MARKING SCHEME SET 55/1(Compartment)

Q. No.	SET 55/1(Compartment) Expected Answer / Value Points	Marks	Total Marks
	Section A		
Set1,Q1	If it were not so, the presence of a component of the field along the surface	1	
Set2,Q5	would violate its equipotential nature.		1
Set3,Q4	[Accept any other correct explanation] It would decrease.	1	1
Set1,Q2 Set2,Q1	[NOTE: Also accept if the student just writes 'yes']	1	
Set2,Q1 Set3,Q5	[NOTE. Also accept if the student just writes yes]		1
Set1,Q3			1
Set2,Q2 Set3,Q1	A B B A B A B A B Y O 0 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 0	1/2 + 1/2	1
Set1,Q4 Set2,Q3 Set3,Q2	$X_c \land \qquad $	1	1
Set1,Q5 Set2,Q4 Set3,Q3	 In amplitude modulation, the amplitude, of the carrier wave, changes in accordance with the modulating signal, while in frequency modulation, frequency of the carrier wave varies in accordance with the modulating signal. [NOTE: Also accept if the student draws graphs for the two types of modulation] 	1	1
	Section B		
Set1,Q6 Set2,Q10 Set3,Q9	Definition of electric flux $\frac{1}{2}$ S.I. unit $\frac{1}{2}$ Calculation of flux $\frac{1}{2}$ The 'electric flux', through an elemental area $d\vec{s}$, equals the dot product of $d\vec{s}$, with the electric field, \vec{E} .[Alternatively: Electric flux is the number of electric field lines passing through a given area.][Also accept, $d\phi = \vec{E}.d\vec{s}$ Or $\phi = \oint_s \vec{E}.d\vec{s}$]	1⁄2	
	S.I. units: $\left(\frac{N-m^2}{C}\right)$ or (V-m)	1/2	
	$\phi = \vec{E} \cdot \vec{S} = ES(as \ \theta = 0^o)$	1/2	

	N2		
	$= 3 \times 10^{3} \times (10 \times 10^{-2})^{2} \frac{\text{N-m}^{2}}{\text{C}}$	1/2	
	N-m ²	/2	2
	$= 30 \frac{\text{N-m}^2}{\text{C}}$		
Set1,Q7	Colorado de la colorada de la colora		
Set2,Q6	Calculation of Equivalent Resistance of the network1½Calculation of current½		
Set3,Q10			
	The given network has the form given below:		
	B		
	10		
		1/2	
	$A = 5\Omega$	/ _	
	Nu sh		
	2Ω 4Ω		
	D	1/2	
	It is a balanced wheatstone Bridge.	72	
	Its equivalent resistance, R , is given by		
	$\frac{1}{R} = \frac{1}{1+2} + \frac{1}{2+4} = \frac{1}{2}$	1/2	
	$\begin{array}{cccc} R & 1+2 & 2+4 & 2 \\ R = 2\Omega \end{array}$		
	$\therefore \text{ Current drawn} = \frac{4V}{2\Omega} = 2A$	1/2	2
Set1,Q8	Formula ¹ / ₂		
Set2,Q7	Calculation of net force on the loop 1		
Set3,Q6	Direction of the net force $\frac{1}{2}$		
	2A		
	30 cm 1A 20 cm		
	$\int d^2 0 \mathrm{cm}^2$		
	Here		
	$I_1=2A; I_2=1A$		
	$d_1 = 10 \text{ cm}; d_2 = 30 \text{ cm}$		
	$\mu_0 = 4\pi \times 10^{-7} \mathrm{Tm} \mathrm{A}^{-1}$		
	We have		
	$F = \frac{\mu_o I_1 I_2}{2\pi d} l$	1/2	
	$2\pi d$ \therefore Net force on sides ab and cd		
	$= \frac{\mu_0 2 \times 1}{2\pi} \times 20 \times 10^{-2} \left[\frac{1}{10 \times 10^{-2}} - \frac{1}{30 \times 10^{-2}} \right] N$	1⁄2	
	$= 4 \times 10^{-7} \times 20 \left[\frac{20}{10 \times 30} \right] $ N		
	$=\frac{16}{3} \times 10^{-7} \text{N} = 5.33 \times 10^{-7} \text{N}$		
	This net force is directed towards the infinitely long straight wire.		
