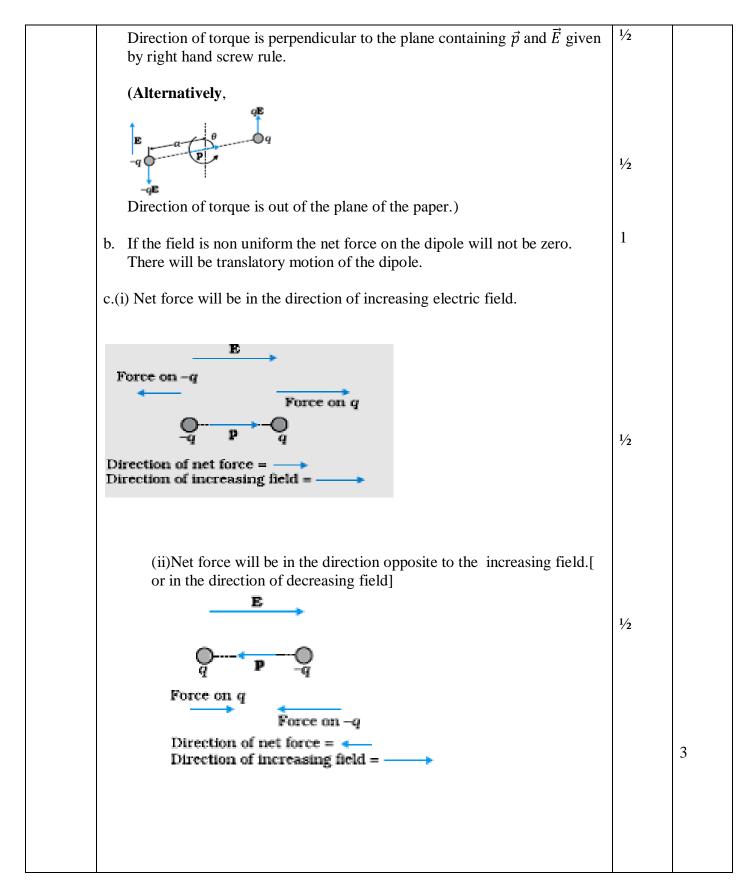
Central Board of School Education

Marking Scheme 2016

[Official]

Note - Candidates Please follow the Set 1 Marking Scheme.

