{l}
\begin{tabular}{|lr|}
\hline Circuit diagram \& \(11 / 2\) \\
Condition \& \(1 / 2\) \\
\hline
\end{tabular} \\
Condition : The transistor must be operated close to the centre of its active region. \\
Alternatively \\
The base- emitter junction of the transistor must be (suitably) forward biased and the collector - emitter junction must be (suitably) reverse biased.
\end{tabular} \& \(11 / 2\)

$11 / 2$ \& 2

\hline
\end{tabular}

19.	a) Demonstration of transverse nature of light b) Calculation of intensity through $\mathrm{P}_{1} \mathrm{P}_{2} \& \mathrm{P}_{3} \quad 1 / 2+1 / 2+1 / 2$ a) Light from the sodium lamp passing through the single Polaroid sheet (P_{1}) does not show any variation in intensity when this sheet is rotated. However, if the light, transmitted by P_{1}, is made to pass through another Polaroid sheet $\left(\mathrm{P}_{2}\right)$ the light intensity, coming out of P_{2}, varies from a maximum to zero, and again to maximum, when P_{2} is rotated. These observations are consistent only with the transverse nature of light waves. b) Intensity of light transmitted through $\mathrm{P}_{1}=\mathrm{I}_{0} / 2$ Intensity of light transmitted through $\mathrm{P}_{3}=\left(\mathrm{I}_{0} / 2\right) \times \cos ^{2} 30^{\circ}$ $=3 \mathrm{I}_{0} / 8$ Intensity of light transmitted through $\mathrm{P}_{2}=\frac{3}{8} I_{O} \cos ^{2} 60^{\circ}$ $=\frac{3}{32} I_{o}$ [Note: If the student takes the intensity of light transmitted through P_{1} as I_{o} and calculates the intensity through P_{3} and P_{2} as $\frac{3}{4} I_{o}$ and $\frac{3}{16} I_{o}$ award $1 / 2+1 / 2=1$ mark for part (b)]	1 $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	3
20.	Definition of mutual induction 1 Obtaining the expression 2 Mutual inductance, between a pair of coils, equals the magnetic flux, linked with one of them, due to a unit current flowing in the other. Alternatively The mutual inductance, for a pair of coils, equals the emf induced, in one of them, when the current in the other coil is changing at a unit rate.	1/2	

	Let a current I_{2} flow through the outer coil. The magnetic field due to this current $=\mu_{o} \frac{N_{2}}{l} \times I_{2}$ The resulting magnetic flux linked with the inner coil $\begin{aligned} =\emptyset_{12} & =N_{1} \cdot\left(\mu_{o} \frac{N_{2}}{l} \times I_{2}\right) \times \pi r_{1}^{2} \\ & =\left(\mu_{o} \frac{N_{1} N_{2}}{l} \cdot \pi r_{1}^{2}\right) I_{2} \\ & =\mathrm{M}_{12} I_{2} \\ \therefore \mathrm{M}_{12} & =\mu_{o} \frac{N_{1} N_{2}}{l} \cdot \pi r_{1}^{2} \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$	3
21.	Answers to each of the three parts $\quad 1+1+1=3$ a) This is to ensure that the connections do not contribute any extra, unknown, resistances in the circuit. b) This is done to minimize the percentage error in the value of the unknown resistance. [Alternatively: This is done to have a better " balancing out" of the effects of any irregularity or non-uniformity in the metre bridge wire. Or This can help in increasing the senstivity of the metre bridge circuit.] c) Manganian / constantan/Nichrome This material has a low temperature (any one) of coefficient of resistance/ high reisistivity. OR $\begin{aligned} R_{\text {total }} & =\frac{R_{o}}{2}+\frac{\frac{R_{O}}{2} \cdot R}{\frac{R_{O}}{2}+R} \\ & =\frac{R\left(R_{O}+4 R\right)}{2\left(R_{o}+2 R\right)} \\ \mathrm{I}_{\text {(total) }} & =\frac{V}{R_{\text {total }}} \end{aligned}$ Current through $\mathrm{R}=\mathrm{I}_{2}=\mathrm{I}_{\text {total }} \mathrm{X} \frac{\frac{R_{o}}{2}}{\frac{R_{O}}{2}+R}$ $\begin{aligned} & =\mathrm{I}_{\text {total }} \mathrm{X} \frac{R_{o}}{R_{o}+2 R} \\ & =\frac{V \cdot 2\left(R_{o}+2 R\right)}{R\left(R_{o}+4 R\right)} \times \frac{R_{o}}{R_{o}+2 R} \\ & =\frac{2 V R_{o}}{R\left(R_{o}+4 R\right)} \end{aligned}$ Voltage across $\mathrm{R}=\mathrm{I}_{2} \mathrm{R}=\left(\frac{2 V R_{o}}{R_{o}+4 R}\right)$	$1 / 2+1 / 2$ $1 / 2$	3

