MARKING SCHEME SET 55/1

	SET 55/1		
Q. No	Expected Answer / Value Points	Marks	Total
			Marks
1.	Definition : One ampere is the value of steady current which when maintained in each of the two very long, straight, parallel conductors of negligible cross section and placed one metre apart in vaccum, would produce on each of these conductors a force equal of $2 \ge 10^{-7}$ N/m of its length. <i>Alternatively</i> If the student writes $F = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{R} L$ and says that when $I_1 = I_2 = 1$ ampere R= 1 meter and L = 1 meter, then F= $2 \ge 10^{-7}$ N <i>Award full 1 mark</i> <i>Alternatively</i> If the student draws <u>any one</u> of the two diagram, as shown,	1	
	$1 \text{ ampere} \qquad \qquad$		
	Award full 1 mark		1
2.	$X - rays / \gamma - rays$	1	1
3.	Force decreases	1	1
4.	Intensity of radiation depends on the number of photons incident per unit area per unit time. [Note: Also accept the definition: 'number of quanta of radiation per unit area per unit time'. Also accept if the student writes: All photons, of a particular frequency, have the same kinetic energy and momentum, irrespective of the intensity of incident radiation. <i>Alternatively</i> The amount of light energy / Photon energy, incident per metre square per second is called intensity of radiation SI Unit : W/m ² or J/(s- m ²)	1/2 1/2	1
5.	Clockwise	1	
	Alternatively		
	\diamond		
	\checkmark		1
	A B		

6.	Neutrinos are neutral (chargeless), (almost) massless particles that hardly	1	
	interact with matter.		
	Alternatively		
	The neutrinos can penetrate large quantity of matter without any interaction OR		
	Neutrinos are chargeless and (almost) massless particles.		1
7.	<u>Any two</u> of the following (or any other correct) reasons :		
	i. AC can be transmitted with much lower energy losses as compared to		
	DC		
	ii. AC voltage can be adjusted (stepped up or stepped down) as per		
	requirement. iii. AC current in a circuit can be controlled using (almost) wattless	$\frac{1}{2} + \frac{1}{2}$	
	devices like the choke coil.	72 + 72	
	iv. AC is easier to generate.		1
8.	As a diverging lens	1/2	
	Light rays diverge on going from a rarer to a denser medium.		
	[Alternatively	1⁄2	
	Also accept the reason given on the basis of lens marker's formula.]		1
9.			1
9.	Derivation of energy expression $1\frac{1}{2}$		
	Significance of negative sign $\frac{1}{2}$		
	As per Rutherford's model		
	$\frac{mv^2}{r} = \frac{1}{4\pi\epsilon_0} \frac{ze^2}{r^2}$		
	$r 4\pi\epsilon_0 r^2$	1⁄2	
	$\Rightarrow mv^2 = \frac{1}{4\pi\epsilon_0} \frac{ze^2}{r} \qquad \qquad$		
	Total energy = $P.E + K.E.$ +ze	1/2	
	$= -\frac{1}{4\pi\epsilon_0} \frac{ze^2}{r} + \frac{1}{2} mv^2$	72	
	$4\pi\epsilon_0$ r 2		
	1 1 ze^2 1 ze^2	1⁄2	
	$= -\frac{1}{2} \cdot \frac{1}{4\pi\epsilon_o} \frac{ze^2}{r} = -\frac{1}{8\pi\epsilon_o} \frac{ze^2}{r}$		
	<u>Negative Sign</u> implies that	1/	
	Electron – nucleus form a bound system.	1⁄2	
	<i>Alternatively</i> Electron – nucleus form an attractive system)		2
	Licetion nucleus form un utilienve system)		2
	OR		
	Bohr's Postulate ¹ / ₂		
	Derivation of radius of nth orbit 1		
	Bohr's radius ¹ /2		
	For the electron, we have		
	Bohr's Postulate $(mvr = \frac{nn}{2\pi})$	1/	
		1⁄2	

