Strictly Confidential (For Internal and Restricted Use only) Senior School Certificate Examination

Marking Scheme - Physics (Code 55/1, Code 55/2, Code 55/3)

- 1. The marking scheme provides general guidelines to reduce subjectivity in the marking. The answers given in the marking scheme are suggested answers. The content is thus indicated. If a student has given any other answer, which is different from the one given in the marking scheme, but conveys the meaning correctly, such answers should be given full weightage.
- 2. In value based questions, any other individual response with suitable justification should also be accepted even if there is no reference to the text.
- 3. Evaluation is to be done as per instructions provided in the marking scheme. It should not be done according to one's own interpretation or any other consideration. Marking scheme should be adhered to and religiously followed.
- 4. If a question has parts, please award in the right hand side for each part. Marks awarded for different part of the question should then be totaled up and written in the left hand margin and circled.
- 5. If a question does not have any parts, marks are to be awarded in the left hand margin only.
- 6. If a candidate has attempted an extra question, marks obtained in the question attempted first should be retained and the other answer should be scored out.
- 7. No marks are to be deducted for the cumulative effect of an error. The student should be penalized only once.
- 8. Deduct ¹/₂ mark for writing wrong units, missing units, in the final answer to numerical problems.
- 9. Formula can be taken as implied from the calculations even if not explicitly written.
- 10. In short answer type question, asking for two features / characteristics / properties if a candidate writes three features, characteristics / properties or more, only the correct two should be evaluated.
- 11. Full marks should be awarded to a candidate if his / her answer in a numerical problem is close to the value given in the scheme.
- 12. In compliance to the judgement of the Hon'ble Supreme Court of India, Board has decided to provide photocopy of the answer book(s) to the candidates who will apply for it along with the requisite fee. Therefore, it is all the more important that the evaluation is done strictly as per the value points given in the marking scheme so that the Board could be in a position to defend the evaluation at any forum.
- 13. The Examiner shall also have to certify in the answer book that they have evaluated the answer book strictly in accordance with the value points given in the marking scheme and correct set of question paper.
- 14. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title paper, correctly totaled and written in figures and words.
- 15. In the past it has been observed that the following are the common types of errors committed by the Examiners
 - Leaving answer or part thereof unassessed in an answer script.
 - Giving more marks for an answer than assigned to it or deviation from the marking scheme.
 - Wrong transference of marks from the inside pages of the answer book to the title page.
 - Wrong question wise totaling on the title page.
 - Wrong totaling of marks of the two columns on the title page.
 - Wrong grand total.
 - Marks in words and figures not tallying.
 - Wrong transference to marks from the answer book to award list.
 - Answer marked as correct ($\sqrt{}$) but marks not awarded.
 - Half or part of answer marked correct ($\sqrt{}$) and the rest as wrong (×) but no marks awarded.
- 16. Any unassessed portion, non carrying over of marks to the title page or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.

Q. No.	Expected Answer/ Value Points	Marks	Total Marks		
	Section A				
Q1	i. Nichrome	1/2			
	ii. $R_{Ni} > R_{Cu}$ (or Resistivity _{Ni} > Resistivity _{Cu})	1/2	1		
Q2	Yes	1			
		1/	1		
Q3	i. Decreases	1/2			
	ii. $n_{\text{Violet}} > n_{\text{Red}}$	1/2			
	(Also accept if the student writes $\lambda_V < \lambda_R$)	, 2			
			1		
Q4	Photoelectric Effect (/Raman Effect/ Compton Effect)	1			
			1		
Q5	A is positive and	1/2	1		
Q3	B is negative	⁷² 1/2	1		
	(Also accept: A is negative and B is positive)	72	•		
	(Also accept. A is negative and B is positive)				
	SECTION B				
Q6	Interference pattern ¹ / ₂				
	Diffraction pattern ¹ / ₂				
	Two Differences $\frac{1}{2} + \frac{1}{2}$				
	I I I I I I I I I I	1/2			

MARKING SCHEME

07		1	
Q7	(a) Identification $\frac{1}{2} + \frac{1}{2}$		
	(b) Uses $\frac{1}{2} + \frac{1}{2}$		
	(a) X – rays	1/2	
	Used for medical purposes.	/2	
	(Also accept UV rays and gamma rays and	1/2	
	Any one use of the e.m. wave named)	/ -	
		1/2	
	(b) Microwaves		
	Used in radar systems	1/2	
	(Also accept short radio waves and		
	Any one use of the e.m. wave named)		2
Q8	Condition		
	i. For directions of \vec{E} , \vec{B} , \vec{v} 1		
	ii. For magnitudes of \vec{E} , \vec{B} , \vec{v} 1		
	(i) The velocity \vec{v} , of the charged particles, and the \vec{E} and \vec{B}	1/2	
	vectors, should be mutually perpendicular.	72	
	Also the forces on q , due to \vec{E} and \vec{B} , must be	1/2	
	oppositely directed.	/2	
	(Also accept if the student draws a diagram to show the		
	directions.)		
	↑ ⁹		
	A =		
	F _E		
	v x		
	B ⁻		
	Z B		
	(ii) $qE = qvB$	1/	
	(ii) $qE = qvB$ or $v = \frac{E}{B}$	$\frac{1/2}{1/2}$	
	B	-/2	
	[Alternatively, The student may write:	1/2	
	Force due to electric field = $q\vec{E}$	1/2	
	Force due to magnetic field = $q (\vec{v} \times \vec{B})$		
	The required condition is $$		
	$q\vec{E} = -q \; (\vec{v} \times \vec{B})$	1/2	
	$\left[or \ \vec{E} = - (\vec{v} \times \vec{B}) = (\vec{B} \times \vec{v}) ight]$	1/2	
	(Note: Award 1 mark only if the student just writes:		
	"The forces, on the charged particle, due to the electric and		
	magnetic fields, must be equal and opposite to each other")]		2