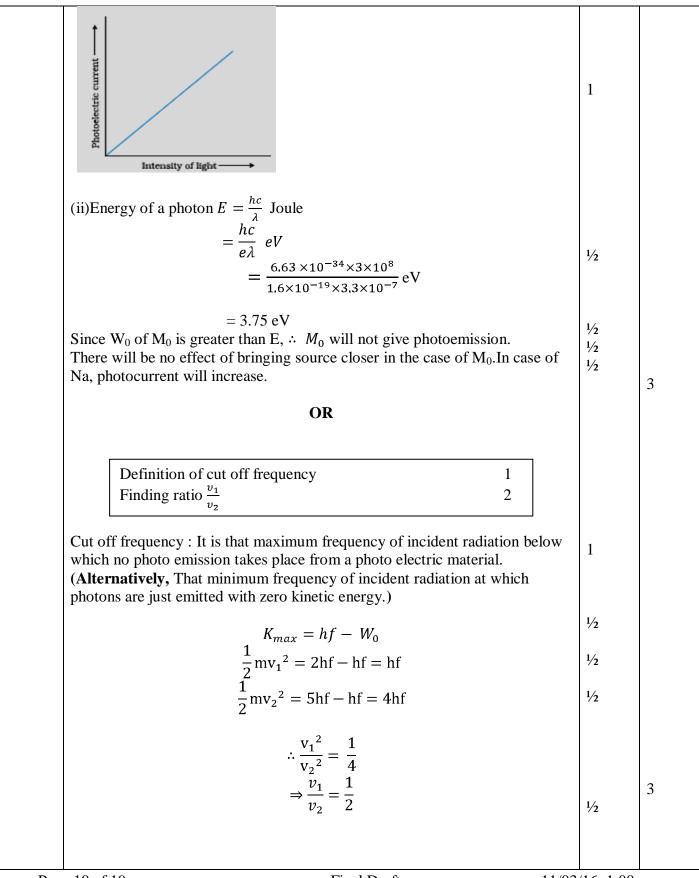

Q. No.	Expected Answer / Value Points SECTION -A	Marks	Total Marks
Set1,Q1	$V_A - V_B > 0$		
Sct2,Q4	$\Rightarrow V_A > V_B$	1⁄2	
Set3,Q3	Q is positive	1⁄2	1
<u><u> </u></u>	(Even if a student writes the answer directly full marks to be given.)		
Set1,Q2			
Set2,Q5 Set3,Q4			
5013,Q-		1	1
Set1,Q3	$I_D = 0.25 A$	1	1
Set2,Q1			
Set3,Q5			
Set1,Q4	Any one of the following or any other		
Set2,Q2 Set3,Q1	(i) Magnetic braking in trains.(ii) Electromagnetic damping in certain galvanometers.		
5005,Q1	(iii)Induction furnace to produce high temperature.		
	(iv)Electric power meters (in which the disc rotates due to eddy currents.)	1	1
Set1,Q5			
Set2,Q3	Electric flux $\Delta \phi$, through an area element $\overline{\Delta S}$, is defined by		
Set3,Q2	$\Delta \phi = \vec{E} \cdot \vec{\Delta S} = E \Delta S \cos \theta$	1⁄2	
	where θ is the angle between \vec{E} and $\overrightarrow{\Delta S}$.		
	S.I unit of electric flux is $NC^{-1}m^2$. Alternatively, (Vm)	1/2	1
	SECTION B		
Set1,Q6			
Set2,Q9	(i) Bohr's (third) postulate 1		
Set3,Q8	(ii) Number of spectral lines ¹ / ₂		
	Names of series ¹ / ₂		
	(i) Bohr's (third) postulate: An electron might make a transition from one		
	of its specified non- radiating orbits to another of lower energy. When		
	it does so, a photon is emitted having energy equal to the energy		
	difference between the initial and final states. The frequency of the	1	
	emitted photon is given by $hv = E_i - E_f$		
	(ii) Six spectral lines can be emitted.	1/2	
	$4 \rightarrow 1$		
	$3 \rightarrow 1$ Lyman series		
	$2 \rightarrow 1$		
	$\left\{\begin{array}{c} 4 \rightarrow 2\\ 3 \rightarrow 2 \end{array}\right\}$ Balmer series		
	$3 \rightarrow 2$ $3 \rightarrow 2$ $3 \rightarrow 2$ Paschen series	1/2	
L		16 1.00 *	<u> </u>

MARKING SCHEME

	[NOTE:Award this ¹ / ₂ mark if the student identifies any one of the three series correctly.)		2
	OR		
	$\begin{tabular}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $		
	Wavelength associated with electron in its orbit is given by de- Broglie relation $\lambda = \frac{h}{p} = \frac{h}{mv_n}$ Only those waves survive which form standing waves. For electron moving in n th circular orbit of radius r _n	1/2	
	$2\pi r_n = n\lambda, n=1,2,3$ $\therefore 2\pi r_n = \frac{nh}{m\vartheta_n}$	1/2	
	or $r_n = \frac{nh}{2\pi m \vartheta_n}$	1/2 1/2	2
Set1,Q7 Set2,Q10 Set3,Q9	Name of 'X' 1 Function of repeater 1		
	'X' is a transducer.	1	
	A repeater is a combination of a receiver and a transmitter. [A repeater picks up the signal from the transmitter, amplifies and transmits it to the receiver sometimes with a change in carrier frequency.Repeaters are used to extend / increase the range of a communication system.]	1	2

Sot1 09			
Set1,Q8	Energy of photon ¹ / ₂		
Set2,Q6 Set3,Q10	de-Broglie relation ¹ / ₂		
Set3,Q10	KE of electron ¹ / ₂		
	Desired relation ¹ / ₂		
	Energy of photon $E = h\nu = \frac{hc}{\lambda} \Longrightarrow \frac{h}{\lambda} = \frac{E}{c}$	1⁄2	
	de Broglie wavelength of electron $\lambda = \frac{h}{p}$	1⁄2	
	Kinetic energy of electron, $K = \frac{p^2}{2m}$	1/2	
	$= \frac{h^2}{2m\lambda^2}$ $= \left(\frac{h}{2m\lambda}\right) \left(\frac{h}{\lambda}\right)$		
	$= \left(\frac{h}{2m\lambda}\right) \left(\frac{E}{c}\right)$ $\implies E = \left(\frac{2mc\lambda}{h}\right) K$		
	$\rightarrow L = \left(\frac{h}{h}\right)^{K}$	1/2	2
Set1,Q9		, <u> </u>	-
Set2,Q7	Polarized light ¹ / ₂		
Set3,Q6	Unpolarized light ¹ / ₂		
	Intensity dependent on orientation $\frac{1}{2}$		
	Percentage of intensity transmitted $\frac{1}{2}$		
	If the direction of vibration of electric field vector/plane of vibration of electric field vector ,does not change with time, the light is polarized.	1⁄2	
	Whareas if the direction of wibrotion of electric field vector/plane of		
	Whereas, if the direction of vibration of electric field vector/plane of vibration of electric field vector changes randomly in very short intervals of time / with time, the light is unpolarised.	1⁄2	
	(<u>Alternatively:</u>		
	Direction of Polarised Light	1/2	
	$\begin{array}{ccc} & & \\ & &$		
	I	1	1