	The net force is an every to wards the mininery fong brangin whe.		1

ſ			1
	Net force on sides bc and $da = zero$.		
	\therefore Net force on the loop = 5.33×10^{-7} N	1/2	_
	The force is directed towards the infinitely long straight wire.	1⁄2	2
	OR		
	Formula ¹ / ₂		
	Calculation of angle between $\overline{\mu_m}$ and \vec{B} ¹ / ₂		
	Calculation of $ \overline{\mu_m} $ and torque $\frac{1}{2} + \frac{1}{2}$		
	$\begin{bmatrix} \text{Calculation of } \mu_m \text{and torque} & 72 + 72 \end{bmatrix}$		
	Torque = $\overrightarrow{\mu_m} \times \overrightarrow{B}$	1/2	
	$ \overline{\mu_m} = nI \times A = 200 \times 5 \times 100 \times 10^{-4} A \cdot m^2$		
	$= 10 A - m^2$	1/2	
	Angle between $\overrightarrow{\mu_m}$ and $\overrightarrow{B} = 90^o - 60^o = 30^o$	1/2	
	$\therefore Torque = 10 \times 0.2 \times \sin 30^{\circ}$		
	$\frac{1107}{400} = 10 \times 0.2 \times 31130$		
	=1 N-m	1⁄2	2
Set1,Q9			
Set1,Q) Set2,Q10	Naming of the three waves $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$		
Set2,Q10 Set3,Q7	Method of production (any one) ¹ / ₂		
Set3,Q7			
		1/2	
	i. γ rays (or X-rays)		
	ii. Ultraviolet rays	$\frac{1}{2}$	
	iii. Infrared rays	1/2	
	Production		
	γ rays : (radioactive decay of nuclei)		
	X-rays : (x-ray tubes or inner shell electrons)		
	UV- rays: (Movement from one inner energy level to another)		
	Infrared rays: (vibration of atoms and molecules)		
	(Any one)	1/2	
			2
Set1,Q10	(a) Finding the transition 1		
Set2,Q9	(a) Finding the transition1(b) Radiation of maximum wavelength1/2		
Set3,Q8	Justification 1/2		
	Justification 72		
	(a) For hydrogen atom,		
	$E_1 = -13.6 \text{ eV}$; $E_2 = -3.4 \text{ eV}$; $E_3 = -1.51 \text{ eV}$; $E_4 = -0.85 \text{eV}$		
	$h=6.63\times10^{-34}$ Js; $c=3\times10^8$ ms ⁻¹		
	Photon Energy = $\frac{hc}{\lambda}$		
		1/2	
	$= \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{496 \times 10^{-9} \times 1.6 \times 10^{-19}} \mathrm{eV}$		
	$496 \times 10^{-9} \times 1.6 \times 10^{-19}$ $\approx 2.5 \text{ eV}$		
	This equals (nearly) the difference (E_4-E_2) .		
	Hence the required transition is $(n=4)$ to $(n=2)$	1⁄2	
	[Alternatively : If the candidate calculates by using Rydberg formula, and identifies correctly the required transition full credit may be given by		
	identifies correctly the required transition, full credit may be given.]		
	(b) The transition $n=4$ to $n=3$ corresponds to emission of radiation of	1/2	
	maximum wavelength.		