$\frac{mv^2}{r} = \frac{1}{4\pi\epsilon_0} \frac{ze^2}{r^2}$		
and $mvr = \frac{nh}{r}$		
and $mvr = \frac{nh}{2\pi}$ $\therefore m^2 v^2 r^2 = \frac{n^2 h^2}{4\pi^2}$ and $mv^2 r = \frac{1}{4\pi\epsilon_0} ze^2$	1⁄2	
$m^{-}v^{-}r^{-} = \frac{4\pi^{2}}{4\pi^{2}}$		
and $mv^2r = \frac{1}{4\pi\epsilon_o}ze^2$	1/-	
	1⁄2	
$\therefore \mathbf{r} = \frac{\epsilon_0 n^2 h^2}{\pi z e^2 m}$		
	1⁄2	2
Bohr's radius (for n = 1) = $\epsilon_0 h^2 / \pi z e^2 m$		
10. Formula for energy stored $\frac{1}{2}$		
New value of capacitance ¹ / ₂		
Calculation of ratio 1		
Energy stored in a capacitor $=\frac{1}{2}QV = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C}$ (any one)	1/2	
Capacitance of the (parallel) combination = $C+C=2C$ Here, total charge, Q, remains the same	1⁄2	
$\therefore \text{ initial energy} = \frac{1}{2} \frac{Q^2}{C}$		
10		
And final energy $=\frac{1}{2}\frac{Q^2}{2C}$	1/2	
$\therefore \frac{final\ energy}{initial\ energy} = \frac{1}{2}$		
	1⁄2	
[Note : If the student does the correct calculations by assuming the voltage across the		
(i) Parallel or (ii) Series combination		
to remain constant (=V) and obtain the answers		
as (i) 2:1 or (ii) 1:2, award full marks]		2
11. Statement of Ampere's circuital law 1/2		
Showing inconsistency during the process of charging 1		
Displacement Current ¹ / ₂		
According to		
Ampere's circuital Law	1⁄2	
$\oint \vec{B} d\vec{l} = \mu_0 I$		
$P + M_{-}$		
(a) (b) (c)	1/2	
Applying ampere's circuital law to fig (a) we see that, during charging, the right hand side in Ampere's circuital law equals $\mu_0 I$		
However on applying it to the surfaces of the fig (b) or fig (c), the right hand		
side is zero.		
side is zero.	1/2	

$\label{eq:working:} \begin{tabular}{ c c c c c } \hline Working: \\ \hline During one half of the input AC, the diode is forward biased and a current flows through R_L. \\ \hline During the other half of the input AC, the diode is reverse biased and no current flows through the load R_L. \\ \hline Hence, the given AC input is rectified \\ \hline [Note : If the student just draws the waveforms, for the input AC voltage and output voltage (without giving any explanation) (award 1/2 mark only for "working") \\ \hline \end{tabular}$	1/2 1/2	2
14. $\frac{1}{2}$ Substitution and calculation $\frac{1}{2} + 1$		
$I = neA V_d$	1⁄2	
$\mathbf{V_d} = \frac{I}{\mathbf{neA}} = \frac{1.5}{9 \times 10^{28} \times 1.6 \times 10^{-19} \times 1.0 \times 10^{-7}} \text{ m/s}$	1⁄2	
$= 1.048 \times 10^{-3} \text{m/s} (\approx 1 \text{mm/s})$	1	2
15. Tracing of Path of Ray 1 1 Tracing of Path of Ray 2 1 A (1' (1') (2') (2') (3') (45')	1	
[Note : If the student just writes (without drawing any diagram) that angle o incidence for both rays '1' and '2' on face AC equals 45°, and says that it i less than critical angle for ray '1' (which therefore gets refracted) and more than critical angle for ray '2' (which undergoes total internal reflection) award only $\frac{1}{2} + \frac{1}{2}$ marks.]	s e	2
16.Function of Transducer1Function of Repeater1		
Transducer : Any device that converts one form of energy to another. Repeater : A repeater accepts the signal from the transmitter, amplifies and	d 1	
retransmits it to the receiver.	1	2

Outside Delhi SET I Page 5 of 17

17.	Diagrams $\frac{1}{2} + \frac{1}{2}$ Explanations $\frac{1}{2} + \frac{1}{2}$		
		1⁄2	
		1⁄2	
	A <u>paramagnetic</u> material tends to move from weaker to stronger regions of the magnetic field and hence increases the number of lines of magnetic field passing through it. [<i>Alternatively:</i> A <u>paramagnetic</u> material, dipole moments are induced in the direction of the field.]	1∕2	
	A <u>diamagnetic</u> material tends to move from stronger to weaker regions of the magnetic field and hence, decreases the number of lines of magnetic field passing through it. [<i>Alternatively:</i> A <u>diamagnetic</u> material, dipole moments are induced in the opposite direction of the field.] [Note: If the student just writes that a paramagnetic material has a small positive susceptibility ($0 < X < \varepsilon$) and a diamagnetic material has a negative susceptibility ($-1 \le X < 0$), award the $\frac{1}{2}$ mark for the second part of the question.]	1⁄2	2
18.	Circuit diagram $1 \frac{1/2}{1/2}$ Condition $1/2$ Image: state s	1 1⁄2	
	Condition : The transistor must be operated close to the centre of its active region. <i>Alternatively</i> The base- emitter junction of the transistor must be (suitably) forward biased and the collector – emitter junction must be (suitably) reverse biased.	1⁄2	2

