MARKING SCHEME SET 55/1 (Compartment)

Q.No.	SET 55/1 (Compartment) Expected Answer/Value Points	Marks	Total Marks
1.	$v_d = \frac{eV}{m\ell}\tau$	1	1
2.	With increase in temperature, the relaxation time (average time between successive collisions) decreases and hence resistivity increases. <u>Alternatively:</u> Resistivity $\rho\left(=\frac{m}{ne^2\tau}\right)$ increases as τ decreases with increase in temperature.	1	1
3.	Loss of strength of a signal while propagating through a medium.	1	1
4.	The locus of all points that are in the same phase / The surface of constant phase.	1	1
5.	A has positive polarity	1	1
6.	Telephone (any other correct example)	1	1
7.	$v = \frac{E}{B}$ where v is speed of electron <u>Alternatively:</u> $ \overline{F_E} = \overline{F_B} $	1	1
			1
8.	Line B Since slope (q/V) of B is lesser than that of A.	1/2 1/2	1
9.	Formula 1/2 Substitution and simplification 1 Result 1/2	1/2	
	$\begin{array}{c} q x d 2q \\ \hline \\ \text{Let P be the required point at a distance } x \text{ from charge } q \end{array}$		
	$ \therefore \frac{1}{4\pi\epsilon_o} \frac{q}{x} + \frac{1}{4\pi\epsilon_o} \frac{(-2q)}{(d-x)} = 0 $ $ \frac{1}{x} = \frac{2}{d-x} $	1⁄2	
l	$x = \frac{d}{3}$	1⁄2	
	required point is at a distance $\frac{d}{3}$ from charge q	1⁄2	

	Alternatively:		
	P $\leftarrow x \longrightarrow q \longleftarrow d \rightarrow -2q$ $\leftarrow x \longrightarrow q \longleftarrow d \rightarrow -2q$ $\leftarrow x \longrightarrow q \longleftarrow d \rightarrow -2q$ $\downarrow \frac{1}{4\pi\varepsilon_0 x} = \frac{1}{4\pi\varepsilon_0} \frac{2q}{d + x}$ 2x = x + d or x = d At distance d towards left of charge q OR (i) Work Done 1 (ii) Orientation 1	1/2 1/2 1/2 1/2	2
	(i) We have $W = \int_{\theta_1}^{\theta_2} \tau d\theta$ $\therefore W = \int_0^{\pi} pEsin\theta d\theta$ $= pE[-cos\theta]_0^{\pi}$ $= -2 pE$ (ii) $\because \tau = PE sin\theta \text{ for } \theta = \frac{\pi}{2}, \tau \text{ is maximum}$ Alternatively: 90° + q -q E	1/2 1/2 1	2
10.	(i) (a) Formula (b) Result (ii) (a) Formula (b) Result (i) (a) Formula (b) Result (i) $u_{0} = \frac{1}{\sqrt{LC}}$ $= \frac{1}{\sqrt{50 \times 10^{-3} \times 80 \times 10^{-6}}} = 500 \text{ rad/s}$ [Also accept i.e. $\vartheta = \frac{500}{2\pi} = \frac{250}{\pi} Hz \approx 80 Hz$]]	1/2 1/2	
	(ii) $Q = \frac{\omega_o L}{R}$ = $\frac{500 \times 50 \times 10^{-3}}{40}$ = 0.625	1/2 1/2	2

1.1			
11.	Earmaula 1		
	Formula 1		
	Substitution and Calculation ¹ / ₂		
	Result ¹ / ₂		
	$\lambda = \frac{h}{mv}$	1	
	$\lambda = \frac{1}{m_{12}}$		
	6.63×10^{-34}	1/2	
	$=\frac{6.63\times10^{-34}}{9.1\times10^{-31}\times2.2\times10^8}$	/2	
	$9.1 \times 10^{-31} \times 2.2 \times 10^{8}$		
	$=3.31 \times 10^{-12} \mathrm{m}$	1/2	2
12.		, 2	
12.	Flux through S_1 $\frac{1}{2}$		
	Flux through S_2 $\frac{1}{2}$		
	Ratio ¹ / ₂		
	Flux through S_1 with dielectric median $\frac{1}{2}$		
	Flux through S, $\Phi = \frac{Q}{Q}$	1/2	
	ϵ_0		
	Flux through S ₁ , $\Phi_1 = \frac{Q}{\epsilon_0}$ Flux through S ₂ , $\Phi_2 = \frac{Q+2Q}{\epsilon_0} = \frac{3Q}{\epsilon_0}$	1/	
	Find unough S_2 , $\Psi_2 = \frac{1}{\epsilon_0} = \frac{1}{\epsilon_0}$	1⁄2	
	Ratio of flux = $1:3$	1/2	
		1/2	2
	No change in flux through S_1 with dielectric medium inside the sphere S_2	/2	2
13.			
101	(i) Statement of Biot Savart's law 1		
	(ii) Expression for magnetic field $\frac{1}{2}$		
	(iii) Showing field lines ¹ / ₂		
	(i) According to Biot Savart's law, the magnetic field due to a current element		
	$\overrightarrow{d\ell}$ carrying current I at a point with position P vector \overrightarrow{r} is given by		
		1	
	$d\vec{B} = \frac{\mu_o}{4\pi} I\left[\frac{d\vec{\ell} \times \vec{r}}{ \vec{r} ^3}\right]$	1	
	$\begin{bmatrix} \alpha D & -4\pi^{T} \\ [\overline{r}]^{3} \end{bmatrix}$		
	$\overline{d\ell}$		
	\overrightarrow{r} P		
	i r		
	\uparrow		
	(ii) $\mathbf{B} = \frac{\mu_o I}{2r}$	1/2	
	2r	/ 2	
	Field lines		
	\times 11		
		1/-	
		1⁄2	
	E.		
	E		2
1		1	4

