1. The maximum value of $|z|$ when z satisfies the condition $\left|z+\frac{1}{z}\right|=4$ is
A) $2-\sqrt{5}$
B) $2+\sqrt{5}$
C) $4-\sqrt{5}$
D) $4+\sqrt{5}$
2. If $1, \omega_{1}, \omega_{2}, \ldots \omega_{9}$ are the $10^{\text {th }}$ roots of unity, then $\left(1+\omega_{1}\right)\left(1+\omega_{2}\right) \cdots\left(1+\omega_{9}\right)$ is
A) 0
B) 1
C) -1
D) 9
3. If x is a real number, then $(x-1)^{2}+(x-2)^{2}+\cdots+(x-100)^{2}$ is least when x is
A) 50
B) 100
C) 101
D) $\frac{101}{2}$
4. The sum $100 C_{0}+101 C_{1}+102 C_{2}+\cdots+150 C_{50}$ is
A) $200 C_{100}$
B) $201 C_{50}$
C) $201 C_{100}$
D) $151 C_{50}$
5. If $A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1\end{array}\right)$ then A^{101} is
A) I
B) $A-I$
C) A
D) $(a+b)(A-I)$
6. The value of the determinant $\left|\begin{array}{ccc}1 & \log _{5} 10 & \log _{5} 15 \\ \log _{10} 5 & 1 & \log _{10} 15 \\ \log _{15} 5 & \log _{15} 10 & 1\end{array}\right|$ is
A) 0
B) 1
C) $\log _{5} 150+\log _{10} 75+\log _{15} 50$
D) $\log _{5} 25+\log _{10} 20+\log _{15} 15$
7. For what value of λ will the equation $\lambda x^{2}-10 x y+12 y^{2}+5 x-16 y-3=0$ represent a pair of straight lines
A) 4
B) 2
C) -2
D) 3
8. The equation of a tangent to the circle $x^{2}+y^{2}-2 x-6 y-12=0$ is
A) $\sqrt{3}(x-2)+(y-3)=0$
B) $\sqrt{3}(x-2)+(y-3)=5$
C) $\sqrt{3}(x-2)+(y-3)=10$
D) $(x-2)+\sqrt{3}(y-3)=5$
9. The director circle of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ is
A) $x^{2}+y^{2}=16$
B) $x^{2}+y^{2}=9$
C) $x^{2}+y^{2}=7$
D) $x^{2}+y^{2}=25$
10. The angle between the planes $2 x-y+z=6$ and $x+y+2 z=3$ is
A) π
B) $\frac{\pi}{2}$
C) $\frac{\pi}{3}$
D) $\frac{\pi}{6}$
11. The equation of the perpendicular bisector of the straight line joining the points $(2,3)$ and $(1,2)$ is
A) $x-y+4=0$
B) $x-y-2=0$
C) $x+y-4=0$
D) $x+y-2=0$
12. The spheres $x^{2}+y^{2}+z^{2}=25$ and $x^{2}+y^{2}+z^{2}-24 x-40 y-18 z+225=0$
A) touch internally
B) touch externally
C) do not touch each other
D) intersect each other
13. $\cos 2 x+a \sin x=2 a-7$ possesses a solution for
A) all a
B) $a>6$
C) $a<2$
D) $a \in[2,6]$
14. The lowest degree of the polynomial with real coefficients having roots $2,-3,2+i, 1+i$ is
A) 2
B) 4
C) 6
D) 8
15. Let $f(x)=6 x+5$. If f_{n} denotes the function $f \circ f \circ \cdots \circ f n$ times then $f_{15}(5)$ is
A) $6^{15}-1$
B) $6^{15}+1$
C) $6^{16}-1$
D) $5\left(6^{15}+1\right)$
16. If $f(x)=2^{x}+2^{x+1}+\cdots+2^{x+9}$ then $f^{\prime}(2)$ is
A) $1023 \log _{e} 16$
B) $1023 \log _{e} 8$
C) $1023 \log _{e} 4$
D) $1023 \log _{e} 2$
17. If $f(x)=\min \left\{x, x^{2}\right\}$ for every real value of x , then which one of the following is not true
A) f is continuous for all x
B) f is differentiable for all x
C) $f^{\prime}(x)=1$ for all $x>1$
D) one of the above statement is wrong
18. If $\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x=A$, then the value of $n \int_{\frac{\pi}{2}}^{0} \sin ^{n} x d x$ is
A) $-A$
B) A
C) $n A$
D) $-n A$
19. If $\int_{0}^{x} f(t) d t=x+\int_{x}^{1} t f(t) d t$ then the value of $f(1)$ is
A) $\frac{1}{2}$
B) $-\frac{1}{2}$
C) 1
D) -1
20. The general solution of the equation $\left(e^{-x}+\sin y\right) d x+\cos y d y=0$ is
A) $x+e^{-x} \cos y+C=0$
B) $x-e^{-x} \sin y+C=0$
C) $x+e^{x} \sin y+C=0$
D) $x-e^{x} \sin y+C=0$
21. $\lim _{n \rightarrow \infty}\left\{\sqrt{n^{2}+n}-n\right\}$ is
A) 0
B) 1
C) $\frac{1}{2}$
D) ∞
22. $\lim _{n \rightarrow \infty}\left(n^{\frac{1}{n}}-1\right)^{n}$ is
A) 1
B) 0
C) e
D) ∞
23. Which of the following series is divergent
A) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$
B) $\sum_{n=1}^{\infty} \frac{1}{n \log (n+1)}$
C) $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{n}$
D) $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
24. Which of the following sequence is convergent for all x in $[0,1]$, but is not uniformly convergent on $[0,1]$?
A) $\left\{\frac{\sin n x}{\sqrt{n}}\right\}$
B) $\{\sin n x\}$
C) $\left\{x^{n}(1+x)^{-n}\right\}$
D) $\left\{x^{n}\right\}$
25. If $A=\lim _{x \rightarrow 0} x \sin \frac{1}{x}$ and $B=\lim _{x \rightarrow \infty} x \sin \frac{1}{x}$, then
A) $A=B=0$
B) $A=0$ and $B=\infty$
C) $A=0$ and $B=1$
D) $A=1$ and $B=\infty$
26. Let $[x]$ denote the greatest integer not exceeding x, then the value of the Riemann Stielgies integral $\int_{0}^{2} x^{2} d[x]$ is equal to
A) 1
B) 3
C) 5
D) 0
27. Let the function f be defined on \mathbb{R} by

