Central Board of School Education

 Marking Scheme 2016[Official]

Note - Candidates Please follow the Set 1 Marking Scheme.

MARKING SCHEME

\begin{tabular}{|c|c|c|c|}
\hline Q. No. \& Expected Answer / Value Points SECTION -A \& Marks \& Total Marks \\
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\& V_{A}-V_{B}>0 \\
\& \Rightarrow V_{A}>V_{B}
\end{aligned}
\] \\
Q is positive \\
(Even if a student writes the answer directly full marks to be given.)
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2 \\
\& 1 / 2
\end{aligned}
\] \& 1 \\
\hline \& \& 1 \& 1 \\
\hline \[
\begin{aligned}
\& \hline \text { Set1,Q3 } \\
\& \text { Set2,Q1 } \\
\& \text { Set3,Q5 }
\end{aligned}
\] \& \(I_{D}=0.25 \mathrm{~A}\) \& 1 \& 1 \\
\hline \& \begin{tabular}{l}
Any one of the following or any other \\
(i) Magnetic braking in trains. \\
(ii) Electromagnetic damping in certain galvanometers. \\
(iii)Induction furnace to produce high temperature. \\
(iv)Electric power meters (in which the disc rotates due to eddy currents.)
\end{tabular} \& 1 \& 1 \\
\hline \& \begin{tabular}{l}
Electric flux \(\Delta \phi\),through an area element \(\overrightarrow{\Delta S}\), is defined by
\[
\Delta \phi=\vec{E} \cdot \overrightarrow{\Delta S}=E \Delta S \cos \theta
\] \\
where \(\theta\) is the angle between \(\vec{E}\) and \(\overrightarrow{\Delta S}\). \\
S.I unit of electric flux is \(N C^{-1} \mathrm{~m}^{2}\). Alternatively, (Vm)
\end{tabular} \& \[
1 / 2
\]
\[
1 / 2
\] \& 1 \\
\hline \& SECTION B \& \& \\
\hline \& \begin{tabular}{l}
\begin{tabular}{|lll|}
\hline (i) \& Bohr's (third) postulate \& 1 \\
(ii) \& Number of spectral lines \& \(1 / 2\) \\
\& Names of series \& \(1 / 2\) \\
\hline
\end{tabular} \\
(i) Bohr's (third) postulate: An electron might make a transition from one of its specified non- radiating orbits to another of lower energy. When it does so, a photon is emitted having energy equal to the energy difference between the initial and final states. The frequency of the emitted photon is given by \(h v=E_{i}-E_{f}\) \\
(ii) Six spectral lines can be emitted.
\end{tabular} \& 1
\(1 / 2\)

$1 / 2$ \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
[NOTE:Award this \(1 / 2\) mark if the student identifies any one of the three series correctly.) \\
OR \\
Wavelength associated with electron in its orbit is given by de- Broglie relation
\[
\lambda=\frac{h}{p}=\frac{h}{m v_{n}}
\] \\
Only those waves survive which form standing waves. For electron moving in \(n^{\text {th }}\) circular orbit of radius \(r_{n}\)
\[
\begin{aligned}
\& 2 \pi r_{n}=n \lambda ; \mathrm{n}=1,2,3 \ldots \\
\& \therefore 2 \pi r_{n}=\frac{n h}{m \vartheta_{n}}
\end{aligned}
\] \\
or
\[
r_{n}=\frac{n h}{2 \pi m \vartheta_{n}}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\) \& 2

2

\hline \[
$$
\begin{aligned}
& \hline \text { Set1,Q7 } \\
& \text { Set2,Q10 } \\
& \text { Set3,Q9 }
\end{aligned}
$$