14.			
17,	(a) Conditions $\frac{1}{2} + \frac{1}{2}$		
	(b) Formation of rainbow		
	Diagram ¹ / ₂		
	Explanation ¹ / ₂		
	The condition for observing a rainbow are :		
	i. The sun comes out after a rainfall.	1/2	
	ii. The observer stands with the sun towards his/her back. (any one)	1/2	
		/ -	
	- white		
	Sunlight		
		1/2	
	Raindrops		
	40°		
	Observer 42*		
	Formation of a rainbow:		
	\rightarrow The rays of light reach the observer through a refraction, followed by a		
	reflection, followed by a refraction.		
	\rightarrow Figure shows red light, from drop 1 and violet light from drop 2,	1⁄2	2
	reaching the observers eye.		
15.	One difference between ε and V $\frac{1}{2}$		
	VI Graph ^{1/2}		
	Determination of 'r' and ε 1		
	Difference between $emf(\varepsilon)$ and terminal voltage (v)		
	$\varepsilon m f$ terminal voltage		
	1) It is the potential difference 1) It is the potential difference		
	between two terminals of the cells between two terminals when		
	when no current is drawn from it. current passes through it.	1⁄2	
	2) It is the cause. 2) It is the effect.		
	(Any one) or any other relevant difference		
	↑		
	v		
		1	
	Negative of slope gives internal resistance.	17	2
	reguire of stope gives internal resistance.	1⁄2	2

16			
16.	(a) Difference between a permanent magnet and an electromagnet $\frac{1}{2} + \frac{1}{2}$ (b) Any two properties of material $\frac{1}{2} + \frac{1}{2}$		
	 a) An electromagnet consists of a core made of a ferromagnetic material placed inside a solenoid. It behaves like a strong magnet when current flows through the solenoid and effectively loses its magnetism when the current is switched off. (i) A permanent magnet is also made up of a ferromagnetic material but it retains its magnetism at room temperature for a long time after being 	1/2 1/2	
	magnetized once. b) (i) High permeability (ii) Low retentivity (iii)Low coercivity (Any two) [Note: Give ½ mark if the student just writes 'soft iron' is a suitable material for making electromagnets.]	1/2+ 1/2	2
17.			
	Three basic properties $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ Plot of KE max versus ν $\frac{1}{2}$		
	 Three basic properties of photons: (i) Photons are quanta or discrete carriers of energy. (ii) Energy of a photon is proportional to the frequency of light. (iii) The photon gives all its energy to the electron with which it interacts. Einstein's photoelectric equation 	1/2 1/2 1/2	
	$\frac{1}{2}m\mathbf{v}_{max}^2 = h\mathbf{v} - \mathbf{w}$		
	The plot is as shown		
	$\frac{1}{2}mv_{max}^2$	1⁄2	
	$v_{o} v \longrightarrow$		2
18.	Naming the gate1/2Truth Table1Logic Symbol1/2		
	NAND GATE	1⁄2	