	It is so because this transmission gives out the photon of least energy.	1/2	2
		72	2

0.1011	Section C		
Set1,Q11 Set2,Q19 Set3,Q16	(a) Derivation of the relation between I and $ \overrightarrow{v_d} $ 2(b) Calculation of the charge flowing in 10 s1		
	(a) According to the figure, $\Delta x = v_d st$ Hence, amount of charge crossing area A in time Δt	1⁄2	
		1⁄2	
	A $\therefore \Delta Q = I\Delta t = neA v_d \Delta t$ $\therefore I = neAv_d$	1⁄2	
	(b) Charge flowing $= \sum I \Delta t$ =area under the curve	1/2 1/2	
	$= \left[\frac{1}{2} \times 5 \times 5 + 5(10 - 5)\right]C$ $= 37.5 \text{ C}$	1⁄2	3
Set1,Q12 Set2,Q20 Set3,Q17	Circuit Diagram1Working Principle1/2Derivation of necessary formula1 1/2		
	The circuit diagram , of the potentiometer, is as shown here: $B = \frac{1}{R} \frac$	1	
	Working Principle:The potential drop, V, across a length l of a uniform wire, is proportional to the length l of the wire.(or $V \propto l$ (for a uniform wire)Derivation:Let the points 1 and 3 be connected together. Let the balance point be at the	1⁄2	
	point N ₁ where $AN_1=l_1$ Next let the points 2 and 3 be connected together. Let the balance point be at the point N ₂ where $AN_2=l_2$. We then have	1/2	
	$\varepsilon_1 = kl_1$ and $\varepsilon_2 = kl_2$	1⁄2	
	ge 4 of 17 Final draft 20/07/1	 5.11:00 a	

	$\frac{R}{S} = \frac{l_1}{(100 - l_1)}$		
	$S^{-}(100 - l_1)$ to calculate <i>R</i> . By choosing (at least three) different value of <i>S</i> , we calculate <i>R</i> each time. The average of these values of <i>R</i> gives the value of the unknown resistance.	1/2	
	Precautions: (1) Make all contacts in a neat, clean and tight manner (2) Select those values of <i>S</i> for which the balancing length is close to the middle point of the wire. [Any one]	1/2	3
Set1,Q13 Set2,Q21 Set3,Q18	(a) Need for having a radial Magnetic field1Achieving the radial field1/2(b) Formula1/2Calculation of the required resistance1(a) Need for a radial magnetic field:		
	The relation between the current (i) flowing through the galvanometer coil, and the angular deflection (ϕ) of the coil (from its equilibrium position), is $\phi = \left(\frac{NABI \sin \theta}{k}\right)$ where θ is the angle between the magnetic field \vec{B} and the equivalent magnetic moment $\overline{\mu_m}$ of the current carrying coil.	1/2	
	Thus <i>I</i> is not directly proportional to ϕ . We can ensure this proportionality by having $\theta = 90^{\circ}$. This is possible only when the magnetic field, \vec{B} , is a radial magnetic field. In such a field, the plane of the rotating coil is always parallel to \vec{B} . To get a radial magnetic field, the pole pieces of the magnet, are made	1⁄2	
	concave in shape. Also a soft iron cylinder is used as the core. [Alternatively : Accept if the candidate draws the following diagram to achieve the radial magnetic field.]	1/2	
	N Soft		
	iron core		
	(b) We have $R = \begin{bmatrix} V \\ I_m \end{bmatrix} $ $\therefore I_m = \frac{V}{R+G}$ We must also have	1/2	
	$I_m = \frac{\left(\frac{V}{2}\right)}{R' + G}$	1⁄2	
L	ge 6 of 17 Final draft 20/07/1	5 11.00 a	

		1/	
	$v_m^2 = v_{RM}^2 + v_{cm}^2$ Substituting the values of v_{RM} and v_{cm} , into this equation, gives	1/2	