			1
	Direction of Propagation	1⁄2	
) Yes, it depends upon orientation of Polaroid because electric field vibrations, that are not in the direction of pass axis of Polaroid, are absorbed. Hence, intensity changes. (<u>Alternatively</u> , $I = I_0 cos^2 \theta$	1⁄2	
	θ = angle between vibrations in light and axis of polaroid sheet) $I = I_0 cos^2 60^o = \frac{I_0}{4}$ $\Rightarrow \frac{I}{I_0} \times 100 = \frac{1}{4} \times 100 = 25\%$	1⁄2	2
Set1,Q10 Set2,Q8 Set3,Q7	Resistance of the two rod combination $\frac{1}{2} + \frac{1}{2}$ Calculation of potential difference		
	$R_1 = \rho \frac{l}{A}$ $R_2 = \rho \frac{2l}{A/2} = 4R_1$	1/2	
	$I = \frac{V}{R_1} = \frac{V_2}{R_2}$	1/2 1/2	
	$\Rightarrow \frac{V}{R_1} = \frac{V_2}{4R_1}$ $\Rightarrow V_2 = 4V$	1/2	2
	SECTION C		
Set1,Q11 Set2,Q19 Set3,Q16	 (a) Definition, Vector form and direction of torque 1/2+1/2 (b)Effect of non uniform field 1 (c) Effect of increasing field 1 		
	a. $\tau = pE \sin \theta$; $\theta = \text{angle between dipole moment}(\vec{p})$ and electric field (\vec{E}) $\vec{\tau} = \vec{p} \times \vec{E}$	1/2	



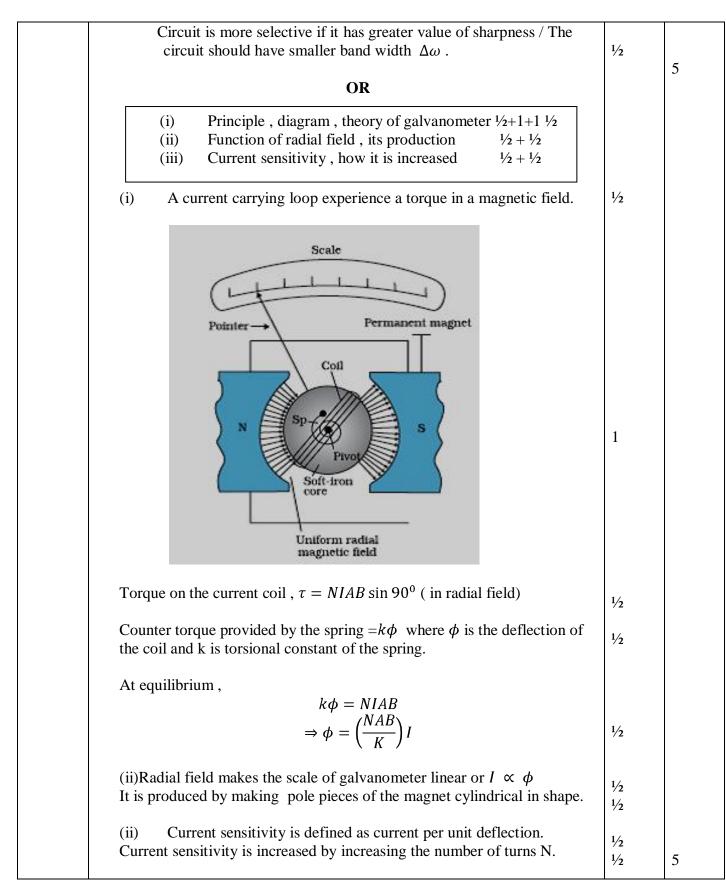
Set1,Q12			
Set2,Q20	(a) Nature and direction of path $\frac{1}{2}+\frac{1}{2}$		
Set3,Q17	(b) Nature of path $\frac{1}{2}$		
	(c) Direction and magnitude of electric field $1\frac{1}{2}$		
	a. The charge q describes a circular path ; anticlockwise in XY plane.	1/2+ 1/2	
	b. The path will become helical.	1⁄2	
	 c. Direction of Lorentz magnetic force is −Y ∴ Applied electric field should be in +Y direction . 	1⁄2	
	$F_E = F_m$	1/2	
	$ \stackrel{r_E}{\Longrightarrow} qE = qvB $	$\frac{72}{1/2}$	
	$\Rightarrow E = vB$	/2	3
Set1,Q13 Set2,Q21			
Set3,Q18	(i) Highest frequency segment $\frac{1}{2}$		
~,	Production of waves ¹ / ₂		
	One use of waves $\frac{1}{2}$		
	(ii) Segment near high frequency end of visible $\frac{1}{2}$		
	One use of this segment $\frac{1}{2}$		
	Its harmful effect ¹ / ₂		
		1/2	
	(i) γ rays.	72	
	Produced in nuclear reactions and emitted by radioactive decay of nucleus.	1⁄2	
		1⁄2	
	Used in medicine to destroy cancer cells.		
	(ii) Ultra violet rays	1/2	
	Used in LASIK eye surgery, UV lamps to kill germs in water	1/2	
	purifier	/2	
	(any one use or any other)		
	Causes sunburn / skin cancer / harms eyes when exposed to direct	1/2	3
	UV rays (any one)		
Set1,Q14			
Set2,Q22 Set3,Q19	Lens formula ¹ / ₂		
50.5,Q17	Image distance for L_1 1Object distance for L16		
	Object distance for L_2 $\frac{1}{2}$ Focal length of L_2 1		
			1