20. (a) Principle of potentiometer $\frac{1}{2}$ Reason for Part (i), (ii) and (iii) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ (b) Graph 1 a) Principle of potentiometer: The potential drop across the length of a steady current carrying wire of uniform cross section is proportional to the length of the wire. i. We use a long wire to have a lower value of potential gradient (i.e. a lower 'least count' or greater sensitivity of the potentiometer $\frac{1}{2}$ i. The area of cross section has to be uniform to get a 'uniform wire' as per the principle of the potentiometer $\frac{1}{2}$ to a source a constant value of resistance per unit length of the wire. ii. The area of cross section has to be greater than the emf of the primary cells as otherwise no balance point would be obtained. b) Potential gradient $K = \frac{V}{L}$ $\frac{V}{L}$ $\frac{V}{L} \longrightarrow \frac{1}{L} \longrightarrow \frac$	20.			
(b) Graph 1 a) Principle of potentiometer: 1 The potential drop across the length of a steady current carrying wire of uniform cross section is proportional to the length of the wire. ½ i. We use a long wire to have a lower value of potential gradient (i.e. a lower 'least count' or greater sensitivity of the potentiometer ½ ½ ii. The area of cross section has to be uniform to get a 'uniform wire' as per the principle of the potentiometer 7/10 ensure a constant value of resistance per unit length of the wire. ½ iii. The emf of the driving cell has to be greater than the emf of the primary cells as otherwise no balance point would be obtained. ½ b) Potential gradient $K = \frac{V}{t}$ 1 iii. The required graph is as shown 1 iii. The regy of first excited state $\frac{1/2}{2}$ 1 iii. The regy of first excited state $\frac{1/2}{2}$ 1 iii. The required = $-3.4 - (13.6)eV = 10.2 eV$ 1 <	20.			
The potential drop across the length of a steady current carrying wire of uniform cross section is proportional to the length of the wire. i. We use a long wire to have a lower value of potential gradient (i.e. a lower 'least count' or greater sensitivity of the potentiometer ii. The area of cross section has to be uniform to get a 'uniform wire' as per the principle of the potentiometer / to ensure a constant value of resistance per unit length of the wire. iii. The end of the driving cell has to be greater than the end of the primary cells as otherwise no balance point would be obtained. b) Potential gradient $K = \frac{v}{L}$ $\ell \longrightarrow$ 21. (i) Formula $\frac{v}{L}$ $\ell \longrightarrow$ 21. (i) Formula first excited state $\frac{v_2}{L}$ (ii) Kinetic energy in the first excited state $\frac{v_2}{L}$ (iii) Kinetic energy $\frac{v_2}{L}$ b. \therefore Energy of first excited state $=\frac{-13.6}{2^2} = -3.4$ eV c. \therefore Energy required $= [-3.4 - (13.6)$ eV] $= 10.2$ eV (ii) a. Kinetic energy $= energy of 1$ Ist excited state] = 3.4 eV b. Orbital radius in unit state $\propto n^2$ $= 4 \times 0.53 \dot{A}$ $- 2 \cdot 12 \dot{A}$				
The potential drop across the length of a steady current carrying wire of uniform cross section is proportional to the length of the wire. i. We use a long wire to have a lower value of potential gradient (i.e. a lower 'least count' or greater sensitivity of the potentiometer ii. The area of cross section has to be uniform to get a 'uniform wire' as per the principle of the potentiometer '/ to ensure a constant value of resistance per unit length of the wire. iii. The ern of the driving cell has to be greater than the ern of the primary cells as otherwise no balance point would be obtained. b) Potential gradient $K = \frac{v}{L}$ $\ell \longrightarrow$ 'the required graph is as shown $\ell \longrightarrow$ 'the required attribute '/2 (i) Formula $\frac{v_2}{L}$ $\ell \longrightarrow$ 'the required state $\frac{v_2}{V_2}$ (ii) Kinetic energy $\frac{v_2}{V_2}$ $h \therefore$ Energy of first excited state $=\frac{-13.6}{2^2} = -3.4 \text{eV}$ $c. \therefore$ Energy required $[-3.4 - (13.6)\text{eV}] = 10.2 \text{ eV}$ (ii) a. Kinetic energy $= [energy of 1 \text{ ste excited state}]$ = 3.4 eV b. Orbital radius in nth state $\propto n^2$ $= 4 \times 0.53 \dot{A}$ $- 2 \cdot 12 \dot{A}$				
The potential drop across the length of a steady current carrying wire of uniform cross section is proportional to the length of the wire. i. We use a long wire to have a lower value of potential gradient (i.e. a lower 'least count' or greater sensitivity of the potentiometer ii. The area of cross section has to be uniform to get a 'uniform wire' as per the principle of the potentiometer '/ to ensure a constant value of resistance per unit length of the wire. iii. The ern of the driving cell has to be greater than the ern of the primary cells as otherwise no balance point would be obtained. b) Potential gradient $K = \frac{v}{L}$ $\ell \longrightarrow$ 'the required graph is as shown $\ell \longrightarrow$ 'the required attribute '/2 (i) Formula $\frac{v_2}{L}$ $\ell \longrightarrow$ 'the required state $\frac{v_2}{V_2}$ (ii) Kinetic energy $\frac{v_2}{V_2}$ $h \therefore$ Energy of first excited state $=\frac{-13.6}{2^2} = -3.4 \text{eV}$ $c. \therefore$ Energy required $[-3.4 - (13.6)\text{eV}] = 10.2 \text{ eV}$ (ii) a. Kinetic energy $= [energy of 1 \text{ ste excited state}]$ = 3.4 eV b. Orbital radius in nth state $\propto n^2$ $= 4 \times 0.53 \dot{A}$ $- 2 \cdot 12 \dot{A}$		a) Principle of potentiometer:		
i. We use a long wire to have a lower value of potential gradient (i.e. a lower 'least count' or greater sensitivity of the potentiometer 9/2 ii. The area of cross section has to be uniform to get a 'uniform wire' as per the principle of the potentiometer 9/2 / to ensure a constant value of resistance per unit length of the wire. 9/2 iii. The emf of the driving cell has to be greater than the emf of the primary cells as otherwise no balance point would be obtained. 9/2 b) Potential gradient $K = \frac{Y}{L}$ 1 iii. The required graph is as shown 1 iii. Kinetic energy 1 iii. Kinetic energy 1 iii. Kinetic energy 1/2 iii. Kinetic energy 1/2 iii. Kinetic energy 1/2 iii. Kinetic energy of first excited state $=\frac{-13.6}{2^2} = -3.4 \text{eV}$ 1/2 iii. The hydrogen atom a. $ E_R \propto \frac{1}{n^2}$ 1/2 b. \div Energy of first excited state $=\frac{-13.6}{2^2} = -3.4 \text{eV}$ 1/2 iii. a. Kinetic energy = energy of 1st excited state = 3.4 eV 1/2 iiii a. Kinetic energy = energy of 1st e		The potential drop across the length of a steady current carrying wire of uniform	1⁄2	
lower 'least count' or greater sensitivity of the potentiometer1/2ii. The area of cross section has to be uniform to get a 'uniform wire' as per the principle of the potentiometer / to ensure a constant value of resistance per unit length of the wire.1/2iii. The emf of the driving cell has to be greater than the emf of the primary cells as otherwise no balance point would be obtained.1/2b) Potential gradient $K = \frac{Y}{L}$ \cdot the required graph is as shown1iii. The emf of the first excited state $\ell \rightarrow$ 1/2iii. The emf of the first excited state Energy in the first excited state Energy nequired $\frac{1}{2}$ 1iii. Kinetic energy Orbital radius (Formula and Result) $\frac{1}{2} + \frac{1}{2}$ (i) For the hydrogen atom a. $ E_n \propto \frac{1}{n^2}$ $\frac{1}{2}$ b. \div Energy of first excited state $= \frac{-13.6}{2^2} = -3.4 \text{eV}$ c. \div Energy required $= [-3.4 - (13.6) \text{eV}] = 10.2 \text{ eV}$ $\frac{1}{2}$ (ii)a. Kinetic energy $= \text{energy of } 1 \text{ first excited state} $ $= 3.4 \text{ eV}$ $\frac{1}{2}$ b. Orbital radius in nth state $\propto n^2$ $\frac{1}{2}$ c. $4 \times 0.53 Å$ $- 2 \cdot 12 Å$ $\frac{1}{2}$				
per the principle of the potentiometer / to ensure a constant value of resistance per unit length of the wire. iii. The emf of the driving cell has to be greater than the emf of the primary cells as otherwise no balance point would be obtained. b) Potential gradient $K = \frac{v}{L}$ \therefore the required graph is as shown $\ell \longrightarrow$ 21. (i) Formula $\frac{v}{L}$ $\ell \longrightarrow$ 21. (i) Formula first excited state $\frac{v}{L}$ Energy in the first excited state $\frac{v}{L}$ Energy in the first excited state $\frac{v}{L}$ (i) Kinetic energy $\frac{v}{L}$ $Orbital radius (Formula and Result) \frac{v}{L} + \frac{v}{L}(i) For the hydrogen atoma. E_n \propto \frac{1}{n^2}b. \therefore Energy of first excited state \frac{-13.6}{2^2} = -3.4 \text{eV}c. \therefore Energy of first excited state \frac{-13.6}{2^2} = -3.4 \text{eV}(ii) a. Kinetic energy = energy of 1 \text{ 1st excited state} _{= -3.4 \text{ eV}}(ii) Orbital radius in th state \propto n^2= 4 \times 0.53 \dot{A}= 2 1.2 \dot{A}$		lower 'least count' or greater sensitivity of the potentiometer	1⁄2	
7 to ensure a constant value of resistance per unit length of the wire. 1 iii. The emf of the driving cell has to be greater than the emf of the primary cells as otherwise no balance point would be obtained. 1/2 b) Potential gradient $K = \frac{v}{L}$ \cdot the required graph is as shown 1			1/2	
cells as otherwise no balance point would be obtained. b) Potential gradient $K = \frac{v}{L}$ \therefore the required graph is as shown \uparrow κ $\ell \longrightarrow$ 21. (i) Formula Energy in the first excited state Energy required (ii) Kinetic energy ψ_2 (ii) For the hydrogen atom a. $ E_n \propto \frac{1}{n^2}$ b. \therefore Energy of first excited state $= \frac{-13.6}{22} = -3.4$ eV (ii) A kinetic energy $f = [-3.4 - (13.6)$ eV] = 10.2 eV (ii) a. Kinetic energy = $ energy of 1st excited state $ = 3.4 eV b. Orbital radius in th state $\propto n^2$ $= 4 \times 0.53 \dot{A}$ $= 2 \cdot 12 \cdot \dot{A}$		/ to ensure a constant value of resistance per unit length of the wire.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1⁄2	
21. (i) Formula $\frac{1}{\ell}$ $\frac{1}{2}$ (i) Formula $\frac{1}{\ell}$ $\frac{1}{2}$ Energy required $\frac{1}{2}$ (ii) Kinetic energy $\frac{1}{2}$ (ii) For the hydrogen atom a. $ E_n \propto \frac{1}{n^2}$ b. \therefore Energy of first excited state $=\frac{-13.6}{2^2} = -3.4$ eV c. \therefore Energy required $= [-3.4 - (13.6)$ eV] $= 10.2$ eV (ii) a. Kinetic energy $= energy \ of \ 1st \ excited \ state $ = 3.4 eV b. Orbital radius in nth state $\propto n^2$ $= 4 \times 0.53 \dot{A}$ $= 2.12 \ \dot{A}$		E E		
21. (i) Formula $\frac{1}{2}$ Energy in the first excited state $\frac{1}{2}$ Energy required $\frac{1}{2}$ (ii) Kinetic energy $\frac{1}{2}$ Orbital radius (Formula and Result) $\frac{1}{2} + \frac{1}{2}$ (i) For the hydrogen atom a. $ E_n \propto \frac{1}{n^2}$ b. \therefore Energy of first excited state $= \frac{-13.6}{2^2} = -3.4 \text{eV}$ c. \therefore Energy required $= [-3.4 - (13.6)\text{eV}] = 10.2 \text{ eV}$ (ii) a. Kinetic energy $= \text{energy of 1st excited state} $ = 3.4 eV b. Orbital radius in nth state $\propto n^2$ $= 4 \times 0.53\dot{A}$ $= 2 \cdot 12 \cdot \dot{A}$		∴ the required graph is as shown		
21. (i) Formula $\frac{1}{2}$ Energy in the first excited state $\frac{1}{2}$ Energy required $\frac{1}{2}$ (ii) Kinetic energy $\frac{1}{2}$ Orbital radius (Formula and Result) $\frac{1}{2} + \frac{1}{2}$ (i) For the hydrogen atom a. $ E_n \propto \frac{1}{n^2}$ b. \therefore Energy of first excited state $= \frac{-13.6}{2^2} = -3.4 \text{eV}$ c. \therefore Energy required $= [-3.4 - (13.6)\text{eV}] = 10.2 \text{ eV}$ (ii) a. Kinetic energy $= \text{energy of 1st excited state} $ = 3.4 eV b. Orbital radius in nth state $\propto n^2$ $= 4 \times 0.53\dot{A}$ $= 2 \cdot 12 \cdot \dot{A}$				
21. (i) Formula $\frac{1}{2}$ Energy in the first excited state $\frac{1}{2}$ Energy required $\frac{1}{2}$ (ii) Kinetic energy $\frac{1}{2}$ Orbital radius (Formula and Result) $\frac{1}{2} + \frac{1}{2}$ (i) For the hydrogen atom a. $ E_n \propto \frac{1}{n^2}$ b. \therefore Energy of first excited state $= \frac{-13.6}{2^2} = -3.4 \text{eV}$ c. \therefore Energy required $= [-3.4 - (13.6)\text{eV}] = 10.2 \text{ eV}$ (ii) a. Kinetic energy $= \text{energy of 1st excited state} $ = 3.4 eV b. Orbital radius in nth state $\propto n^2$ $= 4 \times 0.53\dot{A}$ $= 2 \cdot 12 \cdot \dot{A}$				
21. (i) Formula $\frac{1}{2}$ Energy in the first excited state $\frac{1}{2}$ Energy required $\frac{1}{2}$ (ii) Kinetic energy $\frac{1}{2}$ Orbital radius (Formula and Result) $\frac{1}{2} + \frac{1}{2}$ (i) For the hydrogen atom a. $ E_n \propto \frac{1}{n^2}$ b. \therefore Energy of first excited state $= \frac{-13.6}{2^2} = -3.4$ eV c. \therefore Energy required $= [-3.4 - (13.6)$ eV] $= 10.2$ eV (ii) a. Kinetic energy $= energy of 1st excited state $ = 3.4 eV b. Orbital radius in nth state $\propto n^2$ $= 4 \ge 0.53\dot{A}$ $= 2 \ge 2\dot{A}$		K	1	
21. (i) Formula $\frac{1}{2}$ Energy in the first excited state $\frac{1}{2}$ Energy required $\frac{1}{2}$ (ii) Kinetic energy $\frac{1}{2}$ Orbital radius (Formula and Result) $\frac{1}{2} + \frac{1}{2}$ (i) For the hydrogen atom a. $ E_n \propto \frac{1}{n^2}$ b. \therefore Energy of first excited state $= \frac{-13.6}{2^2} = -3.4$ eV c. \therefore Energy required $= [-3.4 - (13.6)$ eV] $= 10.2$ eV (ii) a. Kinetic energy $= energy of 1st excited state $ = 3.4 eV b. Orbital radius in nth state $\propto n^2$ $= 4 \ge 0.53\dot{A}$ $= 2 \ge 2\dot{A}$				
(i) Formula $\frac{1}{2}$ Energy in the first excited state $\frac{1}{2}$ Energy required $\frac{1}{2}$ (ii) Kinetic energy $\frac{1}{2}$ Orbital radius (Formula and Result) $\frac{1}{2} + \frac{1}{2}$ (i) For the hydrogen atom a. $ E_n \propto \frac{1}{n^2}$ b. \therefore Energy of first excited state $= \frac{-13.6}{2^2} = -3.4 \text{eV}$ c. \therefore Energy required $= [-3.4 - (13.6)\text{eV}] = 10.2 \text{ eV}$ (ii) a. Kinetic energy $= energy \text{ of } 1\text{ st excited state} $ = 3.4 eV b. Orbital radius in nth state $\propto n^2$ $= 4 \ge 0.53\dot{A}$ $= 2 \ge 2\dot{A}$		$\begin{array}{c} & & \\$		3
(i) Formula $\frac{1}{2}$ Energy in the first excited state $\frac{1}{2}$ Energy required $\frac{1}{2}$ (ii) Kinetic energy $\frac{1}{2}$ Orbital radius (Formula and Result) $\frac{1}{2} + \frac{1}{2}$ (i) For the hydrogen atom a. $ E_n \propto \frac{1}{n^2}$ b. \therefore Energy of first excited state $= \frac{-13.6}{2^2} = -3.4 \text{eV}$ c. \therefore Energy required $= [-3.4 - (13.6)\text{eV}] = 10.2 \text{ eV}$ (ii) a. Kinetic energy $= \text{energy of 1st excited state} $ = 3.4 eV b. Orbital radius in nth state $\propto n^2$ $= 4 \ge 0.53\dot{A}$ $= 2 \cdot 12 \cdot \dot{A}$				
Energy required (i) Kinetic energy Orbital radius (Formula and Result) (i) For the hydrogen atom a. $ E_n \propto \frac{1}{n^2}$ b. \therefore Energy of first excited state $= \frac{-13.6}{2^2} = -3.4 \text{eV}$ c. \therefore Energy required $= [-3.4 - (13.6)\text{eV}] = 10.2 \text{ eV}$ (ii) a. Kinetic energy $= \text{energy of 1st excited state} $ = 3.4 eV b. Orbital radius in nth state $\propto n^2$ $= 4 \ge 0.53\dot{A}$ $= 2 \ge 2 \dot{A}$	21.			
(ii) Kinetic energy Orbital radius (Formula and Result) (i) For the hydrogen atom a. $ E_n \propto \frac{1}{n^2}$ b. \therefore Energy of first excited state $= \frac{-13.6}{2^2} = -3.4 \text{eV}$ c. \therefore Energy required $= [-3.4 - (13.6)\text{eV}] = 10.2 \text{ eV}$ (ii) a. Kinetic energy $= \text{energy of 1st excited state} $ = 3.4 eV b. Orbital radius in nth state $\propto n^2$ $= 4 \ge 0.53\dot{A}$ $= 2 \ge 2 \dot{A}$				
(i) For the hydrogen atom a. $ E_n \propto \frac{1}{n^2}$ b. \therefore Energy of first excited state $= \frac{-13.6}{2^2} = -3.4 \text{eV}$ c. \therefore Energy required $= [-3.4 - (13.6)\text{eV}] = 10.2 \text{ eV}$ (ii) a. Kinetic energy $= \text{energy of } 1\text{st excited state} $ = 3.4 eV b. Orbital radius in nth state $\propto n^2$ $= 4 \ge 0.53\dot{A}$ $= 2 \ge 12 \dot{A}$		(ii) Kinetic energy ¹ / ₂		
a. $ E_n \propto \frac{1}{n^2}$ $\frac{1}{2}$ b. \therefore Energy of first excited state $= \frac{-13.6}{2^2} = -3.4 \text{eV}$ $\frac{1}{2}$ c. \therefore Energy required $= [-3.4 - (13.6)\text{eV}] = 10.2 \text{ eV}$ $\frac{1}{2}$ (ii)a. Kinetic energy $= \text{energy of 1st excited state} $ $\frac{1}{2}$ $= 3.4 \text{ eV}$ $\frac{1}{2}$ b. Orbital radius in nth state $\propto n^2$ $\frac{1}{2}$ $= 4 \ge 0.53\dot{A}$ $\frac{1}{2}$				
b. \therefore Energy of first excited state $= \frac{-13.6}{2^2} = -3.4 \text{eV}$ c. \therefore Energy required $= [-3.4 - (13.6)\text{eV}] = 10.2 \text{ eV}$ (ii) a. Kinetic energy $= \text{energy of 1st excited state} $ = 3.4 eV b. Orbital radius in nth state $\propto n^2$ $= 4 \ge 0.53\dot{A}$ $= 2.12 \dot{A}$			1/2	
c. \therefore Energy required = $[-3.4 - (13.6)eV] = 10.2 eV$ (ii) a. Kinetic energy = $ energy \ of \ 1st \ excited \ state $ = 3.4 eV b. Orbital radius in nth state $\propto n^2$ $= 4 \ge 0.53\dot{A}$ $= 2.12 \dot{A}$				
(ii) a. Kinetic energy = $ energy \ of \ 1st \ excited \ state $ $= 3.4 \ eV$ b. Orbital radius in nth state $\propto n^2$ $= 4 \ x \ 0.53\dot{A}$ $= 2 \ 12 \ \dot{A}$			1/2	
a. Kinetic energy = $ energy \ of \ 1st \ excited \ state $ = 3.4 eV b. Orbital radius in nth state $\propto n^2$ = 4 x $0.53\dot{A}$ - 2.12 \dot{A}				
$= 3.4 \text{ eV}$ b. Orbital radius in nth state $\propto n^2$ $= 4 \times 0.53\dot{A}$ $= 2.12 \dot{A}$				
$= 4 \ge 0.53 \dot{A}$ $= 2.12 \dot{A}$		= 3.4 eV		
-2.12 \AA			1/2	
1/2 3				
			1/2	3

