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Code number given on the right hand side of the question paper should be written on the
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15 minute time has been allotted to read this question paper. The question paper will be
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General Instructions :
(i)  All questions are compulsory.
(ii)  This question paper contains 29 questions.

(iii) Questions 1-4 in Section A are very short-answer type questions carrying 1 mark
each.

(iv) Questions 5-12 in Section B are short-answer type questions carrying 2 marks each.

(v) Questions 13-23 in Section C are long-answer I type questions carrying 4 marks
each.

(vi) Questions 24-29 in Section D are long-answer Il type questions carrying 6 marks
each.

g - A
SECTION - A

TYT T 1 9 4 TF TAH U9 1 HAF HE |
Question numbers 1 to 4 carry 1 mark each.

1.  3A, 3 x 3 F AHAI g &, aF k 1 T 41 8 A1E det(A~!) = (det A)KE |
If A is a 3 x 3 invertible matrix, then what will be the value of k if det(A~!) = (det A)X.

kx
— , dx<0 .
2. 3K’ H A TG I a1tk ®eAd f(x) =9 | x| TS omTE Y
3, 3gx>0
. , . — , ifx<0 .
Determine the value of the constant ‘k’ so that the function f(x) = { x| is
3 ,ifx=20

continuous at x = 0.

3
3. rrmsrmﬁ%w:j%dx
2

3

Evaluate : j 3% dx.
2

4. A UH {@Tx T y 3T B GCHE S9M & A HEL: 90° qAT 60° F HIUT T &, o A
I T 7-3Te] I G (1T o 1 FoReT hi07 S & |
If a line makes angles 90° and 60° respectively with the positive directions of x and y

axes, find the angle which it makes with the positive direction of z-axis.
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SECTION - B

TYT TEAT 5 9 12 T TAE T 2 SH AT |
Question numbers 5 to 12 carry 2 marks each.

5. guiEe o v fauw gufha onegs & fashot & aoft 3eae I € |

Show that all the diagonal elements of a skew symmetric matrix are zero.

d
6. Asin?y+cosxy=K®Fem@x= 1,y=% LL axzfrﬁaﬁfﬁﬂf |

d
Finda)%atx: 1,y=%ifsin2y+cosxy=K.

7. U o MG 3 O /A, ST Y 9g W E | 59 el S B 2 9 g @ SHE g
SECT % g I ST AT BT |

The volume of a sphere is increasing at the rate of 3 cubic centimeter per second. Find
the rate of increase of its surface area, when the radius is 2 cm.

8.  TINET b wed f(x) = 443 — 18x2 + 27x — TR W T TEAM & |

Show that the function f(x) = 4x> — 18x? + 27x — 7 is always increasing on R.

9. 39 W H Y FHOT T Hew S g AL, 2, —1) ¥ R I & dqAr @
5x—25=14—7y=352% GHAR & |
Find the vector equation of the line passing through the point A(1, 2, —1) and parallel
to the line 5x — 25 =14 — 7y = 35z.

10. Tog #ifST % alg E qen F W0d 92 € o 5 E 921 F' ot 0 g2 € |
Prove that if E and F are independent events, then the events E and F' are also
independent.

11. UH B H THAd a7 el S & | T8 UG Jhoid a9l S AT 31fush 9 31es 24
T ST Gl & |waﬁzaﬁmﬁﬁwﬁawwﬁmwﬁﬁ%ﬁawm% | T

o7 o e1fyer @ 31 16 827 T STAH € | Th Aohotd T T 100 1T 7 Teh siFeie W T 300
Y E | T U 5T A fpaA-foha Uieh U & T ST foR oY 3Tk @, T8 ST % g
T g M GEET 5ol | 98 37 € Ul b Ueh-Ueh T 3199 & |

A small firm manufactures necklaces and bracelets. The total number of necklaces and
bracelets that it can handle per day is at most 24. It takes one hour to make a bracelet
and half an hour to make a necklace. The maximum number of hours available per day
is 16. If the profit on a necklace is ¥ 100 and that on a bracelet is ¥ 300. Formulate on
L.P.P. for finding how many of each should be produced daily to maximize the profit ?
It is being given that at least one of each must be produced.
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12. 9 =i J

X% +4x+8
, dx
Find x*+4x+8
g - |
SECTION - C

TYT TEAT 13 T 23 T UAF U9 4 HF HE |
Question numbers 13 to 23 carry 4 marks each.