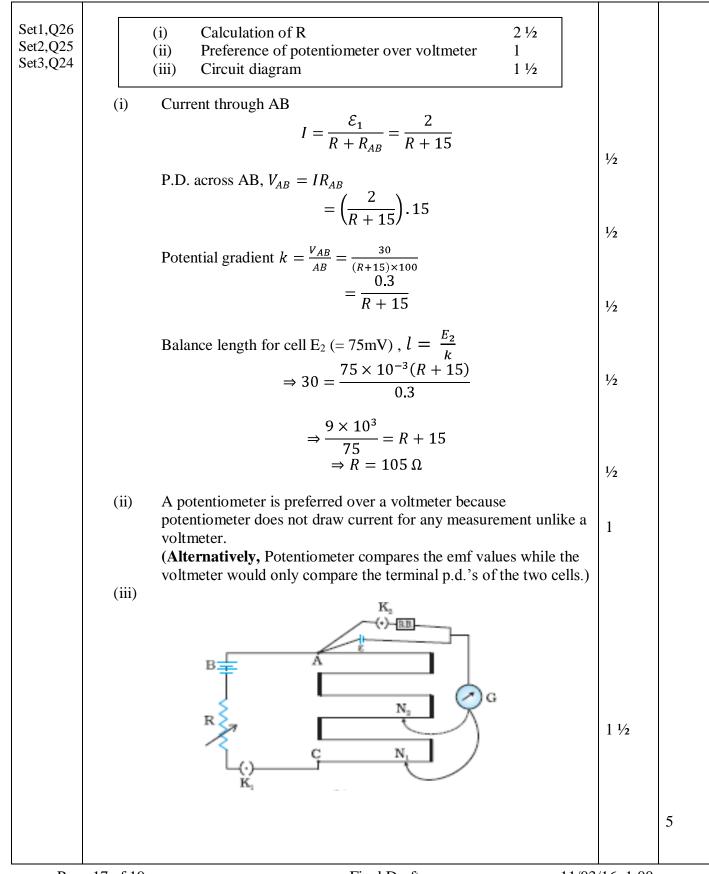
·			1	1
	For L ₁ $\frac{1}{v_1} - \frac{1}{u_1} = \frac{1}{f_1}$ $\Rightarrow \frac{1}{v_1} = \frac{1}{20} - \frac{1}{15} = -\frac{1}{60}$		1/2	
	$\Rightarrow \frac{1}{v_1} = \frac{1}{20} - \frac{1}{15} = -\frac{1}{60}$ $\Rightarrow v_1 = -60 \ cm$		1	
	For lens L_2 u = (-20 - 60)cm = - 80 cm		1/2	
	v = 80 cm $\therefore u = v = 2 \text{ f}_2$		1/2	
	$\therefore u = v = 2 f_2$ $\Rightarrow f_2 = \frac{80}{2} = 40 cm$		1⁄2	3
Set1,Q15 Set2,Q11 Set3,Q20	Condition for TIR Value of μ for TIR Conclusion for rays 1,2,3 Ray diagram $i = 45^{\circ}$ (on face AC) For TIR $i > i_c$ $\Rightarrow \sin i > \sin i_c$ $\Rightarrow \frac{1}{\sin i} < \frac{1}{\sin i_c}$ $\Rightarrow \mu > \frac{1}{\sin i}$ $\because \mu = \frac{1}{\sin i_c}$ $\mu > \sqrt{2} = 1.414$ for TIR \therefore Ray (1) is refracted from AC And rays (2) and (3) are internally reflected.		1/2 1 1/2	3
Doo	ro 7 of 10 Einal Droft	11/02/	16 1.00 -	
Pag	Final Draft Final Draft	11/03/	16 1:00 p).III.