	OR		
	Derivation of the expression for magnetic moment2 1/2Direction of magnetic moment1/2		
	We have $\mu = iA$ = $\frac{e \cdot v}{2\pi r} \cdot \pi r^2$.	1/2 1/2	
	$=\frac{evr}{2}$	1⁄2	
	$\ell = m vr$ $vr = \frac{\ell}{m}$ $\vec{\mu} = \frac{-e \vec{l}}{2 m}$	1⁄2	
	$\vec{\mu} = \frac{-et}{2m}$	1/2	
	The direction of $\vec{\mu}$ is opposite to that of \vec{l} because of the negative charge of the electron.	1⁄2	3
24.			
	(a) Derivation of the result $I = 4I_0 cos^2 \frac{\phi}{2}$ 2		
	(b) Conditions for constructive and 1/2 destructive interference 1/2		
	(a) The resultant displacement is given by : y = y + y		
	$y = y_1 + y_2$ = $a \cos \omega t + a \cos(\omega t + \phi)$ = $a \cos \omega t (1 + \cos \phi) - a \sin \omega t \sin \phi$	1⁄2	
	Put $R \cos \theta = a (1 + \cos \phi)$ $R \sin \theta = a \sin \phi$ $R^2 = a^2(1 + \cos^2 t + 2 \cos t) + a^2 \sin^2 t$	1⁄2	
	$\therefore R^{2} = a^{2}(1 + \cos^{2}\phi + 2\cos\phi) + a^{2}\sin^{2}\phi$ = 2 a ² (1 + cos \phi) = 4a ² cos ² \frac{\phi}{2}	1⁄2	
	$\therefore I = R^{2} = 4 a^{2} \cos^{2} \frac{\phi}{2} = 4 I_{0} \cos^{2} \frac{\phi}{2}$	1⁄2	
	For constructive interference, ϕ ϕ ϕ	17	
	$\cos \frac{\phi}{2} = \pm 1 or \frac{\phi}{2} = n \pi or \phi = 2n\pi$ For destructive interference,	1⁄2	
	$\cos\frac{\phi}{2} = 0 \text{ or } \frac{\phi}{2} = (2n+1)\frac{\pi}{2} \text{ or } \phi = (2n+1)\pi$	1⁄2	3