	Substituting the values of v_{RM} and v_{cm} , into this equation, gives		
	$v_m^2 = (i_m R)^2 + (i_m X_c)^2 = i_m^2 (R^2 + X_c^2)$		
	$\therefore i_m = \frac{v_m}{\sqrt{R^2 + X_c^2}}$	14	
	v c	1/2	
	\therefore The impedance of the circuit is given by:		
	$\Xi = \sqrt{R^2 + X_c^2} = \sqrt{R^2 + \frac{1}{\omega^2 C^2}}$		
	The phase angle ϕ is the angle between V _R and V. Hence		
	$\tan \phi = \frac{X_C}{R} = \frac{1}{\omega CR}$	1/2	
	$am \varphi = R = \omega CR$	/2	3
Set1,Q15			
Set2,Q11	(i) Formula for magnetic moment $\frac{1}{2}$		
Set3,Q20	Calculation of magnetic moment1(ii) Formula for torque1/2		
	(ii) Formula for torque1/2Calculation of torque1		
	(i) Associated magnetic moment	17	
	$\mu_m = niA$	$\frac{1/2}{1/2}$	
	$= 2000 \times 4 \times 1.6 \times 10^{-4} \text{ A} - \text{m}^2$	$\frac{1}{2}$	
	$= 1.28 \mathrm{A} - \mathrm{m}^2$, 2	
	(ii) torque = $\mu_m B \sin \theta$ = 1.28 × 7.5 × 10 ⁻² × sin 30 ^o	1/2	
	= 0.048 N - m	$\frac{1/2}{1/2}$	3
		72	3
Set1,Q16			
Set2,Q12	(a) Formula ¹ / ₂		
Set3,Q21	Calculation of the ratio		
	(b) Answering about Conservation of Energy ¹ / ₂		
	Explanation 1		
	$ a_1+a_2 ^2$	1/2	
	(a) $\frac{I_{max}}{I_{min}} = \left \frac{a_1 + a_2}{a_1 - a_2} \right ^2$		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1⁄2	
	Here $\frac{a_1}{a_2} = \sqrt{\frac{W_2}{W_1}} = \sqrt{\frac{4}{1}} = \frac{2}{1}$		
	$\therefore \frac{I_{max}}{I_{min}} = \left \frac{2a_2 + a_2}{2a_2 - a_2}\right ^2 = 9:1$	1/2	
	$\left \frac{1}{I_{min}} - \left \frac{2a_2 - a_2}{2a_2 - a_2} \right \right = 2.1$	/2	
	(b) There is NO violation of the conservation of energy.	1⁄2	
	The appearance of the bright and dark fringes is simply due to a 'redistribution of energy'.	1	
Set1,Q17		1	3
Set1,Q17 Set2,Q13	(a) Factors by which the resolving power can be increased. 1		
Set3,Q22	(b) Formula ¹ / ₂		
	Estimation of angular separation 1 ¹ / ₂		
	(a) The resolving power of a telescope can be increased by		

	(i) increasing the diameter of its objective(ii) using light of short wavelength		
	[Note: Give full credit even if a student writes just the first of these two factors.]	1	
	(b) Position of Maxima: $\theta \approx \left(n + \frac{1}{2}\right)\frac{\lambda}{a}$; position of minima = $\frac{n\lambda}{a}$	1⁄2	
	For first order maxima, $\theta = \frac{3\lambda}{2a}$	1/2	
	and for third order minima, $\theta = \frac{3\lambda}{a}$		
	: Required angular separation $3\lambda = 3 \times 600 \times 10^{-9}$	1⁄2	
	$= \frac{3\lambda}{2a} = \frac{3 \times 600 \times 10^{-9}}{2 \times 1 \times 10^{-3}} $ radian = 9 × 10 ⁻⁴ radian	1⁄2	3
Set1,Q18 Set2,Q14 Set3,Q11	(a) Reason for preferring sun glasses made up of polaroids1(b) Formula for intensity of light transmitted through P2 $1\frac{1}{2}$ Plot of I vs θ $\frac{1}{2}$		
	(a) Polaroid sunglasses are preferred because they can be much more effective than coloured sunglasses in cutting off the harmful (UV) rays of the sun.	1	
	 [Alternatively : Poloroid sun glasses are prefered over coloured sun glasses because they are more effective in reducing the glare due to reflections from horizontal surfaces.] [Alternatively : Poloroid sun glasses are prefered over coloured sun glasses because they provide a better protection to our eyes.] 		