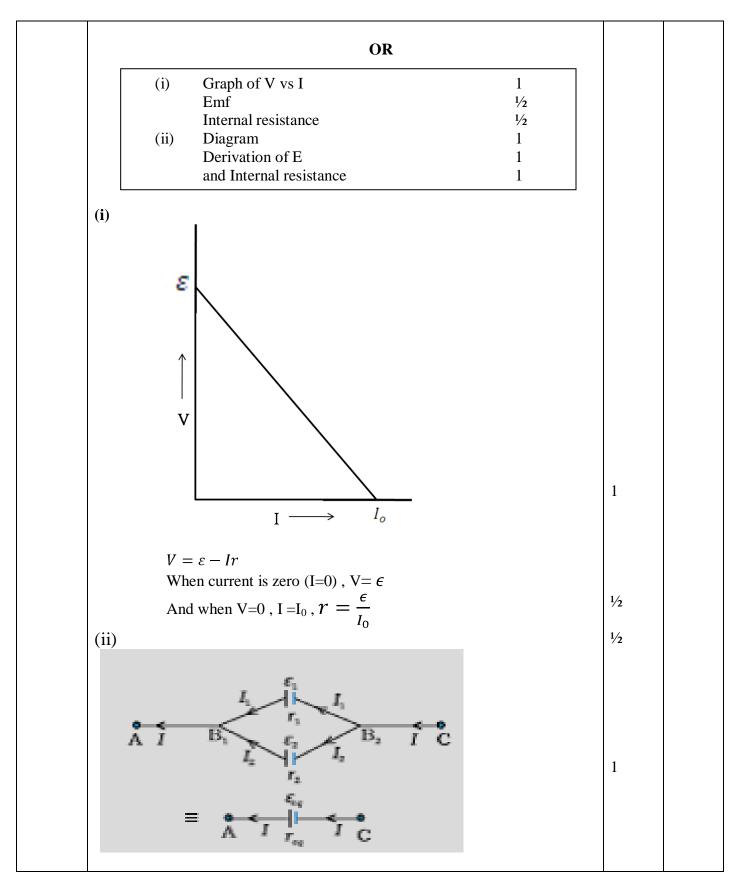
Set1,Q16 Set2,Q12 Set3,Q21	(i)Working principle of solar cell1Three basic processes1(ii)Why Si and GaAs are preferred materials?1		
	(i) When solar cell is illuminated with light photons of energy $(h\nu)$ greater than the energy gap (E _g) of the semiconductor, then electron hole pairs are generated due to absorption of photons.	1	
	The three basic processes involved in the generation of emf: (a) generation of e-h pairs due to light (with $h\nu > E_g$) close to the junction ;		
	(b) separation of electrons and holes due to electric field of the depletion region		
	(c) the electrons reaching the n side are collected by the front contact and holes reaching p side are collected by back contact,	1	
	 (ii) Solar radiation has maximum intensity of photons of energy = 1.5eV 		
	Hence semiconducting materials Si and GaAs , with band gap $\approx~1.5~eV$, are preferred materials for solar cells.	1	3
Set1,Q17 Set2,Q13 Set3,Q22	Energy stored in $12\mu f$ capacitor1Energy stored in 3 μf capacitor $1\frac{1}{2}$ Total energy drawn from battery $\frac{1}{2}$		
	(i) $E = \frac{1}{2}CV^2 = \frac{6}{2} \times 10^{-6}V^2 = 3 \times 10^{-6}V^2$ $\therefore V^2 = \frac{E}{3 \times 10^{-6}}$	1/2	
	Energy stored in 12µf capacitor = $\frac{1}{2}CV^2$		
	(ii) Charge on $6\mu f$ capacitor, $Q_1 = \sqrt{2EC} \left[\because E = \frac{1}{2} \frac{Q^2}{C} \right]$	1/2	
	$(1) = 2\sqrt{3E} \times 10^{-3}C$	1⁄2	
	Charge on 12 μf capacitor, $Q_2 = \sqrt{2CE}$ = $\sqrt{2 \times 12 \times 10^{-6} \times 2E}$		

r		1	,
	$= 4\sqrt{3E} 10^{-3}C$ Charge on 3 μf capacitor, Q = Q ₁ + Q ₂	1/2	
	$=6\sqrt{3E}10^{-3}$		
	Energy stored in 3 μf capacitor = $\frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} \frac{36 \times 3E \times 10^{-6}}{3 \times 10^{-6}}$	1/-	
	= 18E	1/2	
	(Alternatively:		
	(ii) capacitance of parallel combination = $18 \ \mu f$ Charge on parallel combination, $Q = CV$		
	$= 18 \times 10^{-6} V$	1/2	
	Charge on $3 \mu f = Q = 3 \times 10^{-6} V_1$		
	$(=)18 \times 10^{-6} V = 3 \times 10^{-6} V_1$		
	$(=)V_1 = 6V$	1/2	
	: Energy stored in 3 μf capacitor = $\frac{1}{2}CV_1^2$	12	
	$=\frac{1}{2} \times 3 \times 10^{-6} \times \frac{E \times 36}{3 \times 10^{-6}}$		
	= 18 E)	1/2	
	(iii) Total energy drawn = $E + 2E + 18E = 21E$	1/2	
			3
Set1,Q18			
Set2,Q14	(i) Definition of activity 1		
Set3,Q11	(ii) Derivation 2		
	(i) Number of radioactive pueloi deceving per second at any time	1	
	(i) Number of radioactive nuclei decaying per second at any time. (ii) $R_1 = \lambda_1 N_1 = \frac{0.693}{T_1} N_1$	1	
	(ii) $N_1 = N_1 N_1 = \frac{T_1}{T_1} N_1$	1/2	
	$R = \lambda N = \frac{0.693}{2} N$	1/	
	$R_2 = \lambda_2 N_2 = \frac{0.693}{T_2} N_2$	1/2	
	$R_1 _ N_1 \searrow T_2$		
	$\frac{R_1}{R_2} = \frac{N_1}{N_2} \times \frac{T_2}{T_1}$	1	
			3
Set1,Q19	Graph of photocurrent with intensity 1		
Set2,Q15 Set3,Q12	Numerical 2		
5005,Q12			
	(i)		
	$= 9 \text{ of } 10 \qquad \qquad \text{Final Draft} \qquad \qquad 11/03$	16 1.00 1	1