25.			
	(a) Reason 1		
	(b) Any two values $\frac{1}{2} + \frac{1}{2}$		
	(c) Determination of sideband frequencies $\frac{1}{2} + \frac{1}{2}$		
	(a) The ultra high frequency em radiations, continuously emitted by a mobile phone, may harm the system of the human body.	1	
	(b) Sister Anita shows	1/	
	 (i) Concern about her brother (ii) Awareness about the likely effects of em radiations on human body (iii) Sense of responsibility (any two) 	1/2 1/2	
	(c) The side bands are		
	$(v_e + v_m)$ and $(v_e - v_m)$	1/2	
	or $(1000 + 10)kHz$ and $(1000 - 10)kHz$		
	1010 kHz and 990 kHz	1⁄2	3
26.			
20.	(a) Reason for momentary deflection1/2Deflection after the capacitor gets fully charged1/2(b) Explanation for modification in Ampere's circuital law2		
	(a) The momentary deflection is due to the transient current flowing through	1/2	
	the circuit when the capacitor is getting charged.	, 2	
	The deflection would be zero when the capacitor gets fully charged.	1⁄2	
	(b) We consider the charging of a capacitor when it is being charged by		
	connecting it to a dc source.		
	$i(t) \rightarrow \begin{pmatrix} + & - \\ + &$		
	$i(t) \rightarrow \begin{bmatrix} + & + & + & + \\ + & + & + & + \\ + & + &$		
	In Ampere's circuital law, namely $B(2\pi r) = \mu_0 i$ We have <i>i</i> as non zero for surface (a) but zero for surface (c) Hence there is a contradiction in the value of B; calculated one way we have a	14	
	magnetic field at P but calculated another way we have $B=0$	$\frac{1/2}{1/2}$	
	To remove this contradiction the concept of displacement current	72	