	(b) $P_1 \qquad P_3 \qquad P_2 \\ I_1 \qquad I_3 \qquad I_2$		
	Let θ be the angle between the pass axis of P ₁ and P ₃ . The angle between the pass axis of P ₃ and P ₂ would then be $\left(\frac{\pi}{2} - \theta\right)$. By Malus' law,	1⁄2	
	$I_3 = I_1 cos^2 \theta$	1⁄2	
	and $I_2 = I_3 \cos^2\left(\frac{\pi}{2} - \theta\right) = I_3 \sin^2 \theta$		
	$\therefore I_2 = I_1 \cos^2 \theta \sin^2 \theta = \frac{I_1 (\sin 2\theta)^2}{4}$	1⁄2	
	The plot of I_2 vs θ , therefore, has the form shown below:		

	Working: The sinusoidal voltage, superposed on the dc base bias, causes the base current to have sinusoidal variations. As a result the collector current, also has similar sinusoidal variations present in it. The output, between the collector and the ground, is an amplified version of the input sinusoidal voltage. (Also accept 'other forms' for explanation of 'working'	1	3
Set1,Q22 Set2,Q18 Set3,Q15	Explanation of each of three terms 1+1+1		
5015,Q15	(i) Internet SurfingVisiting, or using, the different websites on the internet.(ii) Social networking	1	
	 Social networking implies using site like (a) Facebook, Twitter, etc, to share ideas and information with a large number of people. (b) Using internet for chatting, video sharing, etc, among friends and 	1	
	acquaintances. (Any one) (iii) E-mail Using internet(rather than the post office) for exchanging (multimedia)	1	
	communication between different persons and organizations.		3
	Section D	[1
Set1,Q23 Set2,Q23 Set3,Q23	(1) Value displayed by Dr. Kapoor Bimla's parents1+1(2) Reason for safety1(3) Definition and Significance $\frac{1}{2} + \frac{1}{2}$		
	(1) Dr. Kapoor : Helpful & Considerate Bimla's Parents: Gratefulness	1 1	
	(2) It is considered safe to be inside a car during lightening and thunderstorm as the electric field inside a conductor is zero.	1	
	(3) Dielectric strength of a dielectric indicates the strength of the electric field that a dielectric can withstand without breaking down.This signifies the maximum electric field up to which the dielectric can safely play its role.	1/2 1/2	4
	Section E		
Set1,Q24 Set2,Q26 Set3,Q25	(a) Statement of Lenz's law1Predicting the polarity1(b) (i) Formula1/2Substitution and Calculation11/2(ii) Effect on voltage1		
	(a) Lenz's law: The polarity of induced emf is such that it tends to produce a current which opposes the change in magnetic flux that produced it.	1	

Polarity $A \rightarrow (+ve)$		$\frac{1}{2} + \frac{1}{2}$	
(b) (i) $V = Bl\vartheta$		1/	
Here $B = \text{vertical}$	l component of Earth's magnetic field	1/2	
	$0^{\circ})T = 2.5 \times 10^{-4} T$	1/2	
$\therefore V = 2.5 \times 10$	$0^{-4} \times 25 \times \frac{1800 \times 10^3}{60 \times 60}$ volt	72	
L	60×60	1/2	
= 3.125 volt		1/2	
	zontal component of Earth's magnetic field		
$=B\cos 30^{\circ}=\frac{B\sqrt{3}}{2}$			
$\therefore V' = \sqrt{3}V = 1$	1.732 × 3.125 volt ≅ 5.4 volt	1⁄2	
	OR	1/2	5
Definition of mu	utual inductance 1		
	g mutual inductance 1		
Formulae for the			
	plotting the graphs 1		
Plots of three gra	aphs $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$	2	
unity.	them when the rate of change of current in the he mutual inductance of a pair of coils	other is 1	
unity. Factors affecting th (i) The sizes of the (ii) The shape of th (iii) the distance of (iv) The nature of t (v) The relative or [NOTE: Any two]	he mutual inductance of a pair of coils two coils f separation between the two coils the medium between the two coils ientation of the two coils.	other is 1 $\frac{1}{2} + \frac{1}{2}$	
