Question Paper-Outside Delhi (2012)

General Instructions:

- (i) All questions are compulsory.
- (ii) The question paper consists of 29 questions divided into three Sections A, B and C, Section A comprises of 10 questions of one mark each, Section B comprises of 12 questions of four marks each and Section C comprises of 7 questions of six marks each.
- (iii) All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
- (iv) There is no overall choice. However, internal choice has been provided in 4 questions of four marks each and 2 questions of six marks each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculators is not permitted.

SECTION-A

Questions numbers 1 to 10 carry 1 mark each.

- **Q1.** The binary operation $*: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is defined as a * b = 2a + b. Find (2 * 3) * 4.
- **Q2.** Find the principal value of $\tan^{-1}\sqrt{3} \sec^{-1}(-2)$.
- **Q3.** Find the value of x + y from the following equation :

$$2\begin{bmatrix} x & 5\\ 7 & y-3 \end{bmatrix} + \begin{bmatrix} 3 & -4\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 6\\ 15 & 14 \end{bmatrix}$$

Q4. If $A^{T} = \begin{bmatrix} 3 & 4\\ -1 & 2\\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 2 & 1\\ 1 & 2 & 3 \end{bmatrix}$, then find $A^{T} - B^{T}$.

- **Q5.** Let A be a square matrix of order 3×3 . Write the value of |2A|, where |A| = 4.
- **Q6.** Evaluate : $\int_{0}^{5} \sqrt{4-x^2} dx$
- **Q7.** Given $\int e^{x} (\tan x + 1) \sec x dx = e^{x} f(x) + c$. Write f(x) satisfying the above.
- **Q8.** Write the value of $(\hat{i} \times \hat{j}) \cdot \hat{k} + \hat{i} \cdot \hat{j}$.

Q9. Find the scalar components of the vector \overrightarrow{AB} with initial point A(2, 1) and terminal point B (-5, 7).

Q10. Find the distance of the plane 3x - 4y + 12z = 3 from the origin.

SECTION-B

Questions numbers 11 to 22 carry 4 mark each.

Q11. Prove the following :

$$\cos\left(\sin^{-1}\frac{3}{5} + \cot^{-1}\frac{3}{2}\right) = \frac{6}{5\sqrt{13}}$$

Q12. Using properties of determinants, show that

$$\begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix} = 4abc$$

Q13. Show that $f: N \rightarrow N$, given by

$$f(x) = \begin{cases} x+1, & \text{if } x \text{ is odd} \\ x-1, & \text{if } x \text{ is even} \end{cases}$$

is both one-one and onto.

OR

Consider the binary operations $*: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and $o: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined as a * b = |a - b| and a ob = a for all $a, b \in \mathbb{R}$. Show that '*' is commutative but not associative, 'o' is associative but not commutative.

Q14. If
$$x = \sqrt{a^{\sin^{-1}t}}$$
, $y = \sqrt{a^{\cos^{-1}t}}$, show that $\frac{dy}{dx} = -\frac{y}{x}$.

OR

Differentiate
$$\tan^{-1}\left[\frac{\sqrt{1+x^2}-1}{x}\right]$$
 with respect to *x*.

Q15. If
$$x = a (\cos t + t \sin t)$$
 and $y = a (\sin t - t \cos t)$, $0 < t < \frac{\pi}{2}$, find $\frac{d^2 x}{dt^2}$, $\frac{d^2 y}{dt^2}$ and $\frac{d^2 y}{dx^2}$

Q16. A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2 cm/s. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?

Q17. Evaluate :
$$\int_{-1}^{2} |x^{3} - x| dx$$
OR
Evaluate :
$$\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx$$

Q18. Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.

OR

Find the particular solution of the differential equation

$$x(x^2-1)\frac{dy}{dx} = 1; y = 0$$
 when $x = 2$.

Q19. Solve the following differential equation :

$$((1+x^2)dy + 2xy dx = \cot x dx; x \neq 0)$$

- **Q20.** Let $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} \hat{j} + 4\hat{k}$. Find a vector \vec{p} which is perpendicular to both \vec{a} and \vec{b} and $\vec{p} \cdot \vec{c} = 18$.
- **Q21.** Find the coordinates of the point where the line through the points A(3, 4, 1) and B(5, 1, 6) crosses the XY-plane.
- **Q22.** Two cards are drawn simultaneously (without replacement) from a well-shuffled pack of 52 cards. Find the mean and variance of the number of red cards.

SECTION-C

Questions numbers 23 to 29 carry 6 mark each.

Q23. Using matrices, solve the following system of equations :

2x+3y+3z=5, x-2y+z=-4, 3x-y-2z=3.

Q24. Prove that the radius of the right circular cylinder of greatest curved surface area which can be inscribed in a given cone is half of that of the cone.

OR

An open box with a square base is to be made out of a given quantity of cardboard of area c^2 square

units. Show that the maximum volume of the box is $\frac{c^3}{6\sqrt{3}}$ cubic units.

Q25. Evaluate : $\int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} dx$ **OR**

Evaluate : $\int \frac{x^2 + 1}{(x-1)^2 (x+3)} dx$

- **Q26.** Find the area of the region $\{(x, y) : x^2 + y^2 \le 4, x + y \ge 2\}$.
- Q27. If the lines $\frac{x-1}{-3} = \frac{y-2}{-2k} = \frac{z-3}{2}$ and $\frac{x-1}{k} = \frac{y-2}{1} = \frac{z-3}{5}$ are perpendicular, find the value of k and

hence find the equation of plane containing these lines.

- **Q28.** Suppose a girl throws a die. If she gets a 5 or 6, she tosses a coin 3 times and notes the number of heads. If she gets 1, 2, 3 or 4 she tosses a coin once and notes whether a head or tail is obtained. If she obtained exactly one head, what is the probability that she threw 1, 2, 3 or 4 with the die?
- Q29. A dietician wishes to mix two types of foods in such a way that the vitamin contents of the mixture contains at least 8 units of vitamin A and 10 units of vitamin C. Food I contains 2 units/kg of vitamin A and 1 unit/kg of vitamin C while Food II contains 1 unit/kg of vitamin A and 2 units/kg of vitamin C. It costs ` 5 per kg to purchase Food I and ` 7 per kg to purchase Food II. Determine the minimum cost of such a mixture. Formulate the above as a LPP and solve it graphically.