\] \& | Name of 'X' 1
 Function of repeater 1 |
| :--- |
| ' X ' is a transducer. |
| A repeater is a combination of a receiver and a transmitter. |
| [A repeater picks up the signal from the transmitter, amplifies and transmits it to the receiver sometimes with a change in carrier frequency.Repeaters are used to extend / increase the range of a communication system.] | \& 1 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Set1,Q8 \\
Set2,Q6 \\
Set3,Q10
\end{tabular} \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Energy of photon \& \(1 / 2\) \\
de-Broglie relation \& \(1 / 2\) \\
KE of electron \& \(1 / 2\) \\
Desired relation \& \(1 / 2\) \\
\hline
\end{tabular} \\
Energy of photon \(E=h \nu=\frac{h c}{\lambda} \Longrightarrow \frac{h}{\lambda}=\frac{E}{C}\) de Broglie wavelength of electron \(\lambda=\frac{h}{p}\) \\
Kinetic energy of electron, \(K=\frac{p^{2}}{2 m}\)
\[
\begin{aligned}
\& =\frac{h^{2}}{2 m \lambda^{2}} \\
\& =\left(\frac{h}{2 m \lambda}\right)\left(\frac{h}{\lambda}\right) \\
\& =\left(\frac{h}{2 m \lambda}\right)\left(\frac{E}{c}\right) \\
\Rightarrow E \& =\left(\frac{2 m c \lambda}{h}\right) K
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$ \& 2

\hline \& | Polarized light $1 / 2$
 Unpolarized light $1 / 2$
 Intensity dependent on orientation $1 / 2$
 Percentage of intensity transmitted $1 / 2$ |
| :--- |
| If the direction of vibration of electric field vector/plane of vibration of electric field vector , does not change with time, the light is polarized. |
| Whereas, if the direction of vibration of electric field vector/plane of vibration of electric field vector changes randomly in very short intervals of time / with time, the light is unpolarised. |
| (Alternatively: |
| Polarised Light | \& $1 / 2$

$1 / 2$

$1 / 2$ \&

\hline
\end{tabular}

	Unpolarised Yes, it depends upon orientation of Polaroid because electric field vibrations, that are not in the direction of pass axis of Polaroid, are absorbed. Hence, intensity changes. (Alternatively, $I=I_{0} \cos ^{2} \theta$ $\theta=$ angle between vibrations in light and axis of polaroid sheet) $\begin{aligned} & I=I_{0} \cos ^{2} 60^{\circ}=\frac{I_{0}}{4} \\ & \Rightarrow \frac{I}{I_{0}} \times 100=\frac{1}{4} \times 100=25 \% \end{aligned}$	1/2	2
$\begin{array}{\|l\|} \hline \text { Set1,Q10 } \\ \text { Set2,Q8 } \\ \text { Set3,Q7 } \end{array}$	Resistance of the two rod combination $1 / 2+1 / 2$ Calculation of potential difference $\begin{aligned} & R_{1}=\rho \frac{l}{A} \\ & R_{2}=\rho \frac{2 l}{A / 2}=4 R_{1} \\ & I=\frac{V}{R_{1}}=\frac{V_{2}}{R_{2}} \\ & \Rightarrow \frac{V}{R_{1}}=\frac{V_{2}}{4 R_{1}} \\ & \Rightarrow V_{2}=4 V \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2
	SECTION C		
$\begin{array}{\|l\|} \hline \text { Set1,Q11 } \\ \text { Set2,Q19 } \\ \text { Set3,Q16 } \end{array}$	(a) Definition, Vector form and direction of torque $1 / 2+1 / 2$ (b)Effect of non uniform field 1 (c) Effect of increasing field 1 a. $\quad \tau=p E \sin \theta ; \theta=$ angle between dipole $\operatorname{moment}(\vec{p})$ and electric field (\vec{E}) $\vec{\tau}=\vec{p} \times \vec{E}$	$1 / 2$	