unity. Factors affecting th (i) The sizes of the (ii) The shape of th (iii) the distance of (iv) The nature of t (v) The relative or [NOTE: Any two] From $t = 0$ to $t = 3s$	the mutual inductance of a pair of coils two coils two coils f separation between the two coils the medium between the two coils ientation of the two coils. $s \left(=\frac{30 \text{ cm}}{10 \text{ cm/s}}\right), \text{ the flux through the coil is zero.}$	$\frac{1}{2} + \frac{1}{2}$	
unity. Factors affecting th (i) The sizes of the (ii) The shape of th (iii) the distance of (iv) The nature of the (v) The relative or [NOTE: Any two] From $t = 0$ to $t = 3s$ From $t = 3s$ to $t = 5$	the mutual inductance of a pair of coils two coils two coils f separation between the two coils the medium between the two coils ientation of the two coils. $s \left(=\frac{30 \text{ cm}}{10 \text{ cm/s}}\right), \text{ the flux through the coil is zero.}$ 5s, the flux through the coil increases from 0 to	$\frac{1}{2} + \frac{1}{2}$	
unity. Factors affecting th (i) The sizes of the (ii) The shape of th (iii) the distance of (iv) The nature of t (v) The relative ori [NOTE: Any two] From $t = 0$ to $t = 3s$ From $t = 3s$ to $t = 3s$ $\left[0.1 \times \left(\frac{20}{100}\right)^2\right]$ Wh	the mutual inductance of a pair of coils two coils the two coils f separation between the two coils the medium between the two coils ientation of the two coils. $s \left(=\frac{30 \text{ cm}}{10 \text{ cm/s}}\right)$, the flux through the coil is zero. 5s, the flux through the coil increases from 0 to b, ie 0.004 Wb.	$\frac{1}{2} + \frac{1}{2}$	
unity. Factors affecting th (i) The sizes of the (ii) The shape of th (iii) the distance of (iv) The nature of th (v) The relative or [NOTE: Any two] From $t = 0$ to $t = 3s$ From $t = 3s$ to $t = 3s$ From t = 3s to $t = 5s\left[0.1 \times \left(\frac{20}{100}\right)^2\right] WhFrom t = 5s to t = 1$	the mutual inductance of a pair of coils two coils the two coils f separation between the two coils the medium between the two coils ientation of the two coils. $s \left(=\frac{30 \text{ cm}}{10 \text{ cm/s}}\right)$, the flux through the coil is zero. 5s, the flux through the coil increases from 0 to b, ie 0.004 Wb. 1s, the flux remains constant at the value 0.004	$\frac{1}{2} + \frac{1}{2}$	
unity. Factors affecting th (i) The sizes of the (ii) The shape of th (iii) the distance of (iv) The nature of t (v) The relative ori [NOTE: Any two] From $t = 0$ to $t = 3s$ From $t = 3s$ to $t = 3s$ From $t = 3s$ to $t = 5s$ $\left[0.1 \times \left(\frac{20}{100}\right)^2\right]$ We From $t = 5s$ to $t = 1$ From $t = 11s$ to $t = 3s$	the mutual inductance of a pair of coils two coils the two coils f separation between the two coils the medium between the two coils ientation of the two coils. $s \left(=\frac{30 \text{ cm}}{10 \text{ cm/s}}\right)$, the flux through the coil is zero. 5s, the flux through the coil increases from 0 to b, ie 0.004 Wb. 1s, the flux remains constant at the value 0.004 13s, the flux through the coil remains zero.	$\frac{1}{2} + \frac{1}{2}$	
unity. Factors affecting th (i) The sizes of the (ii) The shape of th (iii) the distance of (iv) The nature of t (v) The relative or [NOTE: Any two] From $t = 0$ to $t = 3s$ From $t = 3s$ to $t = 3s$ From $t = 3s$ to $t = 5s$ $\left[0.1 \times \left(\frac{20}{100}\right)^2\right]$ We From $t = 5s$ to $t = 1$ From $t = 11s$ to $t = 3s$	the mutual inductance of a pair of coils two coils the two coils f separation between the two coils the medium between the two coils ientation of the two coils. $s \left(=\frac{30 \text{ cm}}{10 \text{ cm/s}}\right)$, the flux through the coil is zero. 5s, the flux through the coil increases from 0 to b, ie 0.004 Wb. 1s, the flux remains constant at the value 0.004	$\frac{1}{2} + \frac{1}{2}$	