2b
a

(S

1 1
13. Tag =it & tan {% +5 cos™1 %} + tan{%—z cos! E} =

Prove that tan & + + cog1 2 T 112
rove that tan 4+2COS b +tan4—2cos b

x xX+y x+2y
14. QRIUTERT o TOTET 1 UAT Bk g T IR | x+2y o« x+y | =9y3(x +y).

xX+y x+2y X

YA
2 -1 5 2 25
rrwm:(3 A j,B=(7 4),c=(3 8),WWDWW%CD—AB=O.
X x+y x+2y
Using properties of determinants, prove that | x+ 2y X x+y | =9%(x+y).
xX+y x+2y X
OR

2 -1 5 2 25
Let A= ,B= ,C= , find a matrix D such that CD — AB =O.
3 4 7 4 3 8

15. o (sin x)* + sin~! A[x %1 x % QUeY, 3Faeher ST |
YAt

g XMyt = (x + y)M 0 g, G fog Pt %b_dxz =

Differentiate the function (sin x)* + sin™! \/;c with respect to x.

OR

2

d
If x™ y" = (x + y)™* ", prove that d—x§ =0.
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2x
16. ama%ﬁtr:j(xzﬂ)(xz”)zdx

. 2x
Find f P+ 2+ ¥

1 4 cos? x

17. WF 39 HifT f X sin X

YAt
32

HH 1 T : j|x sinnx|dx
0

X sin x

2

T
Evaluate : f
1+ cos“x

0

OR
3/2

Evaluate : j |x sin T x|dx
0

18. g T foh atarhet TR (x3 — 3xy2)dx = (y° — 3x2y) dy T IHNT &t
2—y2=c(x?+y?)2E TR C THUEAE |
Prove that x> — y? = c(x?> + y?)? is the general solution of the differential equation

(3 = 3xy?)dx = (y* - 3x?y) dy, where C is a parameter.

N A A A

9. WHE=i+j+k D =iaaTE>=cli+c2j+c3f<%,Fﬁ
(a) HATc,=1q2c,=2% dlc, T HIST S &, b 721 ¢ H Feeield T |

(b) @fEc, =174, =1 &d @ b c, F HE 997 &, b 721 ¢ i el T &
Gehdl |

Let5>=/i\+§+lA<,_b>=€and?=clg+czj\+c3f<,then

(@) Letc,=1andc,=2,find C3 which makes @, B> and C coplanar.

(b) Ifc,=-1and =1, show that no value of ¢, can make 2, B> and C coplanar.
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20.

21.

22.

23.

65/1/1

s &, b a1 C T TRHTOT a6 A iy WER weed § | ey 65w @ + b + ¢ afew
A, b AMCTAF W EAT TT A FHE 12 + b + C, ST HT @ ST b 3 ¢ % 9
T &, & | 1 P |

If 4, B>, < are mutually perpendicular vectors of equal magnitudes, show that the
vector @ + b + C is equally inclined to @, b and . Also, find the angle which

- ) -
2 + b + ¢ makes with @ or b or C.

AEresd WX, FaA0, 1, 2, 3F AT A GhAT & | G e FEP(X =0) = P(X = 1) = p @
P(X =2)=P(X = 3) W ¥fF2p. x; = 2Zp.x, &, & p 1 A1 0 AT |

The random variable X can take only the values 0O, 1, 2, 3. Given that P(X = 0) =
P(X = 1) = p and P(X = 2) = P(X = 3) such that £p, x; = 25p.x., find the value of p.

TIT: ¢ I S € o U Feaamst AT TS | S1feh S7%T UTl § | U At o faug § 30
TRFaE 5 IR T W 4 IR TG Sordl & | T8 Tk I bl & T Facl § (o6 S 377 & | Wik
1A HIFT o6 Toqa 5 6 AT |

AT 3T WeHd ¢ {oh TeT 2T Tl aretl GHST | 3{14eh 3TET Ura & 2

Often it is taken that a truthful person commands, more respect in the society. A man
is known to speak the truth 4 out of 5 times. He throws a die and reports that it is a six.
Find the probability that it is actually a six.

Do you also agree that the value of truthfulness leads to more respect in the society ?