Let a current I ₂ flow through the outer coil. The magnetic field due to this current $= \mu_o \frac{N_2}{l} \times I_2$ The resulting magnetic flux linked with the inner coil	1/2	
$= \emptyset_{12} = N_1 \cdot \left(\mu_o \frac{N_2}{l} \times I_2 \right) \times \pi r_1^2$ $= \left(\mu_o \frac{N_1 N_2}{l} \cdot \pi r_1^2 \right) I_2$	1⁄2	
$= \mathbf{M}_{12} I_{2} \\ \therefore \mathbf{M}_{12} = \mu_{o} \frac{N_{1} N_{2}}{l} \cdot \pi r_{1}^{2}$	1⁄2	3
21. Answers to each of the three parts $1+1+1=3$		
a) This is to ensure that the connections do not contribute any extra, unknown, resistances in the circuit.b) This is done to minimize the percentage error in the value of the unknow resistance.		
 [Alternatively: This is done to have a better "balancing out" of the effect of any irregularity or non-uniformity in the metre bridge wire. Or This can help in increasing the senstivity of the metre bridge circuit.] c) Manganian / constantan /Nichrome This material has a low temperature (any one) of coefficient of resistance of the sensitive of the metre bridge of the sensitive of the metre bridge circuit.] 	1	3
high reisistivity.		5
Calculation of total resistance of the circuit1Calculation of total current drawn from the voltage Source1/2Calculation of current through R1Calculation of potential drop across1/2		
$R_{total} = \frac{R_o}{2} + \frac{\frac{R_o}{2} \cdot R}{\frac{R_o}{2} + R} = \frac{R(R_o + 4R)}{2(R_o + 2R)}$	1⁄2	
$I_{(total)} = \frac{V}{R_{total}}$	1⁄2	
Current through R = I ₂ = $I_{\text{total}} \times \frac{\frac{R_o}{2}}{\frac{R_o}{2} + R}$ = $I_{\text{total}} \times \frac{\frac{R_o}{2}}{\frac{R_o}{2}}$	1⁄2	
$= I_{\text{total}} \times \frac{R_o}{R_o + 2R}$ $= \frac{V.2(R_o + 2R)}{R(R_o + 4R)} \times \frac{R_o}{R_o + 2R}$	1/2	
$=\frac{2VR_o}{R(R_o+4R)}$	1⁄2	
Voltage across $R = I_2 R = (\frac{2VR_o}{R_o + 4R})$	1⁄2	3

Outside Delhi SET I Page 9 of 17

	(i) No power is dissipated when $R = 0$ (or $\phi = 90^{\circ}$) [Note: Also accepts if the student writes 'This condition cannot be satisfied	1⁄2	
	for a series LCR circuit".] (ii) Maximum power is dissipated when $X_L = X_C$ or $\omega L = \frac{1}{\omega C}$ (or $\phi = 0$)	1⁄2	3
24.	Energy band diagrams 1 ¹ / ₂ Two distinguishing features 1 ¹ / ₂		
	E_v E_c	14	
	ii)	1/2	
	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	¹ / ₂ + ¹ / ₂	
	 Two distinguishing features: (i) In conductors, the valency band and conduction band tend to overlap (or nearly overlap) while in insulators they are seperated by a large energy gap and in semiconductors are separated by a small energy gap. 	1	
	 (ii) The conduction band, of a conductor, has a large number of electrons available for electrical conduction. However the conduction band of insulators is almost empty while that of the semi- conductor has only a (very) small number of such electrons avilable for electrical conduction. 	1⁄2	3
5.	Values displayed2Diagnosis1		
	(a) keen observer/ helpful/ concerned / responsible/ respectful towards elders. (Any two)	1+1	
	(b) The doctor can trace and observe, the difference between the movement of an appropriate radio- isotope through a normal brain and a brain having tumor in it.	1	
	[Note : Also accept any other appropriate explanation.]	3/2014	3