Set1,Q12 Set2,Q20 Set3,Q17	(a) Nature and direction of path $1 / 2+1 / 2$ (b) Nature of path $1 / 2$ (c) Direction and magnitude of electric field $11 / 2$ a. The charge q describes a circular path ; anticlockwise in XY plane. b. The path will become helical. c. Direction of Lorentz magnetic force is $-Y$ \therefore Applied electric field should be in +Y direction . $\begin{aligned} & F_{E}=F_{m} \\ & \Rightarrow q E=q v B \\ & \Rightarrow E=v B \end{aligned}$	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	3
Set1,Q13 Set2,Q21 Set3,Q18	(i) Highest frequency segment $1 / 2$ Production of waves 112 One use of waves 1122 (ii) Segment near high frequency end of visible $1 / 2$ One use of this segment $1 / 2$ Its harmful effect $1 / 2$ (i) $\quad \gamma$ rays. Produced in nuclear reactions and emitted by radioactive decay of nucleus. Used in medicine to destroy cancer cells. (ii) Ultra violet rays Used in LASIK eye surgery, UV lamps to kill germs in water purifier (any one use or any other) Causes sunburn / skin cancer / harms eyes when exposed to direct UV rays (any one)	$1 / 2$ $1 / 2$	3
$\begin{aligned} & \hline \text { Set1,Q14 } \\ & \text { Set2,Q22 } \\ & \text { Set3,Q19 } \end{aligned}$	Lens formula $1 / 2$ Image distance for L_{1} 1 Object distance for L_{2} $1 / 2$ Focal length of L_{2} 1		

	For L_{1} $\begin{gathered} \frac{1}{v_{1}}-\frac{1}{u_{1}}=\frac{1}{f_{1}} \\ \Rightarrow \frac{1}{v_{1}}=\frac{1}{20}-\frac{1}{15}=-\frac{1}{60} \\ \Rightarrow v_{1}=-60 \mathrm{~cm} \end{gathered}$ For lens L_{2} $\begin{aligned} & \mathrm{u}=(-20-60) \mathrm{cm}=-80 \mathrm{~cm} \\ & \mathrm{v}=80 \mathrm{~cm} \\ & \therefore\|u\|=\|v\|=2 \mathrm{f}_{2} \\ & \Rightarrow f_{2}= \frac{80}{2}=40 \mathrm{~cm} \end{aligned}$		$1 / 2$ 1 1 $1 / 2$ $1 / 2$ $1 / 2$	3
Set1,Q15 Set2,Q11 Set3,Q20	Condition for TIR Value of μ for TIR Conclusion for rays 1,2,3 Ray diagram $\mathrm{i}=45^{\circ} \quad(\text { on face } \mathrm{AC})$ For TIR $i>i_{c}$ $\Rightarrow \sin i>\sin i_{c}$ $\Rightarrow \frac{1}{\sin i}<\frac{1}{\sin i_{c}}$ $\Rightarrow \mu>\frac{1}{\sin i}$ $\because \mu=\frac{1}{\sin i_{c}}$ $\mu>\sqrt{2}=1.414$ for TIR \therefore Ray (1) is refracted from AC And rays (2) and (3) are internally reflected. (1) (2) (3)	$\begin{gathered} 1 / 2 \\ 1 \\ 1 \\ 1 / 2 \end{gathered}$	1/2	3