Set1,Q20 Set2,Q16 Set3,Q13	Distinction between point to point and broadcast $\frac{1}{2} + \frac{1}{2}$ Example of each $\frac{1}{2} + \frac{1}{2}$ Mobile telephony1		
	 (a) In point to point communication mode , communication takes place over a link between a single transmitter and a receiver. In broadcast mode , there are a large number of receivers corresponding to a single transmitter. 	1⁄2 1⁄2	
	Examples : Point to point : telephony Broadcast : radio / Television	1/2 1/2	
	(b) The service area is divided into a suitable number of hexagonal cells centered on MTSO (Mobile Telephone Switching Office). Each cell contains a low-power transmitter called a base station and caters to a large number of mobile receivers / cell phones.When a mobile receiver crosses one base station it is handed over to another base station . It is called handover or handoff.	1	3
Set1,Q21 Set2,Q17 Set3,Q14	Vector diagram1/2Expression for magnetic field1/2 + 1/2Magnitude of resultant field1Direction1/2		
	$\overrightarrow{B_P}$ $\overrightarrow{B_B}$		
	(Alternatively: The student may just write the directions of $\overline{B_p}$, $\overline{B_q}$ and the	1⁄2	
	resultant field.)		
	e 11 of 19 Final Draft 11/03	8/16 1.00	I