Q9			
Q9	i. Writing		
	$E_n \propto \frac{1}{n^2}$ $\frac{1}{2}$		
	ii. Identifying the level to which the $\frac{1}{2}$		
	electron is emitted.		
	iii. Calculating the wavelengths and $\frac{1}{2} + \frac{1}{2}$		
	identifying the series of atleast one of the		
	three possible lines, that can be emitted.		
	i. We have $E_n \propto \frac{1}{n^2}$	1/2	
	ii. ∴ The energy levels are	1/	
	-13.6 eV; -3.4 eV; -1.5 eV	1/2	
	\therefore The 12.5 eV electron beam can excite the electron up to n=3 level only.		
	iii. Energy values, of the emitted photons, of the three possible lines are $3 \rightarrow 1: (-1.5 + 13.6) eV = 12.1 eV$ $2 \rightarrow 1: (-3.4 + 13.6) eV = 10.2 eV$		
	$3 \rightarrow 2: (-1.5 + 3.4) eV = 1.9 eV$		
	The corresponding wavelengths are: 102 nm, 122 nm and 653 nm $\left(\lambda = \frac{hc}{E}\right)$	$\frac{1}{2} + \frac{1}{2}$	
	(Award this 1 mark if the student draws the energy level diagram and shows (and names the series) the three lines that can be emitted) / (Award these ($\frac{1}{2} + \frac{1}{2}$) marks if the student calculates the energies of the three photons that can be emitted and names their series also.)		
			2
Q10			
	a) Two properties for making permanent $\frac{1}{2} + \frac{1}{2}$		
	b) Two properties for making an $\frac{1}{2} + \frac{1}{2}$		
	electromagnet		
L		I	

	 a) For making permanent magnet: (i) High retentivity (ii) High coercitivity 	1⁄2 + 1⁄2	
	 (iii) High permeability (Any two) b) For making electromagnet: (i) High permeability 	1/2 + 1/2	
	(ii) Low retentivity(iii) Low coercivity(Any two)		2
	SECTION C		
Q11	a) The factor by which the potential difference changes1b) Voltmeter reading1Ammeter Reading1		
	a) $H = \frac{V^2}{R}$	1/2	
	$\therefore V \text{ increases by a factor of } \sqrt{9} = 3$	1/2	
	b) Ammeter Reading $I = \frac{V}{R+r}$	1/2	
	$=\frac{12}{4+2}A=2A$	1⁄2	
	Voltmeter Reading $V = E - Ir$	1/2	
	= $[12 - (2 \times 2)]$ V = 8V (Alternatively, V = iR = 2 × 4V = 8V)	1/2	3
Q12	 a) Achieving amplitude Modulation 1 b) Stating the formulae 1/2 Calculation of v_c and v_m 1/2 + 1/2 Calculation of bandwidth 1/2 a) Amplitude modulation can be achieved by applying the message signal, and the carrier wave, to a non linear (square law device) followed by a band pass filter. 		

	<u>Working</u> : The diode D_1 is forward biased during one half cycle and current flows through the resistor, but diode D_2 is reverse biased and no current flows through it. During the other half of the signal, D_1 gets reverse biased and no current passes through it, D_2 gets forward biased and current flows through it. In both half cycles current, through the resistor, flows in the same direction.	1	
	(Note: If the student just draws the following graphs (but does not draw the circuit diagram), award $\frac{1}{2}$ mark only.		3
Q14	Photon picture plus Einstein's photoelectric equation $\frac{1}{2} + \frac{1}{2}$ Two features $\frac{1}{2} + \frac{1}{2}$		
	In the photon picture , energy of the light is assumed to be in the form of photons , each carrying an energy hv .	1/2	
	Einstein assumed that photoelectric emission occurs because of a single collision of a photon with a free electron.	1/2	
	The energy of the photon is used to		
	(i) free the electrons from the metal.[For this, a minimum energy, called the work function (=W) is needed].		
	And (ii) provide kinetic energy to the emitted electrons.	1/2	

	Hence		
	$(K. E.)_{max} = hv - W$ $/\left(\frac{1}{2}mv_{max}^{2} = hv - W\right)$ This is Einstein's photoelectric equation Two features (which cannot be explained by wave theory):	1⁄2	
	 i) 'Instantaneous' emission of photoelectrons ii) Existence of a threshold frequency iii) 'Maximum kinetic energy' of the emitted photoelectrons, is independent of the intensity of incident light (Any two) 	1/2 + 1/2	3
Q15	a. Calculation of wavelength, frequency and speed $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ b. Lens Maker's Formula $\frac{1}{2}$ Calculation of R 1		
	a) $\lambda = \frac{589 \text{ nm}}{1.33} = 442.8 \text{ nm}$	1/2	
	Frequency $\nu = \frac{3 \times 10^8 \text{ ms}^{-1}}{589 \text{ nm}} = 5.09 \times 10^{12} \text{Hz}$	1⁄2	
	Speed $v = \frac{3 \times 10^8}{1.33}$ m/s = 2.25 × 10 ⁸ m/s	1/2	
	b) $\frac{1}{f} = \left[\frac{\mu_2}{\mu_1} - 1\right] \left[\frac{1}{R_1} - \frac{1}{R_2}\right]$	1/2	
	$\therefore \ \frac{1}{20} = \left[\frac{1.55}{1} - 1\right] \frac{2}{R}$	1/2	
	$\therefore R = (20 \times 1.10) \text{cm} = 22 \text{ cm}$	1/2	3
Q16	Definition of mutual inductance1Derivation of mutual inductance for two1long solenoids2		

	(i) Self inductance, of a coil, is numerically equal to the		
	emf induced in that coil when the current in it changes	1	
	at a unit rate.		
	(Alternatively: The self inductance of a coil equals the		
	flux linked with it when a unit current flows through		
	it.)		
	(ii) The work done against back /induced emf is stored as		
	magnetic potential energy.	1/2	
	The rate of work done, when a current <i>i</i> is passing	72	
	through the coil, is	14	
	$\frac{dW}{dt} = \varepsilon i = \left(L\frac{di}{dt}\right)i$	1/2	
	at (at)		
		1/2	
	$\therefore W = \int dW = \int_0^I Lidi$	1/2	
	$=\frac{1}{2}Li^2$		3
Q17			5
	a) Principle of meter bridge 1		
	b) Relation between l_1, l_2 , and S 2		
	a) The principle of working of a meter bridge is same as that of a balanced Wheatstone bridge.		
	(Alternatively:		
	When ig=0, then $\frac{P}{Q} = \frac{R}{s}$)	1	