	$(i_d = \varepsilon_0 \frac{d\phi_E}{dt} = i)$ was introduced	1/2	
	and Ampere's circuital law was put in its generalized form namely	72	
	$\oint_{B} \therefore = \mu_0 i_c + \mu_0 \epsilon_0 \frac{d\phi_E}{dt}$	1⁄2	
	This form gives consistent results for values of B irrespective of which surface is used to calculate it.		3
27.	(a) Definition of activity and its SI unit $\frac{1}{2} + \frac{1}{2}$ (b) Calculation of the activity of the sample2		
	a) The activity of a sample of radioactive nucleus equals its decay rate(or number of nuclei decaying per unit time) Its SI unit is disintegration /s or Becquerel b) $R = \lambda N$ $= \frac{log_{e^2} \times 25.3 \times 10^{20} \times 10}{4.5 \times 10^9}$ $= \frac{0.6931 \times 25.3 \times 10^{21}}{4.5 \times 10^9 \times 365 \times 24 \times 60 \times 60}$ $= 1.24 \times 10^5 \ dps$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	
	[Note: If a candidate gives the result in (year) ⁻¹ , give full credit.]	72	3
28.	(a) Schematic arrangement1(b) Principle of a transformer $\frac{1}{2}$ Obtaining expression1(i) $\frac{V_1}{V_2} = \frac{N_1}{N_2}$ 1(ii) $\frac{V_1}{V_2} = \frac{l_2}{l_1}$ 1(c) Assumptions (any one) $\frac{1}{2}$ (d) Two reasons for energy losses $\frac{1}{2} + \frac{1}{2}$		
	a)	1	
	b) Principle of a transformer: when alternating current flows through the primary coil, an emf is induced in the neighbouring (secondary) coil (i) Let $\frac{d\phi}{dt}$ be the tare of charge of flux through each turn of the primary and the secondary coil	1⁄2	