$ \begin{array}{c c} B_p = \frac{\mu_0}{4\pi} \cdot \frac{2\pi l}{R} & & & & & & & & & & & & & & & & & & &$	r		1	
$B_{Q} = \frac{\mu_{0}}{4\pi} \cdot \frac{2\pi(\sqrt{3}I)}{R}$ $B = \sqrt{B_{P}^{2} + B_{Q}^{2}}$ $= \frac{\mu_{0}}{4\pi} \cdot \frac{2\pi i}{R} \sqrt{1+3}$ $= \frac{\mu_{0}I}{R}$ ψ_{2} $\tan \theta = \frac{B_{p}}{B_{Q}} = \frac{1}{\sqrt{3}}$ $\Rightarrow \theta = 30^{0}$ ψ_{2} (i) Definition and unit $\frac{1}{2} + \frac{1}{2}$ (ii) Formula – Magnetic field inside solenoid $\frac{1}{2}$ Formula – Induced emf in loop $\frac{1}{2}$ (ii) Self inductance is the amount of magnetic flux linked with a coil when a unit current flows through it. (Alternatively, It is the amount of emf induced in a coil when current through it changes at the rate of 1 A per second.) S.I. unit : henry(H) (ii) Magnetic field inside the solenoid, $B = \mu_{0}n I$ Induced emf in the loop, $\epsilon = \frac{d\phi_{B}}{dt}$ $= 4\pi \times 10^{-7} \times 1500 \times 2 \times 10^{-4} \times \frac{(4-2)}{0.1}V$ $\frac{V_{2}}{1}$		$B_p = \frac{\mu_0}{4\pi} \cdot \frac{2\pi I}{R}$	1/	
$B = \sqrt{B\rho^{2} + Bq^{2}}$ $= \frac{\mu_{d}}{4\pi} \cdot \frac{2\pi t}{R} \sqrt{1+3}$ $= \frac{\mu_{d}I}{R}$ $tan \theta = \frac{B_{p}}{Bq} = \frac{1}{\sqrt{3}}$ $\Rightarrow \theta = 30^{0}$ $\frac{1}{\sqrt{2}}$ (i) Definition and unit $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$ (ii) Formula – Magnetic field inside solenoid $\frac{1}{\sqrt{2}}$ Set2.Q18 Set3.Q15 (i) Definition and unit $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$ (ii) Formula – Magnetic field inside solenoid $\frac{1}{\sqrt{2}}$ Formula – Induced emf in loop 1 (i) Self inductance is the amount of magnetic flux linked with a coil when a unit current flows through it. (Alternatively, It is the amount of emf induced in a coil when current through it changes at the rate of 1 A per second.) S.I. unit : henry(H) (ii) Magnetic field inside the solenoid , $B = \mu_{0}n$ I hold emf in the loop , $\epsilon = \frac{d\phi_{B}}{dt}$ $= 4\pi \times 10^{-7} \times 1500 \times 2 \times 10^{-4} \times \frac{(4-2)}{0.3}$ V $\frac{1}{2}$ 3		$B_Q = \frac{\mu_0}{4\pi} \cdot \frac{2\pi(\sqrt{3}I)}{R}$		
$\begin{array}{c c} & = \frac{\mu_{a}}{4\pi} \frac{2\pi l}{\pi} \sqrt{1+3} \\ & = \frac{\mu_{0}l}{R} \\ & = \frac{\mu_{0}l}{R} \\ & = \frac{\mu_{0}l}{B_{Q}} = \frac{1}{\sqrt{3}} \\ & \Rightarrow \theta = 30^{0} \end{array} \qquad $		$B = \sqrt{B_P^2 + B_Q^2}$		
$\frac{1}{2} \frac{1}{2} \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} \frac{1}{\sqrt{2}} \frac{1}$			1/2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$=\frac{\mu_0 I}{R}$	1/2	
$\Rightarrow \theta = 30^{0}$ Y_{2} Set 1,Q22 Set 2,Q18 Set 3,Q15 $(i) Definition and unit Y_{2} + Y_{2}$ $(i) Formula - Magnetic field inside solenoid Y_{2}$ Formula - Induced emf in loop Y_{2} Calculation of induced emf in loop 1 Y_{2} (i) Self inductance is the amount of magnetic flux linked with a coil when a unit current flows through it. (Alternatively, It is the amount of emf induced in a coil when current through it changes at the rate of 1 A per second.) S.I. unit : henry(H) Y_{2} (ii) Magnetic field inside the solenoid, $B = \mu_{0}n I$ Induced emf in the loop, $\epsilon = \frac{d\phi_{B}}{dt}$ $= \mu_{0}nA\frac{di}{dt}$ $= 4\pi \times 10^{-7} \times 1500 \times 2 \times 10^{-4} \times \frac{(4-2)}{0.1}V$ Y_{2} I		$\tan \theta = \frac{B_p}{R} = \frac{1}{\sqrt{2}}$	/2	
Set2,Q18 Set3,Q15 (i) Definition and unit $\frac{72 + 72}{2}$ (ii) Formula – Magnetic field inside solenoid $\frac{1}{12}$ Formula – Induced emf in loop $\frac{1}{2}$ Calculation of induced emf in loop 1 (i) Self inductance is the amount of magnetic flux linked with a coil when a unit current flows through it. (Alternatively, It is the amount of emf induced in a coil when current through it changes at the rate of 1 A per second.) S.I. unit : henry(H) (ii) Magnetic field inside the solenoid, $B = \mu_0$ n I Induced emf in the loop, $\epsilon = \frac{d\phi_B}{dt}$ $= 4\pi \times 10^{-7} \times 1500 \times 2 \times 10^{-4} \times \frac{(4-2)}{0.1}$ V $\frac{1}{2}$ $\frac{1}{2}$		$\Rightarrow \theta = 30^{\circ}$	1⁄2	3
Set2,Q18 Set3,Q15 (i) Definition and unit $\frac{72 + 72}{2}$ (ii) Formula – Magnetic field inside solenoid $\frac{1}{12}$ Formula – Induced emf in loop $\frac{1}{2}$ Calculation of induced emf in loop 1 (i) Self inductance is the amount of magnetic flux linked with a coil when a unit current flows through it. (Alternatively, It is the amount of emf induced in a coil when current through it changes at the rate of 1 A per second.) S.I. unit : henry(H) (ii) Magnetic field inside the solenoid, $B = \mu_0$ n I Induced emf in the loop, $\epsilon = \frac{d\phi_B}{dt}$ $= 4\pi \times 10^{-7} \times 1500 \times 2 \times 10^{-4} \times \frac{(4-2)}{0.1}$ V $\frac{1}{2}$ $\frac{1}{2}$				
when a unit current flows through it. (Alternatively, It is the amount of emf induced in a coil when current through it changes at the rate of 1 A per second.) S.I. unit : henry(H) (ii) Magnetic field inside the solenoid, $B = \mu_0$ n I Induced emf in the loop, $\epsilon = \frac{d\phi_B}{dt}$ $= A \frac{dB}{Dt}$ $= 4\pi \times 10^{-7} \times 1500 \times 2 \times 10^{-4} \times \frac{(4-2)}{0.1} V$	Set2,Q18	(ii)Formula – Magnetic field inside solenoid1/2Formula – Induced emf in loop1/2		
(ii) Magnetic field inside the solenoid, $B = \mu_0 n I$ Induced emf in the loop, $\epsilon = \frac{d\phi_B}{dt}$ $= A \frac{dB}{Dt}$ $= 4\pi \times 10^{-7} \times 1500 \times 2 \times 10^{-4} \times \frac{(4-2)}{0.1} V$ $\frac{1/2}{1}$		when a unit current flows through it.(Alternatively,It is the amount of emf induced in a coil when current through it	1/2	
Induced emf in the loop, $\epsilon = \frac{d\phi_B}{dt}$ $= A \frac{dB}{Dt}$ $= 4\pi \times 10^{-7} \times 1500 \times 2 \times 10^{-4} \times \frac{(4-2)}{0.1} \text{V}$ $= 4\pi \times 10^{-7} \times 1500 \times 2 \times 10^{-4} \times \frac{(4-2)}{0.1} \text{V}$		S.I. unit : henry(H)	1⁄2	
$= \mu_0 n A \frac{dI}{dt}$ = $4\pi \times 10^{-7} \times 1500 \times 2 \times 10^{-4} \times \frac{(4-2)}{0.1} V$ ^{1/2}			1/2	
$= 4\pi \times 10^{-7} \times 1500 \times 2 \times 10^{-4} \times \frac{(4-2)}{0.1} \text{V} \qquad \frac{1/2}{1} \qquad 3$		$=Arac{dB}{Dt}$		
$= 4n \times 10^{\circ} \times 1500 \times 2 \times 10^{\circ} \times 0.1^{\circ} _{1} _{3}$		$=\mu_0 nA \frac{dI}{dt}$		
$= 7.5 \times 10^{-6} V$				3
Page 12 of 19 Final Draft 11/03/16 1:00 p.m.			_	