\begin{tabular}{|c|c|c|c|}
\hline \& \& \& \\
\hline Set1,Q16 Set2,Q12 Set3,Q21 \& \begin{tabular}{l}
\begin{tabular}{|llc|}
\hline (i) \& Working principle of solar cell \& 1 \\
\& Three basic processes \& 1 \\
(ii) \& Why Si and GaAs are preferred materials? \& 1 \\
\hline
\end{tabular} \\
(i) When solar cell is illuminated with light photons of energy \((h v)\) greater than the energy gap (\(\mathrm{E}_{\mathrm{g}}\)) of the semiconductor, then electron hole pairs are generated due to absorption of photons. \\
The three basic processes involved in the generation of emf : (a) generation of e-h pairs due to light (with \(h v>\mathrm{E}_{\mathrm{g}}\)) close to the junction ; \\
(b) separation of electrons and holes due to electric field of the depletion region \\
(c) the electrons reaching the n side are collected by the front contact and holes reaching p side are collected by back contact, \\
(ii) Solar radiation has maximum intensity of photons of energy \(=\) 1.5 eV \\
Hence semiconducting materials Si and GaAs, with band gap \(\approx 1.5 \mathrm{eV}\), are preferred materials for solar cells.
\end{tabular} \& 1 \& 3 \\
\hline \[
\begin{array}{|l|}
\hline \text { Set1,Q17 } \\
\text { Set2,Q13 } \\
\text { Set3,Q22 }
\end{array}
\] \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Energy stored in \(12 \mu \mathrm{f}\) capacitor \& 1 \\
Energy stored in \(3 \mu \mathrm{f}\) capacitor \& \(11 / 2\) \\
Total energy drawn from battery \& \(1 / 2\) \\
\hline
\end{tabular} \\
(i)
\[
\begin{aligned}
\& \mathrm{E}=\frac{1}{2} C V^{2}=\frac{6}{2} \times 10^{-6} V^{2}=3 \times 10^{-6} V^{2} \\
\& \therefore V^{2}=\frac{E}{3 \times 10^{-6}}
\end{aligned}
\] \\
Energy stored in \(12 \mu \mathrm{f}\) capacitor \(=\frac{1}{2} C V^{2}\)
\[
\begin{aligned}
\& =\frac{1}{2} \times 12 \times 10^{-6} \times \frac{E}{3 \times 10^{-6}} \\
\& =2 \mathrm{E}
\end{aligned}
\] \\
(ii) Charge on \(6 \mu \mathrm{f}\) capacitor, \(\mathrm{Q}_{1}=\sqrt{2 E C}\left[\because E=\frac{1}{2} \frac{Q^{2}}{C}\right]\)
\[
=2 \sqrt{3 E} \times 10^{-3} C
\] \\
Charge on \(12 \mu \mathrm{f}\) capacitor, \(\mathrm{Q}_{2}=\sqrt{2 C E}\)
\[
=\sqrt{2 \times 12 \times 10^{-6} \times 2 E}
\]
\end{tabular} \& \(1 / 2\)

$1 / 2$

$1 / 2$ \&

\hline
\end{tabular}

Page 8 of 19
Final Draft
11/03/16 1:00 p.m.

	$=4 \sqrt{3 E} 10^{-3} C$ Charge on $3 \mu f$ capacitor, $\begin{aligned} & \mathrm{Q}=\mathrm{Q}_{1}+\mathrm{Q}_{2} \\ & =6 \sqrt{3 E} 10^{-3} \end{aligned}$ Energy stored in $3 \mu f$ capacitor $=\frac{1}{2} \frac{Q^{2}}{C}=\frac{1}{2} \frac{36 \times 3 E \times 10^{-6}}{3 \times 10^{-6}}$ $=18 \mathrm{E}$ (Alternatively: (ii) capacitance of parallel combination $=18 \mu f$ Charge on parallel combination, $\mathrm{Q}=C V$ $=18 \times 10^{-6} \mathrm{~V}$ Charge on $3 \mu f=\mathrm{Q}=3 \times 10^{-6} V_{1}$ $(=) 18 \times 10^{-6} V=3 \times 10^{-6} V_{1}$ $(\Rightarrow) V_{1}=6 \mathrm{~V}$ \therefore Energy stored in $3 \mu f$ capacitor $=\frac{1}{2} C V_{1}^{2}$ $\begin{aligned} & =\frac{1}{2} \times 3 \times 10^{-6} \times \frac{E \times 36}{3 \times 10^{-6}} \\ & =18 \mathrm{E}) \end{aligned}$ (iii) Total energy drawn $=\mathrm{E}+2 \mathrm{E}+18 \mathrm{E}=21 \mathrm{E}$	11/2	3
Set1,Q18 Set2,Q14 Set3,Q11	(i) Definition of activity 1 (ii) Derivation 2 (i) Number of radioactive nuclei decaying per second at any time. (ii) $\quad R_{1}=\lambda_{1} N_{1}=\frac{0.693}{T_{1}} N_{1}$ $\begin{aligned} & R_{2}=\lambda_{2} N_{2}=\frac{0.693}{T_{2}} N_{2} \\ & \frac{R_{1}}{R_{2}}=\frac{N_{1}}{N_{2}} \times \frac{T_{2}}{T_{1}} \end{aligned}$	1 $1 / 2$ $1 / 2$ 1	3
Set1,Q19 Set2,Q15 Set3,Q12	Graph of photocurrent with intensity 1 Numerical 2 (i)		

