

CHEMISTRY MARKING SCHEME SET -56/1 Compt. July, 2015

Ou					
Qu es.	Value points	Marks			
1	Frenkel defect	1			
2	Emulsions are liquid – liquid colloidal systems.				
	For example – milk, cream (or any other one correct example)				
3	Formation of stable complex by polydentate ligand.	1			
4	Propanal	1			
5	p-Nitroaniline < Aniline < p-Toluidine	1			
6	i)	1			
	Mole fraction of a component =				
	Number of moles of the component				
	Total number of moles of all the components				
	ii) Molality (m) is defined as the number of moles of the solute per kilogram (kg) of the				
	solvent. Or	1			
	Molality (m) = $\frac{Moles of solute}{Moles of solute}$				
	Mass of solvent in kg				
7	Zero order : mol $L^{-1}s^{-1}$ Second order : $L mol^{-1}s^{-1}$	1 1			
8	i) Due to high bond dissociation enthalpy of $N \equiv N$	1			
	ii) Due to low bond dissociation enthalpy of F_2 than Cl_2 and strong bond formation between N and F	1			
9	Potassium permanganate is prepared by fusion of MnO_2 with an alkali metal hydroxide and an				
	oxidising agent like KNO_3 . This produces the dark green K_2MnO_4 which disproportionates in a				
	neutral or acidic solution to give permanganate. $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$	1			
	$3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^- + MnO_2 + 2H_2O$				
	Oxalate ion or oxalic acid is oxidised at 333 K:				
	$5C_2O_4^{2-} + 2MnO_4^{-} + 16H^+ \longrightarrow 2Mn^{2+} + 8H_2O + 10CO_2$	1			
	OR OR				
9	i) Jodine is liberated from potessium iodide :	1			
	Iodine is liberated from potassium iodide :	1			
	$10I^{-} + 2MnO_{4}^{-} + 16H^{+} \longrightarrow 2Mn^{2+} + 8H_{2}O + 5I_{2}$				
	ii) Hydrogen sulphide is oxidised, sulphur being precipitated:				
	$H_2S \longrightarrow 2H^+ + S^{2-}$	1			
	$5S^{2-} + 2MnO_{4} + 16H^{+} \longrightarrow 2Mn^{2+} + 8H_{2}O + 5S$				

	iii)	Colloidal particles scatter light in all direc	tions in space. This scattering of light			
	illuminates the path of beam in the colloidal dispersion.		1			
15	i) It lowers the melting point of alumina / acts as a solvent.ii)			1		
	,	Roasting	Calcination	1		
		Ore is heated in a regular supply of air	Heating in a limited supply or absence of air.			
		(Or with equation)	·			
	iii) It is a process of separation of different components of a mixture which are different adsorbed on a suitable adsorbent.			1		
	OR					
15	3Fe ₂ O ₃ + (Iron ore	$CO \rightarrow 2Fe_{3}O_{4} + CO_{2}$		$6 x \frac{1}{2}$ = 3		
		., CO→3FeO +CO₂		_		
		$arrow cao + CO_2$				
	(Limesto	-				
	CaO + S	$O_2 \rightarrow CaSiO_3$ (Slag)				
	$FeO + CO \rightarrow Fe + CO_2$					
	$C + CO_2 \rightarrow 2CO$					
	Coke C + Q ₂ \rightarrow	CO.				
		C E CO	correct equations)			
16	Disproportionation : The reaction in which an element undergoes self-oxidation and self-			1 1/2		
	reduction simultaneously. For example –					
	$2Cu^{+}(aq)$	\longrightarrow Cu ²⁺ (aq) + Cu(s)		1 1/2		
	(Or any o	ther correct equation)				
17	i)	Hexaamminecobalt(III) chloride		1		
	ii)	Tetrachlorido nickelate(II)		1		
	iii)	Potassium hexacyanoferrate(III)				
18	i)	2-bromobutane		1		
	ii)	1, 3-dibromobenzene		1		
	iii)	3-choloropropene		1		
19		CH ₂ Cl CH ₂ ON	a CH2 OH	1		
		1				
		+ NaOH				
	i)	-HCI				
	1)	НСНО		1		
		$CH_3CH_2MgCI \longrightarrow CH_3-CH_2-C$	CH2-OH	1		
	ii)	H ₂ O				

	2070 [7, 2+1]	1
	$E_{cell} = E_{cell}^{0} - \frac{0.059}{n} \log \frac{[Zn^{2+}]}{[Sn^{2+}]}$	
	$E_{cell} = 0.62 - \frac{0.059}{2} \log \frac{[Zn^{2+}]}{[Sn^{2+}]}$	
		1
	OR	1
24	a) The conductivity of a solution at any given concentration is the conductance of one unit volume of solution kept between two platinum electrodes with unit area of cross section and at a distance of unit length	1⁄2
	and at a distance of unit length. Molar conductivity of a solution at a given concentration is the conductance of the volume <i>V</i> of solution containing one mole of electrolyte kept between two electrodes with area of cross section <i>A</i> and distance of unit length.	1/2
	Molar conductivity increases with decrease in concentration.	1
	$b)E^{0}cell = E^{0}_{C} - E^{0}_{A}$	
	= 0.80 V - 0.77 V	1/2
	= 0.03 V $\Delta_{\rm r} {\bf G}^0 = -{\bf n} {\bf F} {\bf E}^0_{\rm cell}$	1⁄2
	$= -1 \times 96500 \text{ C mol}^{-1} \times 0.03 \text{ V}$ = - 2895 J mol^{-1}	1
		1/
	$Log K_{c} = \frac{n E_{cell}^{o}}{0.059}$	1⁄2
	$Log K_c = \frac{1 \times 0.03}{0.059}$	1/2
	$Log K_c = 0.508$	12
25	a) Due to relatively stable half – filled p-orbitals of group 15 elements	2
	b) i) $CaF_2 + H2SO_4 \rightarrow CaSO_4 + 2HF$	1
	$_{\rm ii)} SO_2(g) + Cl_2(g) \rightarrow SO_2Cl_2(l)$	1
	$\frac{10}{100} 2\text{NH}_4\text{Cl} + \text{Ca(OH)}_2 \rightarrow 2\text{NH}_3 + 2\text{H}_2\text{O} + \text{CaCl}_2$	1
	$\frac{1}{100} 21011_4 \text{CI} + \text{Ca(CII)}_2 \rightarrow 21011_3 + 211_2 \text{CI} + \text{CaCI}_2$ OR	
25	a) i)	
23		
	Br F	
		1
	F	
	ii)	
	Xe	
		1
	b) i)Due to small size of nitrogen, the lone pair of electron on nitrogen is localized/ easily	1
L		1

iii) LiAlH₄ CH₃CHO → CH₃CH₂OH

Dr. Sangeeta Bhatia

Sh. S.K. Munjal

Sh. D.A. Mishra

1

Ms. Garima Bhutani