			1
	(b) $B_p = \frac{\mu_0 \times 1}{2R} = \frac{\mu_0}{2R}$ (along z – direction)	1/2	
	$B_Q = \frac{\mu_0 \times \sqrt{3}}{2R} = \frac{\mu_0 \sqrt{3}}{2R} \text{(along x - direction)}$		
	$\therefore B = \sqrt{B_p^2 + B_Q^2} = \frac{\mu_0}{R}$	1/2	
	This net magnetic field B , is inclined to the field \mathbf{B}_{p} , at an angle Θ , where		
	$\tan \theta = \sqrt{3}$ $\left(/\theta = \tan^{-1}\sqrt{3} = 60^{0}\right)$	1/2	
	(in XZ plane)		3
Q22	Formula for energy stored $\frac{1}{2}$ Energy stored before1Energy stored after1Ratio $\frac{1}{2}$		
	Energy stored = $\frac{1}{2}CV^2$ (= $\frac{1}{2}\frac{Q^2}{C}$)	1/2	
	Net capacitance with switch S closed = $C + C = 2C$	1/2	
	$\therefore \text{ Energy stored} = \frac{1}{2} \times 2C \times V^2 = CV^2$	1/2	
	After the switch S is opened, capacitance of each capacitor= KC		
	$\therefore \text{ Energy stored in capacitor A} = \frac{1}{2} K C V^2$		
	For capacitor B,	1/2	
	Energy stored = $\frac{1}{2} \frac{Q^2}{KC} = \frac{1}{2} \frac{C^2 V^2}{KC} = \frac{1}{2} \frac{C V^2}{K}$		
	$\therefore \text{ Total Energy stored} = \frac{1}{2}KCV^2 + \frac{1}{2}\frac{CV^2}{K} = \frac{1}{2}CV^2\left(K + \frac{1}{K}\right)$		
	$=\frac{1}{2}CV^2\left(\frac{K^2+1}{K}\right)$	1/2	
	1	I	

	$\therefore \text{ Required ratio} = \frac{2CV^2 \cdot K}{CV^2(K^2 + 1)} = \frac{2K}{(K^2 + 1)}$	1/2	3
	SECTION D		
Q23	 a) Name of the installation, the cause of disaster 1/2 + 1/2 b) Energy release process 1 c) Values shown by Asha and mother 1+1 a) (i) Nuclear Power Plant:/'Set-up' for releasing Nuclear Energy/Energy Plant (Also accept any other such term) 	1⁄2	
	 (Also accept any other such term) (ii)Leakage in the cooling unit/ Some defect in the set up. b) Nuclear Fission/Nuclear Energy Break up (/ Fission) of Uranium nucleus into fragments c) Asha: Helpful, Considerate, Keen to Learn, Modest Mother: Curious, Sensitive, Eager to Learn, Has no airs 	1⁄2 1 1 1	
	(Any one such value in each case)		4
	SECTION E		
Q24	(a) Derivation of E along the axial line of dipole2(b) Graph between E vs r1(c) (i) Diagrams for stable and unstable $\frac{1}{2} + \frac{1}{2}$ equilibrium of dipole(ii) Torque on the dipole in the two cases $\frac{1}{2} + \frac{1}{2}$		
	(a) $\begin{array}{c} $	1/2	
	Electric field at P due to charge $(-q) = E_2 = \frac{1}{4\pi\varepsilon_0} \frac{q}{(r+a)^2}$	1⁄2	
	Net electric Field at P= $E_1 - E_2 = \frac{1}{4\pi\varepsilon_0} \frac{q}{(r-a)^2} - \frac{1}{4\pi\varepsilon_0} \frac{q}{(r+a)^2}$	1/2	
	$=\frac{1}{4\pi\varepsilon_{0}}\frac{2pr}{(r^{2}-a^{2})^{2}} \qquad (p=q.2a)$		
	Its direction is parallel to \vec{p} .	1/2	

Q25	a) Identification ¹ / ₂		
C	b) Identifying the curves 1		
	Justification ¹ / ₂		
	c) Variation of Impedance		
	with frequency ¹ / ₂		
	Graph ¹ / ₂		
	d) Expression for current $1\frac{1}{2}$		
	Phase relation $\frac{1}{2}$		
	a) The device X is a capacitor	1/2	
		72	
	b) Curve B voltage		
	$Curve C \longrightarrow current$	1/2	
	Curve A power	1/2	
	Reason: The current leads the voltage in phase, by $\pi/2$,	1/2	
	for a capacitor.	72	
	ior a capacitor.		
	$(1) \qquad 1 \qquad (/Y \qquad 1)$		
	c) $X_c = \frac{1}{\omega c} \left(/ X_c \propto \frac{1}{\omega} \right)$	1/2	
	X_{c}	1⁄2	
	d) $V = V_o \sin \omega t$		
	$Q = CV = CV_0 \sin \omega t$	1/2	
	$I = \frac{dq}{dt} = \omega c V_o \cos \omega t$	1/2	
	$= I_0 \sin(\omega t + \frac{\pi}{2}) \qquad \qquad$	1/2	
	Current leads the voltage, in phase , by $\pi/2$	1/2	
	(Note : If the student identifies the device X as an Inductor but writes correct answers to parts (c) and (d) (in terms of an inductor), the student be given full marks		-
	for (only) these two parts)		5

Let the final image be at I. We then have		
$\frac{1}{f_1} = \frac{1}{v_1} - \frac{1}{u}$ $\frac{1}{f_2} = \frac{1}{v} - \frac{1}{v_1}$	1/2	
Adding, we get $\frac{1}{f_1} + \frac{1}{f_2} = \frac{1}{v} - \frac{1}{u} = \frac{1}{f}$	1/2	
$\therefore \frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$	1/	
$\therefore P = P_1 + P_2$	1/2	
b) At minimum deviation $r = \frac{A}{2} = 30^{\circ}$	1/2	
We are given that $i = \frac{3}{4}A = 45^{\circ}$	1/2	
$\therefore \mu = \frac{\sin 45^{\circ}}{\sin 30^{\circ}} = \sqrt{2}$	1/2	
∴ Speed of light in the prism = $\frac{c}{\sqrt{2}}$ (≅ 2.1 × 10 ⁸ ms ⁻¹)	1⁄2	
[Award ½ mark if the student writes the formula: $\mu = \frac{\sin(A + D_m)/2}{\sin(A/2)}$		
but does not do any calculations.]		
		5