\begin{tabular}{|c|c|c|c|}
\hline 22. \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Ray diagram \& 1 \\
Nature of final image \& \(1 / 2\) \\
Position of final image \& \(11 / 2\) \\
\hline
\end{tabular}
 \\
For the convex lens
\[
\begin{aligned}
\& \mathrm{u}=-60 \mathrm{~cm}, \mathrm{f}=+20 \mathrm{~cm} \\
\& \frac{1}{v}-\frac{1}{u}=\frac{1}{f} \text { gives } \mathrm{v}=+30 \mathrm{~cm}
\end{aligned}
\] \\
For the convex mirror
\[
\mathrm{u}=+(30-15) \mathrm{cm}=15 \mathrm{~cm}, \mathrm{f}=+\frac{20}{2} \mathrm{~cm}=10 \mathrm{~cm}
\] \\
\(\frac{1}{v}+\frac{1}{u}=\frac{1}{f}\) gives \(\mathrm{v}=+30 \mathrm{~cm}\) \\
Final image is formed at the distance of 30 cm from the convex mirror (or 45 cm from the convex lens) to the right of the convex mirror. The final image formed is a virtual image.
\end{tabular} \& 1

$1 / 2$

$1 / 2$
$1 / 2$

$1 / 2$
$1 / 2$ \& 3

\hline 23. \& | Deriving the expression for average power 2
 Condition for no power dissipation $1 / 2$
 Condition for maximum power dissipation $1 / 2$ |
| :--- |
| Applied voltage $=V_{0} \sin \omega t$ |
| Current in the circuit $=I_{0} \sin (\omega t-\phi)$ |
| where ϕ is the phase lag of the current with respect to the voltage applied, |
| Hence instantaneous power dissipation $\begin{aligned} & =V_{0} \sin \omega t \times \mathrm{I}_{0} \sin (\omega t-\phi) \\ & =\frac{V_{0} I_{0}}{2}[2 \sin \omega t \cdot \sin (\omega t-\phi] \\ & =\frac{V_{0} I_{0}}{2}[\cos \phi-\cos (2 \omega t-\phi] \end{aligned}$ |
| Therefore, average power for one complete cycle $=\text { average of }\left[\frac{V_{0} I_{0}}{2}[\cos \phi-\cos (2 \omega t-\phi]]\right.$ |
| The average of the second term over a complete cycle is zero . |
| Hence, average power dissipated over one complete cycle $=\frac{V_{0} I_{0}}{2} \cos \phi$ |
| [Note : Please also accept alternative correct approach.] | \& $1 / 2$