$\frac{e_1}{e_2} = -N_1 \frac{d\phi}{dt} / -N_2 \frac{d\phi}{dt} = \frac{N_1}{N_2}$	1⁄2	
Or V. N.		
$\frac{V_1}{V_2} = \frac{N_1}{N_2}$ (1)	1/2	
(ii) But for an ideal transformer $V_1 I_1 = V_2 I_2$, 2	
$\frac{V_1}{V_2} = \frac{I_2}{I_1}$ (2)	1⁄2	
From equation (1) and (2	1/	
$\frac{V_1}{V_2} = \frac{N_1}{N_2} = \frac{I_2}{I_1}$	1⁄2	
c) Main assumptions		
(i) The primary resistance and current are small		
(ii) The flux linked with the primary and secondary coils is same / there		
is no leakage of flux from the core.		
(iii)Secondary current is small	1⁄2	
(Any one)		
d) Reason due to which energy loses may occur		
Flux leakage/resistance of the coils / eddy currents / Hysteresis (Any two)	1⁄2 +1⁄2	5
OR	/2 /2	5
a) Derivation of the expressions for $2\frac{1}{2}$		
i. Induced emf		
ii. Induced current b) Expression for magnitude of force and its direction 1 ¹ / ₂		
c) Expression for power 1		
a) In one revolution		
Change of area, $dA = \pi \ell^2$		
\therefore change of magnetic flux		
$d\phi = \overrightarrow{B} \cdot \overrightarrow{dA} = BdAcos0^{o}$		
$= B \pi \ell^2$	1⁄2	
Period of revolution T (i) Induced amf $a = B = \theta^2 / T$ $B = \theta^2 / T$	⁷² 1⁄2	
(i) Induced emf $\varepsilon = B\pi \ell^2 / T = B\pi \ell^2 v$		
(ii) Induced current in the rod, $I = \frac{\varepsilon}{R} = \frac{\pi \nu B \ell^2}{R}$	1	
[Note: Award 2 marks if the student derives the above relation using other	1⁄2	
method.]		
b) Force acting on the rod, $F = I\ell B$	1/2	
-	72	
$=\frac{\pi \nu B^2 \ell^3}{R}$	1⁄2	
The external force required to rotate the rod opposes the Lorentz force acting on the		
rod / external force acts in the direction opposite to the Lorentz force	1⁄2	
c) Power required to rotate the rod		
$\mathbf{P} = F \vartheta$	17	
$=\frac{\pi \nu B^2 \ell^3 \nu}{R}$	1⁄2	
R	1⁄2	5
	/ 2	5