MARKING SCHEME

Q. No.	Expected Answer/ Value Points	Marks	Total Marks
	Section A		
Q1	Q to P through ammeter and D to C through ammeter (Alternatively: Anticlockwise as seen from left in coil PQ clockwise as seen from left in coil CD)	1/2 1/2	1
Q2	Speed of electromagnetic wave, $c = \frac{E_0}{B_0}$.	1	1
Q3	i. Nichrome	1/2	
	ii. $R_{Ni} > R_{Cu}$ (or Resistivity _{Ni} > Resistivity _{Cu})	1⁄2	1
Q4	i. Decreases	1/2	
	ii. $n_{\text{Violet}} > n_{\text{Red}}$ (Also accept if the student writes $\lambda_V < \lambda_R$)	1/2	1
Q5	Photoelectric Effect (/Raman Effect/ Compton Effect)	1	-
	SECTION B		1
Q6	Conditioni. For directions of \vec{E} , \vec{B} , \vec{v} 1ii. For magnitudes of \vec{E} , \vec{B} , \vec{v} 1i. The velocity \vec{v} , of the charged particles, and the \vec{E} and \vec{B} vectors, should be mutually perpendicular. Also the forces on q , due to \vec{E} and \vec{B} , must be oppositely directed. (Also accept if the student draws a diagram to show the directions.)Image: Image: Image student draws a diagram to show the directions.)	1/2 1/2	

	ii. $qE = qvB$ $or v = \frac{E}{B}$	1/2 1/2	
		1/2	
	[Alternatively, The student may write: Force due to electric field = $q\vec{E}$	$\frac{1}{1/2}$	
	Force due to magnetic field = $q (\vec{v} \times \vec{B})$		
	The required condition is $\vec{r} = \vec{r} \cdot \vec{r} \cdot \vec{r}$	1/2	
	$q\vec{E} = -q \ (\vec{v} \times \vec{B})$ $[or \ \vec{E} = -(\vec{v} \times \vec{B}) = (\vec{B} \times \vec{v})]$	1/2	
	(Note: Award 1 mark only if the student just writes:		
	"The forces, on the charged particle, due to the electric and		2
Q7	magnetic fields, must be equal and opposite to each other")]		
	(a) Identification $\frac{1}{2} + \frac{1}{2}$		
	(b) One use each $\frac{1}{2} + \frac{1}{2}$		
	a) X-rays/ Gamma rays	1/2	
	One use of the name given	$\frac{1/2}{1/2}$	
	b) Infrared/Visible/Microwave One use of the name given	$\frac{1}{1/2}$	
	(Note: Award ¹ / ₂ mark for each correct use (relevant to		
	the name chosen) even if the names chosen are incorrect.)		
			2
Q8	Interference pattern ¹ / ₂		
	Diffraction pattern ¹ / ₂		
	Two Differences $\frac{1}{2} + \frac{1}{2}$		
	I		
	Imax	1/2	
	$\land \land \land \land \land \land \land \land$		
	$\frac{1}{3\lambda 2\lambda 1\lambda 0 1\lambda 2\lambda 3\lambda}$		
	→ Path Difference		
	Paul Difference		

Q9	Formula ¹ /2		
	Calculation 1½		
	1 (1 1)	1/2	
	$\frac{1}{\lambda} = R\left(\frac{1}{{n_1}^2} - \frac{1}{{n_2}^2}\right)$		
	\therefore For Balmer Series: $(\lambda_B)_{short} = \frac{4}{R}$	1/2	
	and For Lyman Series: $(\lambda_L)_{short} = \frac{1}{R}$	1⁄2	
	$\therefore \lambda_B = 913.4 \times 4 \text{ A}^0 = 3653.6 \text{ A}^0$	1/2	2
Q10	a) Two monotics for molving normalized to the second secon		
Q10	a) Two properties for making permanent $\frac{1}{2} + \frac{1}{2}$ magnet		
	b) Two properties for making an $\frac{1}{2} + \frac{1}{2}$		
	electromagnet		
	a) For making permanent magnet:		
	(i) High retentivity	$\frac{1}{2} + \frac{1}{2}$	
	(ii) High coercitivity	72 + 72	
	(iii) High permeability		
	(Any two)		
	b) For making electromagnet:		
	(i) High permeability	$\frac{1}{2} + \frac{1}{2}$	
	(ii) Low retentivity		
	(iii) Low coercivity		
	(Any two)		
			2
	SECTION C		
Q11	a. Calculation of wavelength, frequency		
	and speed $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$	2	
	b. Lens Maker's Formula ¹ / ₂		
	Calculation of <i>R</i> 1		
L			

	 (ii) The work done against back /induced emf is stored as magnetic potential energy. 		
	The rate of work done, when a current <i>i</i> is passing through the coil, is	1/2	
	$\frac{dW}{dt} = \varepsilon i = \left(L\frac{di}{dt}\right)i$	1/2	
	$\therefore W = \int dW = \int_0^I Lidi$	1/2	
	$=\frac{1}{2}Li^2$	1/2	3
Q15	 (a) Variation of photocurrent with intensity 1 of radiation (b) Stopping potential versus frequency for 1 different materials (c) Independence of maximum kinetic energy 1 of the emitted photoelectrons 		
	 (a) The collision of a photon can cause emission of a photoelectron(above the threshold frequency). As intensity increases, number of photons increases. Hence the current increases. (b) We have all = h(w - w) 	1	
	(b) We have, $eV_s = h(v - v_0)$ $\therefore v_s = \frac{h}{e}(v) + \left(-\frac{hv_0}{e}\right)$	1/2	
	∴ Graph of v_s with v is a straight line and slope $\left(=\frac{h}{e}\right)$ is a constant.	1⁄2	
	(c) Maximum for different surfaces $K = h(v - v_0)$	1/2	
	Hence, it depends on the frequency and not on the intensity of the incident radiation.	1/2	
			3

	Energy stored = $\frac{1}{2} CV^2 \left(=\frac{1}{2}\frac{Q^2}{C}\right)$	1/2	
	Net capacitance with switch S closed = $C + C = 2C$	1/2	
	$\therefore \text{ Energy stored} = \frac{1}{2} \times 2C \times V^2 = CV^2$	1/2	
	After the switch S is opened, capacitance of each capacitor= KC		
	$\therefore \text{ Energy stored in capacitor } A = \frac{1}{2}KCV^2$		
	For capacitor B, Energy stored = $\frac{1}{2} \frac{Q^2}{KC} = \frac{1}{2} \frac{C^2 V^2}{KC} = \frac{1}{2} \frac{CV^2}{K}$	1/2	
	$\therefore \text{ Total Energy stored} = \frac{1}{2}KCV^2 + \frac{1}{2}\frac{CV^2}{K} = \frac{1}{2}CV^2\left(K + \frac{1}{K}\right)$ $= \frac{1}{2}CV^2\left(\frac{K^2 + 1}{K}\right)$	1/2	
	$\therefore \text{ Required ratio} = \frac{2CV^2 \cdot K}{CV^2(K^2 + 1)} = \frac{2K}{(K^2 + 1)}$	1/2	3
Q18	 a) Achieving amplitude Modulation 1 b) Stating the formulae 1/2 Calculation of v_c and v_m 1/2 + 1/2 Calculation of bandwidth 1/2 a) Amplitude modulation can be achieved by applying the message signal, and the carrier wave, to a non linear (square law device) followed by a band pass filter. (Alternatively, The student may just draw the block diagram.) ^{na(0} + x(t) + (t) + (t)		3