Outside Delhi SET I Page 10 of 17

Conside	r a set up of the type shown here	
	Total charge Q	
	++++++++++++++++++++++++++++++++++++	
	otential inside and on the surface, of the conducting sphere pf radius	
	$R':$ $r'_{R} = \frac{1}{4\pi\epsilon_{o}} \cdot \frac{Q}{R}$	
At the su	Potential due to small sphere of radius 'r' carrying a charge 'q': arface of the smaller sphere : $V'_r = \frac{1}{4\pi\epsilon_o} \cdot \frac{q}{r}$	1⁄2
	inface of the larger sphere : $V_R'' = \frac{1}{4\pi\epsilon_0} \cdot \frac{Q}{R}$	
$=\Delta V = \frac{1}{2}$	fference of potential between the smaller and the larger sphere: $\frac{1}{4\pi\epsilon_o} \cdot \left[\left(\frac{Q}{R} + \frac{q}{r} \right) - \left(\frac{Q}{R} + \frac{q}{r} \right) \right]$	1⁄2
with resp	$\left(\frac{1}{R}\right)$ ' is positive, the inner sphere would always be at a higer potential beet to outer sphere, irrespective of the amount of charges on the	1⁄2
two. ∴ When	both the spheres are connected, charge will flow from the smaller	
sphere to	the larger sphere. Thus for a set up of the type shown, charge would	1/2
	pilling up on the larger sphere. is machine is used to accelerate charged particles (electron, protons,	
	high energies.	1⁄2
Limitati	on:It can build up potentials upto a few million volts only.	1⁄2
	OR	
(a) (b) (c)	Deducing the expression for torque2Finding the ratio of the flux through the two spheres2Finding the change in flux1	
	6 1	
(a)		
The force $+q\vec{E}$ and	es, acting on the two charges of the dipole, are \overrightarrow{aF}	1/
i u L all		1/2

(a) Formation of bright and dark fringes 1		
Obtaining the expression for fringe width3(b) Finding the ratio1		
(a) The light rays from the two (coherent) slits, reaching a point 'P' on the screen, have a path difference ($S_2P - S_1P$). The point 'P' would, therefore be a i. Point of maxima(bright fringe), if $S_2P - S_1P = n\lambda$.	1⁄2	
ii. Point of minima (dark fringe), if $S_2P - S_1P = (2n+1)\frac{\lambda}{2}$	1⁄2	
G = G = G	1⁄2	
(b)		
We have $(S_2P)^2 - (S_1P)^2 = \left\{ D^2 - \left(x + \frac{d}{2}\right)^2 \right\} - \left\{ D^2 + \left(x - \frac{d}{2}\right)^2 \right\}$		
$= 2xd$ $S_2P - S_1P = \frac{2xd}{S_2P + S_1P} \approx \frac{2xd}{2D} = \frac{xd}{D}$	1⁄2	
$\therefore \text{ We have maxima at points, where} \\ \frac{xd}{D} = n\lambda$	1⁄2	
and minima at points where	1 /	
$\frac{xd}{D} = \left(\frac{2n+1}{2}\right)\lambda$	1⁄2	
Now, fringe width β = separation between two successive maxima(or two successive minima) = $x_n - x_n - 1$	1⁄2	
$ \beta = \frac{\lambda D}{d}$	1⁄2	
(b) We have	1/2	
$\frac{I_{max}}{I_{min}} = \frac{(a_1 + a_2)^2}{(a_1 - a_2)^2} = \frac{25}{9}$ $\therefore = \frac{a_1}{2} - \frac{4}{2}$		
$\therefore = \frac{a_1}{a_2} = \frac{4}{1}$ $\therefore \frac{W_1}{W_2} = \frac{I_1}{I_2} = \frac{(a_1)^2}{(a_2)^2} = \frac{16}{1}$	1⁄2	
[Note: Give $\frac{1}{2}$ mark if the student just writes Intensity \propto width		
OR		

	: Separation = $\frac{3(596-590)\times10^{-9}}{2\times10^{-6}} \times 1.5m$	1	5
	$= 13.5 \text{ x} \times 10^{-3} \text{m} (= 13.5 \text{ mm})$		
30.	(a) Expression for frequency1 ½Frequency Independent of 'v' or energy½(b) Sketch of cyclotron1Construction1Working1		
	(a) When a particle of mass 'm' and charge 'q', moves with a velocity \mathbf{V} , in a uniform magnetic field \mathbf{B} , it experiences a force \mathbf{F} where		
	$\vec{F} = q \; (\vec{v} \times \vec{B})$	1/2	
	$\therefore \text{ Centripetal force } \frac{mv^2}{r} = 2 v B_{\perp}$ $\therefore r = \frac{mv}{qB_{\perp}}$	1/2	
	qB_{\perp} \therefore frequency $= \frac{v}{2\pi r} = \frac{qB_{\perp}}{2\pi m}$	1⁄2	
	\therefore It is independent of the velocity or the energy of the particle.	1⁄2	
	Magnetic field out of the paper Exit Port Charged particle D ₁ OSCILLATOR	1	
	<u>Construction</u> : The cyclotron is made up of two hollow semi-circular disc like metal containers, D_1 and D_2 , called dees. It uses crossed electric and magnetic fields. The electric field is provided by an oscillator of adjustable frequency.		
	[Note: Award this mark even if the student labels the diagram properly without writing the details of the construction.]	1	
	Working : In a cyclotron, the frequency of the applied alternating field is adjusted to be equal to the frequency of revolution of the charged particles in the magnetic field. This ensures that the particles get accelerated every time		

Outside Delhi SET I Page 17 of 17