unity. Factors affecting th (i) The sizes of the (ii) The shape of th (iii) the distance of (iv) The nature of t (v) The relative or [NOTE: Any two] From $t = 0$ to $t = 3s$ From $t = 3s$ to $t = 3s$ From $t = 3s$ to $t = 5s$ $\left[0.1 \times \left(\frac{20}{100}\right)^2\right]$ We From $t = 5s$ to $t = 1$ From $t = 11s$ to $t = 3s$	the mutual inductance of a pair of coils two coils the two coils f separation between the two coils the medium between the two coils ientation of the two coils. $s \left(=\frac{30 \text{ cm}}{10 \text{ cm/s}}\right)$, the flux through the coil is zero. 5s, the flux through the coil increases from 0 to b, ie 0.004 Wb. 1s, the flux remains constant at the value 0.00 =13s, the flux through the coil remains zero. gainst <i>t</i> is, therefore, as shown:	$\frac{1}{2} + \frac{1}{2}$	
unity. Factors affecting th (i) The sizes of the (ii) The shape of th (iii) the distance of (iv) The nature of t (v) The relative or [NOTE: Any two] From $t = 0$ to $t = 3s$ From $t = 3s$ to $t = 3s$ From $t = 3s$ to $t = 5s$ $\left[0.1 \times \left(\frac{20}{100}\right)^2\right]$ We From $t = 5s$ to $t = 1$ From $t = 11s$ to $t = 3s$	the mutual inductance of a pair of coils two coils the two coils f separation between the two coils the medium between the two coils ientation of the two coils. $s \left(=\frac{30 \text{ cm}}{10 \text{ cm/s}}\right)$, the flux through the coil is zero. 5s, the flux through the coil increases from 0 to b, ie 0.004 Wb. 1s, the flux remains constant at the value 0.004 13s, the flux through the coil remains zero.	$\frac{1}{2} + \frac{1}{2}$	
unity. Factors affecting th (i) The sizes of the (ii) The shape of th (iii) the distance of (iv) The nature of t (v) The relative ori [NOTE: Any two] From $t = 0$ to $t = 3s$ From $t = 3s$ to $t = 3s$ From $t = 3s$ to $t = 5s$ $\left[0.1 \times \left(\frac{20}{100}\right)^2\right]$ We From $t = 5s$ to $t = 1$ From $t = 11s$ to $t = 3s$	the mutual inductance of a pair of coils two coils f separation between the two coils the medium between the two coils ientation of the two coils. $s \left(=\frac{30 \text{ cm}}{10 \text{ cm/s}}\right)$, the flux through the coil is zero. 5s, the flux through the coil increases from 0 to b, ie 0.004 Wb. 1s, the flux remains constant at the value 0.00 13s, the flux through the coil remains zero. gainst <i>t</i> is, therefore, as shown: 0.004 0.00	$\frac{1}{2} + \frac{1}{2}$	
unity. Factors affecting th (i) The sizes of the (ii) The shape of th (iii) the distance of (iv) The nature of t (v) The relative ori [NOTE: Any two] From $t = 0$ to $t = 3s$ From $t = 3s$ to $t = 3s$ From $t = 3s$ to $t = 5s$ $\left[0.1 \times \left(\frac{20}{100}\right)^2\right]$ Wh From $t = 5s$ to $t = 1$ From $t = 11s$ to $t =$ (i) The plot of ϕ age	the mutual inductance of a pair of coils two coils f separation between the two coils the medium between the two coils ientation of the two coils. $s \left(=\frac{30 \text{ cm}}{10 \text{ cm/s}}\right)$, the flux through the coil is zero. 5s, the flux through the coil increases from 0 to b, ie 0.004 Wb. 1s, the flux remains constant at the value 0.004 13s, the flux through the coil remains zero. gainst <i>t</i> is, therefore, as shown: 0.004	$\frac{1}{2} + \frac{1}{2}$ 4 Wb.	