	(Alternatively, Amplitude modulation is achieved by superposing a message signal on a carrier wave in a way that causes the amplitude of the carrier wave to change in accordance with the message signal.)	1	
	b) Frequencies of side bands are: $(\upsilon_c + \upsilon_m)$ and $(\upsilon_c - \upsilon_m)$	1/2	
	$:: \upsilon_{c} + \upsilon_{m} = 660 \text{ kHz}$		
	and $v_c - v_m = 640 \text{ kHz}$		
	$\therefore v_c = 650 \text{ kHz}$	1/2	
	$\therefore \upsilon_{\rm m} = 10 \text{kHz}$	1/2	
	Bandwidth = $(660 - 640)$ kHz = 20 kHz	1/2	3
Q19	a) Circuit diagram 1 Input characteristics 1/2 Output characteristics 1/2 b) Output pulse wave form 1/2 Truth table/Logic symbol 1/2 I_{2} I_{2} I_{2} I_{2} I_{2} I_{2} V_{2}	1	

SET 55/2

Field at the centre of a circular coil = $\frac{\mu_0 l}{2R}$ 1/2Field due to coil $P = \frac{\mu_0 \times 3}{2 \times 5 \times 10^{-2}}$ tesla1/2= 12\pi \times 10^{-6} tesla1/2Field due to coil $Q = \frac{\mu_0 \times 4}{2 \times 5 \times 10^{-2}}$ tesla1/2= 16\pi \times 10^{-6} tesla1/2 \therefore Resultant Field = $(\pi \sqrt{12^2 + 16^2})\mu T$ 1= $(20 \pi)\mu T$ 1Let the field make an angle θ with the vertical1 $\tan \theta = \frac{12\pi \times 10^{-6}}{16\pi \times 10^{-6}} = \frac{3}{4}$ 1/2 $\theta = \tan^{-1}\frac{3}{4}$ 1/2 $(Alternatively: \theta' = \tan^{-1}\frac{4}{3}, \theta' = angle with the horizontal)$ 1/2[Note 1: Award 2 marks if the student directly calculates B without calculating B_P and B_Q separately.]1/2
$= 12\pi \times 10^{-6} \text{tesla}$ Field due to coil $Q = \frac{\mu_0 \times 4}{2 \times 5 \times 10^{-2}}$ tesla $= 16\pi \times 10^{-6} \text{ tesla}$ \therefore Resultant Field $= (\pi \sqrt{12^2 + 16^2})\mu$ T $= (20\pi)\mu$ T 1 Let the field make an angle θ with the vertical $\tan \theta = \frac{12\pi \times 10^{-6}}{16\pi \times 10^{-6}} = \frac{3}{4}$ $\theta = \tan^{-1}\frac{3}{4}$ l_2 3 (Alternatively: $\theta' = \tan^{-1}\frac{4}{3}, \theta' = \text{ angle with the horizontal})$ [Note1: Award 2 marks if the student directly calculates <i>B</i>
Field due to coil $Q = \frac{\mu_0 \times 4}{2 \times 5 \times 10^{-2}}$ tesla $= 16\pi \times 10^{-6}$ tesla \therefore Resultant Field $= (\pi \sqrt{12^2 + 16^2})\mu$ T $= (20 \pi)\mu$ T Let the field make an angle θ with the vertical $\tan \theta = \frac{12\pi \times 10^{-6}}{16\pi \times 10^{-6}} = \frac{3}{4}$ $\theta = \tan^{-1}\frac{3}{4}$ (Alternatively: $\theta' = \tan^{-1}\frac{4}{3}$, $\theta' = $ angle with the horizontal) [Note1: Award 2 marks if the student directly calculates <i>B</i>
$= 16\pi \times 10^{-6} \text{ tesla}$ $= 16\pi \times 10^{-6} \text{ tesla}$ $\therefore \text{ Resultant Field} = (\pi\sqrt{12^2 + 16^2})\mu\text{T}$ $= (20 \pi)\mu\text{T}$ 1 Let the field make an angle θ with the vertical $\tan \theta = \frac{12\pi \times 10^{-6}}{16\pi \times 10^{-6}} = \frac{3}{4}$ $\theta = \tan^{-1}\frac{3}{4}$ $\frac{1}{2}$ (Alternatively: $\theta' = \tan^{-1}\frac{4}{3}$, $\theta' = \text{ angle with the horizontal}$) [Note1: Award 2 marks if the student directly calculates <i>B</i>
$\therefore \text{ Resultant Field} = (\pi\sqrt{12^2 + 16^2})\mu\text{T}$ $= (20 \pi)\mu\text{T}$ 1 Let the field make an angle θ with the vertical $\tan \theta = \frac{12\pi \times 10^{-6}}{16\pi \times 10^{-6}} = \frac{3}{4}$ $\theta = \tan^{-1}\frac{3}{4}$ $\frac{1}{2}$ (Alternatively: $\theta' = \tan^{-1}\frac{4}{3}, \theta' = \text{ angle with the horizontal}$) [Note1: Award 2 marks if the student directly calculates <i>B</i>
$= (20 \pi)\mu T$ Let the field make an angle θ with the vertical $\tan \theta = \frac{12\pi \times 10^{-6}}{16\pi \times 10^{-6}} = \frac{3}{4}$ $\theta = \tan^{-1}\frac{3}{4}$ V_2 3 (Alternatively: $\theta' = \tan^{-1}\frac{4}{3}$, $\theta' = $ angle with the horizontal) [Note1: Award 2 marks if the student directly calculates <i>B</i>
Let the field make an angle θ with the vertical $\tan \theta = \frac{12\pi \times 10^{-6}}{16\pi \times 10^{-6}} = \frac{3}{4}$ $\theta = \tan^{-1}\frac{3}{4}$ (Alternatively: $\theta' = \tan^{-1}\frac{4}{3}$, $\theta' = $ angle with the horizontal) [Note1: Award 2 marks if the student directly calculates <i>B</i>
$\tan \theta = \frac{12\pi \times 10^{-6}}{16\pi \times 10^{-6}} = \frac{3}{4}$ $\theta = \tan^{-1}\frac{3}{4}$ (Alternatively: $\theta' = \tan^{-1}\frac{4}{3}$, $\theta' = $ angle with the horizontal) [Note1: Award 2 marks if the student directly calculates <i>B</i>
$\theta = \tan^{-1} \frac{3}{4}$ (Alternatively: $\theta' = \tan^{-1} \frac{4}{3}$, $\theta' = $ angle with the horizontal) [Note1: Award 2 marks if the student directly calculates <i>B</i>
(Alternatively: $\theta' = \tan^{-1}\frac{4}{3}$, $\theta' = $ angle with the horizontal) [Note1: Award 2 marks if the student directly calculates <i>B</i>
[Note1: Award 2 marks if the student directly calculates <i>B</i>
[Note 2: Some students may calculate the field B_Q and state that it also represents the resultant magnetic field (as coil P has been shown 'broken' and , therefore, cannot produce a magnetic field); They may be given 2 ½ marks for their (correct) calculation of B_Q]
Q21 Diagram of generalized communication system 1 ¹ / ₂
Function of (a) transmitter (b) channel (c) receiver $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$