	SECTION D		
Set1,Q23 Set2,Q23 Set3,Q23	(i)Values displayed (any two) $\frac{1}{2} + \frac{1}{2}$ Inculcation of these values1(ii)Function of amplifier1(iii)Name of device1		
	 (i) Inquisitive , loving , scientific temperament (or any other two values) By encouraging students to ask questions . By giving them tasks / projects and allowing students to use different media to find the solution to the given task, (any other) 	$\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$	
	(ii) It is a device which produces an amplified copy of the signal.	1	
	(iii) Transistor.	1	4
	SECTION E		
Set1,Q24 Set2,Q26 Set3,Q25	(i)Condition for diffraction $\frac{1}{2}$ (ii)Diagram and explanation of fringe pattern $1+1\frac{1}{2}$ (iii)Derivation of width of central maxima1(iv)Effect on size and intensity of central maxima $\frac{1}{2} + \frac{1}{2}$		
	 (i) Size of slit / aperture must be smaller than of the order of wavelength of light. 	1/2	
	(ii) To P		
	From S $M \leftrightarrow Q_0 \rightarrow M_2$ To C N	1	
	Single slit diffraction is explained by treating different parts of the wavefront at the slit as sources of secondary wavelets. At the central point C on the screen, θ is zero. All path differences are zero	1⁄2	


and hence all the parts of the slit contribute in phase and give maximum		
intensity at C.		
At any other point P, the path difference between two edges of the slit is		
NP - LP = NQ		
$= a \sin\theta \approx a\theta$ Any point P, in direction θ , is a location of minima if $a\theta = n\lambda$		
Any point P, in direction θ , is a location of minima if $d\theta = h\lambda$		
This can be explained by dividing the slit into even number of parts. The path difference between waves from successive parts is 180° out of phase and hence cancel each other leading to a minima.	1⁄2	
Any point P , in direction Q , is a location of maxima if $a\theta = \left(n + \frac{1}{2}\right)\lambda$		
This can be explained by dividing the slit into odd number of parts. The		
contributions from successive parts cancel in pairs because of 180° phase	1/2	
difference .The unpaired part produces intensity at P, leading to a maxima.	72	
(iii) If θ is the direction of first minima, then $a\theta = \lambda \Rightarrow \theta = \frac{\lambda}{a}$		
Angular width of central maxima = 2 θ		
$= \frac{2\lambda}{a}$		
$-\frac{1}{a}$	1⁄2	
Linear width of central maxima , $\beta = 2\theta D$		
$= \frac{2\lambda D}{a}$		
<i>a</i>	1/2	
(iv) If 'a' is doubled, β becomes half	/ 2	
Intensity becomes 4 times.	1/2	
OR	1⁄2	
		5
Diagram of telescope 2		
Two aberration $\frac{1}{2} + \frac{1}{2}$		
Overcoming aberrations $\frac{1}{2} + \frac{1}{2}$		
Expression for resolving power and change $\frac{1}{2} + \frac{1}{2}$		
(i)		
Objective Ag Bycpicec	2	
Page 14 of 19 Final Draft 11/03	$(16 \ 1:00)$	n m

Page 14 of 19

(ii) (iii)	Spherical aberration . It can be corrected by using parabolic mirror objective. Chromatic aberration. By using mirrors instead of spherical lenses because mirrors do not suffer from chromatic aberration. $RP = \frac{a}{0.61\lambda}$ On increasing aperture 'a', RP also increases.	$\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	5
Set2,Q24 Set3,Q26 (i)	(i) Frequency at maximum current 1 Name of frequency 1/2 (ii) Maximum current 1 (iii) Graph 1 (iv) Definition of sharpness of resonance 1 Condition 1/2 $\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{8 \times 2 \times 10^{-6}}} = 250 \text{ rad / s or } f_0 = \frac{\omega_0}{2\pi} = \frac{125}{\pi} Hz$ Resonant frequency $I_{max} = \frac{V_0}{R} = \frac{200}{100} A = 2A$	1 1/2 1	
(iv)	$\frac{\omega_0}{2\Delta\omega}$ is measure of sharpness of resonance , where ω_0 is the resonant frequency and $2\Delta\omega$ is the bandwidth.	1	

$V = V(B_1) - V(B_2) = \varepsilon_1 - I_1 r_1$		
$V = V(B_1) - V(B_2) = \varepsilon_1 - I_1 r_1$ $V = V(B_1) - V(B_2) = \varepsilon_2 - I_2 r_2$ $I = I_1 + I_2$ $(I = I_1 + I_2)$	1⁄2	
$=\frac{\varepsilon_1 - V}{r_1} + \frac{\varepsilon_2 - V}{r_2} = \left(\frac{\varepsilon_1}{r_1} + \frac{\varepsilon_2}{r_2}\right) - V\left(\frac{1}{r_1} + \frac{1}{r_2}\right)$ $V = \frac{\varepsilon_1 r_2 + \varepsilon_2 r_1}{r_1 + r_2} - I \frac{r_1 r_2}{r_1 + r_2}$	1/2	
$V_1 + V_2 = V_1 + V_2$ On comparing with $V = \varepsilon_{eq} - I r_{eq}$		
we get $\varepsilon_{eq} = \frac{\varepsilon_1 r_2 + \varepsilon_2 r_1}{r_1 + r_2}$	1⁄2	
$r_{eq} = \frac{r_1 r_2}{r_1 + r_2}$ (Alternatively, a student may write the last two results in the following	1⁄2	
form.		
$\frac{1}{r_{eq}} = \frac{1}{r_1} + \frac{1}{r_2}$ $\frac{\varepsilon_{eq}}{r_{eq}} = \frac{\varepsilon_1}{r_1} + \frac{\varepsilon_2}{r_2}$		
		5