Adding equation (i) and equation (ii)

$$\frac{n_{1}}{v} - \frac{n_{1}}{u} = (n_{2} - n_{1})\left(\frac{1}{n_{1}} - \frac{1}{n_{2}}\right)$$

$$\frac{1}{v} - \frac{1}{u} = \left(\frac{n_{2}}{n_{1}} - 1\right)\left(\frac{1}{n_{1}} - \frac{1}{n_{2}}\right)$$
We know If $u = \infty$, $v = f$

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

$$\frac{1}{f} = (n_{2} - 1)\left(\frac{1}{n_{1}} - \frac{1}{n_{2}}\right)$$

$$(b) \frac{1}{f} = (n - 1)\left(\frac{1}{n_{1}} - \frac{1}{n_{2}}\right)$$

$$\frac{1}{20} = (1.55 - 1)\left(\frac{1}{R} - \frac{1}{-R}\right)$$

$$= 0.55 \times \frac{2}{R}$$

$$R = 0.55 \times 2 \times 20 = 22 \text{ cm}$$
(a) Labelled ray diagram
Derivation of expression for magnifying power 1 ½
(b) Determination of total magnification 2
(c) $\frac{1}{V_{2}}$

$$\frac{1}{V_{2}}$$
(b) Determination of total magnification 2
(c) $\frac{1}{V_{2}}$

$$\frac{1}{V_{2}}$$
(b) Determination of total magnification 2
(c) $\frac{1}{V_{2}}$

$$\frac{1}{R} = \frac{1}{N} \frac{1}{mN} \frac{1}{N} \frac{1}{N}$$

			
	b) Given $f_0 + f_e = 105$, $f_0 = 20 f_e$ $20 f_e + f_e = 105$	1⁄2	
	$20 f_e + f_e = 105$ $f_e = \frac{105}{21} = 5 cm$ $f_0 = 20 \times 5 = 100 cm$	1/2 1/2	
	$\therefore Magnification \ m = \frac{f_0}{f_e} = \frac{100}{5} = 20$	1⁄2	5
30.	(a) Circuit arrangement of p-n function in (i) Forward biasing 1/2 (ii) Reverse biasing 1/2 VI characteristics 1 Explanation 1/2 (b) Circuit diagram 1/2 Explanation 2 (a) (a) Forward biasing	1⁄2	
	Forward biasing	1⁄2	
	Reverse biasing The VI characteristics are obtained by connecting the battery, to the diode, through a potentiometer (or rheostat). The applied voltage to the diode is changed. The values of current, for different values of voltage, are noted and a graph between V and I is plotted. The V-I characteristics ,of a diode, have the form shown here.	1	