SET 55/2

	SECTION D		
Q23	 a) Name of the installation, the cause of disaster ¹/₂ + ¹/₂ b) Energy release process 1 c) Values shown by Asha and mother 1+1 a) (i) Nuclear Power Plant:/'Set-up' for releasing Nuclear Energy/Energy Plant (Also accept any other such term) (ii)Leakage in the cooling unit/ Some defect in the set up. b) Nuclear Fission/Nuclear Energy Break up (/ Fission) of Uranium nucleus into fragments c) Asha: Helpful, Considerate, Keen to Learn, Modest Mother: Curious, Sensitive, Eager to Learn, Has no airs (Any one such value in each case) 	1/2 1/2 1 1 1	4
	SECTION E	T	
Q24	a) Definition of wavefront1/2Verifying laws of refraction by Huygen's3principle1/2b) Polarisation by scattering1/2Calculation of Brewster's angle1		
	a) The wavefront is the common locus of all points which are in phase(/surface of constant phase)	1/2	
	Let a plane wavefront be incident on a surface separating two media as shown. Let v_1 and v_2 be the velocities of light in the rarer medium and denser medium respectively. From the diagram $BC = v_1 t$ and $AD = v_2 t$	1	

	The electric field E points outwards normal to the sheet. The field lines are parallel to the Gaussian surface except for surfaces 1 and 2. Hence the net flux = $\oint E \cdot ds = EA + EA$ where <i>A</i> is the area of each of the surface 1 and 2.	1	
	$\therefore \oint E \cdot ds = \frac{q}{\varepsilon_0} = \frac{\sigma A}{\varepsilon_0} = 2EA;$ $E = \frac{\sigma}{2\varepsilon_0}$	1	
	$2\varepsilon_0$		
	b) $W = q \int_{\infty}^{r} \vec{E} \cdot d\vec{r}$	1⁄2	
	$=q\int_{\infty}^{r}(-Edr)$	1/2	
	$= -q \int_{\infty}^{r} \left(rac{\sigma}{2\epsilon_0} ight) dr$	1/2	
	$= \frac{q\sigma}{2\epsilon} \infty - r $ $\implies (\infty)$	1⁄2	5
Q26	 a) Identification 1/2 b) Identifying the curves 1 Justification 1/2 c) Variation of Impedance with frequency 1/2 Graph 1/2 d) Expression for current 11/2 Phase relation 1/2 a) The device X is a capacitor b) Curve B → voltage Curve C → current Curve A → power	1/2 1/2 1/2	5

Q. No.	Expected Answer/ Value Points	Marks	Total Marks
	Section A		
Q1	i. Decreases	1/2	
	ii. $n_{\text{Violet}} > n_{\text{Red}}$	1/2	
	(Also accept if the student writes $\lambda_V < \lambda_R$)	72	
			1
Q2	Photoelectric Effect (/Raman Effect/ Compton Effect)	1	
			1
Q3	Clockwise in loop 1	1/2	-
	Anticlockwise in loop 2		
	Anticioekwise in loop 2	1/2	
			1
Q4			
	\vec{E} along y- axis and \vec{B} along z-axis	$\frac{1}{2} + \frac{1}{2}$	
	(Alternatively : \vec{E} along z-axis and \vec{B} along y-axis)	72 + 72	1
Q5	i. Nichrome	1/2	
	ii. $R_{Ni} > R_{Cu}$ (or Resistivity _{Ni} > Resistivity _{Cu})	1/2	1
	SECTION B		
Q6			
	a) Two properties for making permanent $\frac{1}{2} + \frac{1}{2}$ magnet		
	b) Two properties for making an $\frac{1}{2} + \frac{1}{2}$		
	electromagnet		
	a) For making permanent magnet:		
	(i) High retentivity	$\frac{1}{2} + \frac{1}{2}$	
	(ii) High coercitivity		
	(iii) High permeability		
	(Any two)		

MARKING SCHEME

	Interference	Diffraction		
	All maxima have equal	Maxima have different		
	intensity	(/rapidly decreasing)		
		intensity	$\frac{1}{2} + \frac{1}{2}$	
	All fringes have equal	Different (/changing)		
	width.	width.		
	Superposition of two	Superposition of wavelets		
	wavefronts	from the same wavefront		2
		(Any two)		4
		OR		
	Expression for intensity	of polarized beam 1		
	Plot of intensity variation	on with angle 1		
	Intensity is $\frac{I_0}{COS^2}$ A (if I_0	is the intensity of unpolarised lig	wht)	
	2			
		the intensity of polarized light.) ent writes the expression as I_0 CO	$(1 \\ s^2 \rho)$	
	I	\frown	1	
		$\longrightarrow \theta$		2
Q8	, í	no flow of current 1 momentary current 1		
	.	1		
		lacement current and hence the $1 \rightarrow 1$		
	conduction current, is zero constant .	as $\left ec{E} ight $, between the plates , is	1	
	During charging / discharg	ing, the displacement current and	1	
		ing, the displacement current and nt is non zero as $ \vec{E} $, between the		