$1 / 2$

$1 / 2$
$1 / 2$ \&

\hline
\end{tabular}

	Conditions (i) No power is dissipated when $\mathrm{R}=0$ (or $\phi=90^{\circ}$) [Note: Also accepts if the student writes 'This condition cannot be satisfied for a series LCR circuit".] (ii) Maximum power is dissipated when $\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}$ or $\omega L=\frac{1}{\omega C}($ or $\phi=0)$	$1 / 2$ $1 / 2$	3
24.	Energy band diagrams $11 / 2$ Two distinguishing features $11 / 2$ (ii) (b) (c) Two distinguishing features: (i) In conductors, the valency band and conduction band tend to overlap (or nearly overlap) while in insulators they are seperated by a large energy gap and in semiconductors are separated by a small energy gap. (ii) The conduction band, of a conductor, has a large number of electrons available for electrical conduction. However the conduction band of insulators is almost empty while that of the semi- conductor has only a (very) small number of such electrons avilable for electrical conduction.	$1 / 2$ $1 / 2+1 / 2$ 1 $1 / 2$	3
25.	Values displayed 2 Diagnosis 1 (a) keen observer/ helpful/ concerned / responsible/ respectful towards elders. (Any two) (b) The doctor can trace and observe, the difference between the movement of an appropriate radio- isotope through a normal brain and a brain having tumor in it. [Note : Also accept any other appropriate explanation.]	$1+1$ 1	3

\begin{tabular}{|c|c|c|c|}
\hline 26. \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Two basic modes of communication \& \(1 / 2+1 / 2\) \\
Process of Amplitude Modulation \& 1 \\
Schematic Sketch \& 1 \\
\hline
\end{tabular} \\
Two basic modes of communication are \\
i. Point - to -point \\
ii. Broadcast \\
In Amplitude modulation the amplitude of a carrier wave is made to vary, with time, in the same way as the modulating signal varies with time
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
1

1 \& 3

\hline 27. \& | Formula $1 / 2$
 Calculation of debroglie wavelength 2
 Comparison $1 / 2$$\begin{aligned} & \lambda=\frac{h}{p}=\frac{h}{\sqrt{2 m e V}} \text { or } \lambda=\frac{12.27}{\sqrt{V}} A^{o} \\ & \therefore \lambda=\frac{6.63 \times 10^{-34}}{\sqrt{\left(2 \times 9.1 \times 10^{-31} \times 1.6 \times 10^{-19} \times 50 \times 10^{3}\right)}} \\ & \lambda=5.33 \times 10^{-12} \mathrm{~m} \end{aligned}$ |
| :--- |
| The resolving power of an electron microscope is much better than that of optical microscope. |
| [Note : If the student writes R.P $\alpha \frac{1}{\lambda}$, award this $1 / 2$ mark] | \& $1 / 2$

1
1
1
$1 / 2$ \& 3

\hline 28. \& | Diagram 2
 Principle and working 2
 Use and limitation $1 / 2+1 / 2$ |
| :--- |
| [Note : Award 1 mark only if the diagram is not labelled] | \& 2 \&

\hline
\end{tabular}

(a) Formation of bright and dark fringes 1

Obtaining the expression for fringe width 3
(b) Finding the ratio 1
(a) The light rays from the two (coherent) slits, reaching a point ' P ' on the screen, have a path difference ($\mathrm{S}_{2} \mathrm{P}-\mathrm{S}_{1} \mathrm{P}$). The point ' P ' would, therefore be a
i. Point of maxima(bright fringe), if $\mathrm{S}_{2} \mathrm{P}-\mathrm{S}_{1} \mathrm{P}=\mathrm{n} \lambda$.
ii. Point of minima (dark fringe), if $\mathrm{S}_{2} \mathrm{P}-\mathrm{S}_{1} \mathrm{P}=(2 \mathrm{n}+1) \frac{\lambda}{2}$

$$
\frac{x d}{D}=n \lambda
$$

and minima at points where
$\frac{x d}{D}=\left(\frac{2 n+1}{2}\right) \lambda$
Now, fringe width $\boldsymbol{\beta}=$ separation between two successive maxima(or two
successive minima) $=x_{n}-x_{n}-1$
$\therefore \boldsymbol{\beta}=\frac{\lambda D}{\boldsymbol{d}}$
We have
$\left(\mathrm{S}_{2} \mathrm{P}\right)^{2}-\left(\mathrm{S}_{1} \mathrm{P}\right)^{2}=\left\{D^{2}-\left(x+\frac{d}{2}\right)^{2}\right\}-\left\{D^{2}+\left(x-\frac{d}{2}\right)^{2}\right\}$