T Yiaeh T qeT B 3R §RT &t T
ATHERT BT : Z = 5x + 10y
Tl
% ST x+ 2y <120
x+y=60
x=2y20
GEII x,y=20

Solve the following L.P.P. graphically :
Minimise Z =5x+ 10y
Subject to x+2y<120
Constraints x+y=60
x-2y20
and x,y=20



queg -
SECTION -D

9 AT 24 ¥ 29 T TAE T 6 AF H T |
Question numbers 24 to 29 carry 6 marks each.

I -1 2 -2 0 1
24. 1101’{0 2 —3” 9 2 -3 }Wmmmﬁmx+3z=9, —x+2y-2z=4,
3 2 4 6 1 2
2x — 3y + 4z = -3 H & HINT |

1 -1 2 -2 0 1

Use product [ 0 2 -3 ] [ 9 2 3 ] to solve the system of equations x + 3z = 9,
3 2 4 6 1 2

—x+2y-22=4,2x-3y+4z=-3

25. WM f:R, — [-5, o), ST f(x) = 9x% + 6x — 5 5V W&d & W foeR Hiwg | g23q o £

AU & T 1 (y) = (@)
?ﬂﬁzﬁlﬁaﬁm
i 110

4
(i) yaE(y) =73,
TRl R, T O STAToreh T3l & e ¢ |

arar

Fom T * M A=Q - {1} RANla,be AF T a*b=a—b+ab3gx
IR & o 5 fafag qer SEeril &9 O =€ SIST | * 6 A § dodqeh 3add T0d ST |
3T A % SICHHIN 3Tdd FT hiTT |

Consider f : R, — [-5, ) given by f(x) = 9x2 + 6x — 5. Show that f is invertible with

-1
f—l(y) — (@)

Hence Find
i f110)
.. el 4
() yiff (y)=3,
where R_is the set of all non-negative real numbers.

OR
Discuss the commutativity and associativity of binary operation ‘*’ defined on
A=Q- {1} bytherulea*b=a-b+ ab for all a, b € A. Also find the identity
element of * in A and hence find the invertible elements of A.
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26.

27.

28.

29.

65/1/1

I e GHRIOT BT & HOT AT T 3T T AT T &, o 39y o BgsT o1 ekt atfehoy
BN & 39 a1 T hI0T g% |
If the sum of lengths of the hypotenuse and a side of a right angled triangle is given,

. . . . T
show that the area of the triangle is maximum, when the angle between them is 3

TR % AT § 36 Bst g oy & o et ST sty s 9 (<2, 1), (0, 4) @
(2,3)% |

FroraT
QTR o FET W g k2 + y2 = 16 T @[3y = x FRT HAF S § R 8 B gEwe
T DT |

Using integration, find the area of region bounded by the triangle whose vertices are
(-2, 1), (0, 4) and (2, 3).
OR

Find the area bounded by the circle x2 + y2 = 16 and the line A3y = x in the first
quadrant, using integration.

W?TtﬁWx%xX+y=xcosx+sian%ﬁT@WWﬁﬁmﬁW%ﬁv‘mx=g g
y=1%1

: . . d . : T
Solve the differential equation x ExX + y =xcos x + sin x, given that y = 1 when x = B

IH FHA B FHIHOT F BT S Foeedi ¥ - (21— 3] +4k) = 1an 7 -G -] +4=0H
Ticree YT | e Sl & 9 0 T - (21 — ] + K) + 8 = 0 W Aaed & | 37: 0 HifoAq
T T ORI Tl et § W x — 1 =2y — 4 =3z — [2 idfa= & |

3rerar
3G @1 H FHIAE qAT G T AT HioTT 57 {65 (1, 2, — 4) T gL STl & e e
x=8_y+19 z-10_ x-15 y-29 z-5
3 7 16 - 7 3 - 8§ - 5

Find the equation of the plane through the line of intersection of T - (2? - 3]A + 41A<) =1

W ¢ |

and T - (? - f) + 4 = 0 and perpendicular to the plane T - (2? —j + 1A<) + 8 = 0. Hence
find whether the plane thus obtained contains the line x — 1 =2y —4 =3z - 12.

OR
Find the vector and Cartesian equations of a line passing through (1, 2, —4) and

. . x=8 y+19 z-10 x—15 y-29 z-5
perpendicular to the two lines 3 = 16 = 7 an 3 =3 = 5