	Energy difference = $3.4 \text{ eV} - 1.51 \text{ eV} = 1.89 \text{ eV} = 3.024 \times 10^{-19} \text{ J}$	1/2	
	Energy = $\frac{hc}{\lambda}$ =3.024×10 ⁻¹⁹ J	1/2	
	Wavelength = 6.57×10^{-7} m	1/2	
	Series is Balmer series	1/2	2
Q10	Condition i. For directions of $\vec{E}, \vec{B}, \vec{v}$ 1 ii. For magnitudes of $\vec{E}, \vec{B}, \vec{v}$ 1 (i) The velocity \vec{v} , of the charged particles, and the \vec{E} and \vec{B} vectors, should be mutually perpendicular. Also the forces on q , due to \vec{E} and \vec{B} , must be oppositely directed. (Also accept if the student draws a diagram to show the directions.) $\vec{r_x}$ $\vec{r_y}$ $\vec{r_x}$ $\vec{r_y}$ $\vec{r_x}$ $\vec{r_y}$ $\vec{r_y}$ $\vec{r_x}$ $\vec{r_y}$ $\vec{r_y}$ $\vec{r_y}$ $\vec{r_y}$ $\vec{r_y}$ $\vec{r_y}$ $\vec{r_y}$ $\vec{r_y}$ $\vec{r_y}$ $\vec{r_y}$ $\vec{r_y}$ $\vec{r_y}$ (ii) $qE = qvB$ $or v = \frac{E}{B}[Alternatively, The student may write:Force due to electric field = q\vec{E}Force due to electric field = q(\vec{v} \times \vec{B})The required condition isq\vec{E} = -q(\vec{v} \times \vec{B}) = (\vec{B} \times \vec{v})](Note: Award 1 mark only if the student just writes:"The forces, on the charged particle, due to the electric andmagnetic fields, must be equal and opposite to each other")]$	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	
			2

	SECTION C		
Q11	a. Calculation of wavelength, frequency and speed $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ b. Lens Maker's Formula $\frac{1}{2}$ Calculation of R 1		
	a) $\lambda = \frac{589 \text{ nm}}{1.33} = 442.8 \text{ nm}$	1/2	
	Frequency $v = \frac{3 \times 10^8 \text{ ms}^{-1}}{589 \text{ nm}} = 5.09 \times 10^{12} \text{Hz}$	1/2	
	Speed $v = \frac{3 \times 10^8}{1.33}$ m/s = 2.25 × 10 ⁸ m/s	1/2	
	b) $\frac{1}{f} = \left[\frac{\mu_2}{\mu_1} - 1\right] \left[\frac{1}{R_1} - \frac{1}{R_2}\right]$	1⁄2	
	$\therefore \frac{1}{20} = \left[\frac{1.55}{1} - 1\right] \frac{2}{R}$	1⁄2	
	$\therefore R = (20 \times 1.10) \text{cm} = 22 \text{ cm}$	1/2	3
Q12	Definition of mutual inductance1Derivation of mutual inductance for two1long solenoids2		
	 Mutual inductance is numerically equal to the induced emf in the secondary coil when the current in the primary coil changes by unity. <u>Alternatively:</u> Mutual inductance is numerically equal to the magnetic flux linked with one coil/secondary coil when unit current flows through the other coil /primary coil. 	1	

	(ii) The work done against back /induced emf is stored as	1/2	
	magnetic potential energy.	/2	
		1/	
	The rate of work done, when a current <i>i</i> is passing	1/2	
	through the coil, is		
	$\frac{dW}{dt} = \varepsilon i = \left(L\frac{di}{dt}\right)i$	1/2	
	at (at)	72	
		1/	
	$\therefore W = \int dW = \int_0^I Lidi$	1/2	
	$=\frac{1}{2}Li^{2}$		3
	2		
Q13	a) Principle of meter bridge 1		
	b) Relation between l_1, l_2 , and S 2		
	a) The principle of working of a meter bridge is same as		
	that of a balanced Wheatstone bridge.		
	(Alternatively:		
	When $i_g=0$, then $\frac{P}{Q} = \frac{R}{S}$)	1	
	b) $\frac{R}{S} = \frac{l_1}{100 - l_1}$	1/2	
	When X is connected in parallel: $\frac{R}{\left(\frac{XS}{X+S}\right)} = \frac{l_2}{100 - l_2}$	1⁄2	
	On solving, we get $X = \frac{l_1 S(100 - l_2)}{100(l_2 - l_1)}$	1	3

010	Formula for energy stored ¹ / ₂		
Q19	Energy stored before 1		
	Energy stored after 1		
	Ratio ¹ / ₂		
	Energy stored = $\frac{1}{2} CV^2 \left(= \frac{1}{2} \frac{Q^2}{C}\right)$	1/2	
	2 20	1/2	
	Net capacitance with switch S closed = $C + C = 2C$	/2	
	$\therefore \text{ Energy stored} = \frac{1}{2} \times 2C \times V^2 = CV^2$	1/2	
	After the switch S is opened, capacitance of each capacitor= KC		
	$\therefore \text{ Energy stored in capacitor } A = \frac{1}{2} K C V^2$		
	For capacitor B,		
	Energy stored = $\frac{1}{2} \frac{Q^2}{KC} = \frac{1}{2} \frac{C^2 V^2}{KC} = \frac{1}{2} \frac{C V^2}{K}$	1/2	
	$\therefore \text{ Total Energy stored} = \frac{1}{2}KCV^2 + \frac{1}{2}\frac{CV^2}{K} = \frac{1}{2}CV^2\left(K + \frac{1}{K}\right)$		
	$=\frac{1}{2}CV^2\left(\frac{K^2+1}{K}\right)$	1/2	
	$\therefore \text{ Required ratio} = \frac{2CV^2 \cdot K}{CV^2(K^2 + 1)} = \frac{2K}{(K^2 + 1)}$	1/2	3
	Formula for energy stored ¹ / ₂		
Q20	Energy stored before 1		
	Energy stored after 1		
	Ratio ¹ / ₂		
	Energy stored = $\frac{1}{2} CV^2 \left(=\frac{1}{2}\frac{Q^2}{C}\right)$	1/2	
	Net capacitance with switch S closed = $C + C = 2C$	1/2	
	$\therefore \text{ Energy stored} = \frac{1}{2} \times 2C \times V^2 = CV^2$	1/2	
	After the switch S is opened, capacitance of each capacitor= KC		