$$
=2 \mathrm{xd}
$$

$\mathrm{S}_{2} \mathrm{P}-\mathrm{S}_{1} \mathrm{P}=\frac{2 x d}{\mathrm{~S}_{2} \mathrm{P}+\mathrm{S}_{1} \mathrm{P}} \approx \frac{2 x d}{2 D}=\frac{x d}{D}$
\therefore We have maxima at points, where
(b) We have

$$
\begin{aligned}
& \frac{I_{\max }}{I_{\min }}=\frac{\left(a_{1}+a_{2}\right)^{2}}{\left(a_{1}-a_{2}\right)^{2}}=\frac{25}{9} \\
& \quad \therefore=\frac{a_{1}}{a_{2}}=\frac{4}{1} \\
& \quad \therefore \frac{W_{1}}{W_{2}}=\frac{I_{1}}{I_{2}}=\frac{\left(a_{1}\right)^{2}}{\left(a_{2}\right)^{2}}=\frac{16}{1}
\end{aligned}
$$

[Note: Give $1 / 2$ mark if the student just writes Intensity \propto width

	$\begin{aligned} & \therefore \text { Seperation }=\frac{3(596-590) \times 10^{-9}}{2 \times 10^{-6}} \times 1.5 \mathrm{~m} \\ & =13.5 \times 10^{-3} \mathrm{~m}(=13.5 \mathrm{~mm}) \end{aligned}$	1	5
30.	(a) Expression for frequency Frequency Independent of ' v ' or energy (b) Sketch of cyclotron Working (a) When a particle of mass ' m ' and charge ' q ', moves with a velocity \boldsymbol{V}, in a uniform magnetic field \boldsymbol{B}, it experiences a force \boldsymbol{F} where $\vec{F}=q(\vec{v} \times \overrightarrow{B)}$ \therefore Centripetal force $\frac{m v^{2}}{r}=2 v B_{\perp}$ $\therefore r=\frac{m v}{q B_{\perp}}$ \therefore frequency $=\frac{v}{2 \pi r}=\frac{q B_{\perp}}{2 \pi m}$ \therefore It is independent of the velocity or the energy of the particle. Construction: The cyclotron is made up of two hollow semi-circular disc like metal containers, D_{1} and D_{2}, called dees. It uses crossed electric and magnetic fields. The electric field is provided by an oscillator of adjustable frequency. [Note: Award this mark even if the student labels the diagram properly without writing the details of the construction.] Working: In a cyclotron, the frequency of the applied alternating field is adjusted to be equal to the frequency of revolution of the charged particles in the magnetic field. This ensures that the particles get accelerated every time	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ 1 1 1	

they cross the space between the two dees. The radius of their path increases with increase in energy and they are finally made to leave the system via an

OR

(a) Labelled diagram 1

Principle and working 2
(b) i) Reason for cylindrical soft iron core 1
ii) Comparison of current sensitivity and voltage sensitivity 1

Principle and working : A current carrying coil, placed in a uniform
\therefore Deflecting torque $=B I L \times b=B I A$
For N turns $\quad \tau=$ NBIA
Restoring torque in the spring $=\mathrm{k} \theta$
($k=$ restoring torque per unit twist)

$$
\begin{aligned}
& \therefore N B I A=k \theta \\
& \therefore I=\left(\frac{k}{N B A}\right) \theta
\end{aligned}
$$

$$
\therefore I \propto \theta
$$

The deflection of the coil, is, therefore, proportional to the current flowing
(b) (i) The soft iron core not only makes the field radial but also increases the strength of the magnetic field.
[Note:- Award this one mark even if the student writes just one of the two reasons given above)
(ii) We have

Current sensitivity $=\frac{\theta}{I}=\mathrm{NBA} / \mathrm{k}$
Voltage sensitivity $=\frac{\theta}{V}=\frac{\theta}{I R}=\left(\frac{N B A}{k}\right) \cdot \frac{1}{R}$
It follows that an increase in current senstivity may not necessarily increase the voltage sensitivity.