\begin{tabular}{|c|c|c|c|}
\hline \& \& \& \\
\hline Set1,Q20 Set2,Q16 Set3,Q13 \& \begin{tabular}{l}
\begin{tabular}{|lc|}
\hline Distinction between point to point and broadcast \& \(1 / 2+1 / 2\) \\
Example of each \& \(1 / 2+1 / 2\) \\
Mobile telephony \& 1 \\
\hline
\end{tabular} \\
(a) In point to point communication mode, communication takes place over a link between a single transmitter and a receiver. \\
In broadcast mode, there are a large number of receivers corresponding to a single transmitter. \\
Examples : \\
Point to point : telephony \\
Broadcast : radio / Television \\
(b) The service area is divided into a suitable number of hexagonal cells centered on MTSO (Mobile Telephone Switching Office). Each cell contains a low-power transmitter called a base station and caters to a large number of mobile receivers / cell phones. When a mobile receiver crosses one base station it is handed over to another base station. It is called handover or handoff.
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$ \& 3

\hline Set1,Q21 Set2,Q17 Set3,Q14 \& | Vector diagram $1 / 2$
 Expression for magnetic field $1 / 2+1 / 2$
 Magnitude of resultant field 1
 Direction $1 / 2$ |
| :--- |
| (Alternatively: The student may just write the directions of $\overrightarrow{B_{p}}, \overrightarrow{B_{Q}}$ and the resultant field.) | \& 1/2 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& $$
\begin{aligned}
& B_{p}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \pi I}{R} \\
& B_{Q}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \pi(\sqrt{3} I)}{R} \\
& B=\sqrt{B_{P}{ }^{2}+B_{Q}{ }^{2}} \\
& \quad=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \pi I}{R} \sqrt{1+3} \\
& \quad=\frac{\mu_{0} I}{R} \\
& \tan \theta=\frac{B_{p}}{B_{Q}}=\frac{1}{\sqrt{3}} \\
& \Rightarrow \theta=30^{0}
\end{aligned}
$$ \& $1 / 2$
$1 / 2$
$1 / 2$

$1 / 2$
$1 / 2$ \& 3

\hline \[
$$
\begin{array}{|l}
\text { Set1,Q22 } \\
\text { Set2,Q18 } \\
\text { Set3,Q15 }
\end{array}
$$

\] \& | (i) Definition and unit $1 / 2+1 / 2$
 (ii) Formula - Magnetic field inside solenoid $1 / 2$
 Formula - Induced emf in loop $1 / 2$
 Calculation of induced emf in loop 1 |
| :--- |
| (i) Self inductance is the amount of magnetic flux linked with a coil when a unit current flows through it. |
| (Alternatively, |
| It is the amount of emf induced in a coil when current through it changes at the rate of 1 A per second.) |
| S.I. unit : henry(H) |
| (ii) Magnetic field inside the solenoid, $B=\mu_{0} \mathrm{n}$ I |
| Induced emf in the loop,$\epsilon=\frac{d \phi_{B}}{d t}$ $\begin{aligned} & \quad=A \frac{d B}{D t} \\ & \quad=\mu_{0} n A \frac{d I}{d t} \\ & =4 \pi \times 10^{-7} \times 1500 \times 2 \times 10^{-4} \times \frac{(4-2)}{0.1} \mathrm{~V} \\ & =7.5 \times 10^{-6} \mathrm{~V} \end{aligned}$ | \& 1/2 \& 3

\hline
\end{tabular}