	1		
	$\therefore \text{ Energy stored in capacitor } A = \frac{1}{2} K C V^2$		
	For capacitor B,		
	Energy stored = $\frac{1}{2} \frac{Q^2}{KC} = \frac{1}{2} \frac{C^2 V^2}{KC} = \frac{1}{2} \frac{CV^2}{K}$	1⁄2	
	$\therefore \text{ Total Energy stored} = \frac{1}{2}KCV^2 + \frac{1}{2}\frac{CV^2}{K} = \frac{1}{2}CV^2\left(K + \frac{1}{K}\right)$		
	$=\frac{1}{2}CV^2\left(\frac{K^2+1}{K}\right)$	1/2	
	: Required ratio = $\frac{2CV^2 \cdot K}{CV^2(K^2 + 1)} = \frac{2K}{(K^2 + 1)}$	1/2	3
Q21	a) Correct Choice of R $\frac{1}{2}$ Reason $\frac{1}{2}$ b) Circuit Diagram1Working $\frac{1}{2}$ $I-V$ characteristics $\frac{1}{2}$ a) R would be increased.Resistance of S (a semi conductor) decreases on heating.b) Photodiode diagramb) Photodiode diagram μ^{μ}	1/2 1/2 1	

	absorption of photons. Due to junction field, electrons and holes		
	are separated before they recombine. Electrons are collected on		
	n-side and holes are collected on p-side giving rise to an emf.	1⁄2	
	When an external load is connected, current flows.		
	<i>V-I</i> Characteristics of the diode		
	↑mA		
	Reverse bias I_1 volts I_2 I_3 I_4 μA $I_4 > I_3 > I_2 > I_1$	1∕2	3
022	(a) Statement of Biot Savart law 1		
Q22	Expression in vector form ¹ / ₂		
	(b) Magnitude of magnetic field at centre 1		
	Direction of magnetic field ¹ / ₂		
	(a) It states that magnetic field strength, $d\vec{B}$, due to a current element, $Id\vec{l}$, at a point, having a position vector r relative to the current element, is found to depend (i) directly on the current element, (ii) inversely on the square of the distance $ \mathbf{r} $, (iii) directly on the sine of angle between the current element and the position vector r .	1	
	In vector notation, $\vec{dB} = \frac{\mu_0}{4\pi} \frac{I\vec{dl} \times \vec{r}}{ \vec{r} ^3}$	1⁄2	
	Alternatively, $\left(d\vec{B} = \frac{\mu_0}{4\pi} \frac{I\vec{dl} \times \hat{r}}{ \vec{r} ^2} \right)$		

	(b) $B_p = \frac{\mu_0 \times 1}{2R} = \frac{\mu_0}{2R}$ (along z – direction)	1/2	
	$B_Q = \frac{\mu_0 \times \sqrt{3}}{2R} = \frac{\mu_0 \sqrt{3}}{2R} \text{ (along x - direction)}$		
	$\therefore B = \sqrt{B_p^2 + B_Q^2} = \frac{\mu_0}{R}$	1/2	
	This net magnetic field B , is inclined to the field $\mathbf{B}_{\mathbf{p}}$, at an angle Θ , where	,2	
	$\tan \theta = \sqrt{3}$ $\left(/\theta = \tan^{-1}\sqrt{3} = 60^{0}\right)$	1/2	
	(in XZ plane)		3
	SECTION D		3
Q23	a) Name of the installation, the cause of disaster $\frac{1}{2} + \frac{1}{2}$ b) Energy release process1		
	c) Values shown by Asha and mother 1+1		
	 a) (i) Nuclear Power Plant:/'Set-up' for releasing Nuclear Energy/Energy Plant (Also accept any other such term) 	1⁄2	
	(ii)Leakage in the cooling unit/ Some defect in the set up.	1/2	
	b) Nuclear Fission/Nuclear Energy	1	
	Break up (/ Fission) of Uranium nucleus into fragmentsc) Asha: Helpful, Considerate, Keen to Learn, Modest	1	
	Mother: Curious, Sensitive, Eager to Learn, Has no airs	1	
	(Any one such value in each case)		4
	SECTION E		4
	a) Identification ¹ / ₂		
Q24	b) Identifying the curves 1		
	Justification 1/2		
	c) Variation of Impedance		
	with frequency ¹ / ₂		
	Graph ¹ /2		
	d) Expression for current $1\frac{1}{2}$		
	Phase relation ¹ / ₂		
	a) The device X is a capacitor	1/2	

	b) At minimum deviation		
	$r = \frac{A}{2} = 30^{\circ}$	1/2	
	We are given that $i = \frac{3}{4}A = 45^{0}$ $\therefore \mu = \frac{\sin 45^{0}}{\sin 30^{0}} = \sqrt{2}$	1⁄2 1⁄2	
	∴ Speed of light in the prism = $\frac{c}{\sqrt{2}}$ (≅ 2.1 × 10 ⁸ ms ⁻¹)	1/2	
	[Award ½ mark if the student writes the formula: $\mu = \frac{\sin(A + D_m)/2}{\sin(A/2)}$ but does not do any calculations.]		
			5
Q26	(a) Derivation of <i>E</i> along the axial line of dipole 2 (b) Graph between <i>E</i> vs r 1 (c) (i) Diagrams for stable and unstable $\frac{1}{2} + \frac{1}{2}$ equilibrium of dipole (ii) Torque on the dipole in the two cases $\frac{1}{2} + \frac{1}{2}$ (a) $E_{+q} = E_{-q}$		
	-q +q P		
	← r>		
	Electric field at P due to charge $(+q) = E_1 = \frac{1}{4\pi\varepsilon_0} \frac{q}{(r-a)^2}$	1/2	
	Electric field at P due to charge $(-q) = E_2 = \frac{1}{4\pi\varepsilon_0} \frac{q}{(r+a)^2}$	1/2	
	Net electric Field at P= $E_1 - E_2 = \frac{1}{4\pi\varepsilon_0} \frac{q}{(r-a)^2} - \frac{1}{4\pi\varepsilon_0} \frac{q}{(r+a)^2}$	1/2	
	$=\frac{1}{4\pi\varepsilon_0}\frac{2pr}{(r^2-a^2)^2}\qquad (p=q.2a)$		
	Its direction is parallel to \vec{p} .	1/2	