unity. Factors affecting th (i) The sizes of the (ii) The shape of th (iii) the distance of (iv) The nature of t (v) The relative ori [NOTE: Any two] From $t = 0$ to $t = 3s$ From $t = 3s$ to $t = 3s$ From $t = 3s$ to $t = 5s$ $\left[0.1 \times \left(\frac{20}{100}\right)^2\right]$ Wh From $t = 5s$ to $t = 1$ From $t = 11s$ to $t =$ (i) The plot of ϕ age	the mutual inductance of a pair of coils two coils f separation between the two coils the medium between the two coils ientation of the two coils. $s \left(=\frac{30 \text{ cm}}{10 \text{ cm/s}}\right)$, the flux through the coil is zero. 5s, the flux through the coil increases from 0 to b, ie 0.004 Wb. 1s, the flux remains constant at the value 0.00 13s, the flux through the coil remains zero. gainst <i>t</i> is, therefore, as shown: 0.004 0.00	$\frac{1}{2} + \frac{1}{2}$ 4 Wb.	

	When the final image is formed at infinity, the angular magnification due to the averaginate p^{D} (D-least distance of distinct vision)	1⁄2	
	the eye piece equals $\frac{D}{f_e}$. (D=least distance of distinct vision) \therefore Total magnification when the final image is formed at infinity = $\left(\frac{L}{f_o}, \frac{D}{f_e}\right)$	1⁄2	
	(c) (i) Resolving power increases when the focal length of the objective is decreased.	1/2 1/2	
	(d) This is because the minimum separation, $d_{min} \left(=\frac{1.22 f\lambda}{D}\right)$ decreases when f is decreased.		
	(ii) Resolving power decreases when the wavelength of light is increased.	1⁄2	
	This is because the minimum separation, $d_{min}\left(=\frac{1.22 \ f\lambda}{d}\right)$ increases when λ is increased.	1/2	5
Set1,Q26 Set2,Q25 Set3,Q24	(a) Writing three features $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ Explanation on the basis of Einstein's photoelectric equation $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ (b) (i) Reason for equality of the two slopes1(ii) Identification of material1		
	 (a) Three features, of photoelectric effect, which cannot be explained by the wave theory of light, are: (i) Maximum kinetic energy of emitted electrons is independent of the 	1/2	
	 intensity of incident light. (ii) There exists a 'threshold frequency' for each photosensitive material. (iii) 'Photoelectric effect' is instantaneous in nature. Einstein's photoelectric equation 	1/2 1/2	
	$K_{max} = h\nu - \phi_o$ [Alternatively: $eV_o = h\nu - \phi_o$] can be used to explain these features as follows.		
	(i) Einstein's equation shows that $K_{max} \propto \nu$. However, K_{max} does not depend on the intensity of light.	1⁄2	
	(ii) Einstein's equation shows that for $\nu < \frac{\phi_0}{h}$, K_{max} becomes negative, i.e,	1⁄2	
	there cannot be any photoemission for $\nu < \nu_o(\nu_o = \frac{\phi_o}{h})$ (iii) The free electrons in the metal, that absorb completely the energy of the incident photons, get emitted instantaneously.	1⁄2	
	 (b) (i) Slope of the graph between V_o and v (from Einstein's equation) equals (<i>h/e</i>). Hence it does not depend on the nature of the material. 	1	
	(ii) Emitted electrons have greater energy for material M ₁ . This is because $\phi_o(=h\nu_o)$ has a lower value for material M ₁ .	1	5
	OR		
	$E_{\rm re} 16 {\rm of} 17 \qquad E_{\rm inal} draft \qquad 20/07/$	15 11.00	<u> </u>