$$
f(x)= \begin{cases}0, & \text { if } x \text { is rational } \\ x, & \text { Otherwise }\end{cases}
$$

Let μ be the Lebesgue measure on $[0,1]$, then the Lebesgue integral $\int_{0}^{1} f d \mu$ has the value
A) 1
B) 0
C) $\frac{1}{2}$
D) 2
28. Let $f(x)= \begin{cases}1, & \text { if } x \text { is rational } \\ -1, & \text { if } x \text { is irrational }\end{cases}$

Then which of the following function is Riemann integrable on $[0,1]$
A) f
B) $|f|$
C) f^{+}
D) f^{-}
29. If the radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ is R, then the radius of convergence of the power series $\sum_{n=0}^{\infty} n^{2} a_{n} z^{n}$ is
A) R
B) $2 R$
C) $\frac{R}{2}$
D) R^{2}
30. Which of the following power series represent the principal branch of $\log (1+z)$?
A) $z-\frac{z^{2}}{2}+\frac{z^{3}}{3}-\cdots$
B) $z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\cdots$
C) $1+z+\frac{z^{2}}{2}+\cdots$
D) $1-z+\frac{z^{2}}{2}-\cdots$
31. Let γ be the path defined by $\gamma(t)=e^{4 \pi i t}, 0 \leq t \leq 1$. Then the value of the integral $\int_{\gamma} \frac{d z}{z}$ is
A) $2 \pi i$
B) $4 \pi i$
C) 0
D) $-2 \pi i$
32. The singularity of the function $\frac{1-\cos z}{z^{2}}$ at $z=0$ is
A) a simple pole
B) a pole of order 2
C) a removable singularity
D) an essential singularity
33. Let γ be a positively oriented unit circle, then $\int_{\gamma} \frac{\sin z}{z^{2}} d z$ has the value
A) $2 \pi i$
B) 0
C) $-2 \pi i$
D) $4 \pi i$
34. At $z=0$, the function $f(z)=\frac{1}{z}+\frac{1}{z^{2}}+e^{\frac{1}{z}}$ has
A) an essential singularity
B) a simple pole
C) a pole of order 2
D) a removable singularity
35. The radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{n^{2} z^{2 n}}{2^{n}}$ is
A) $\frac{1}{\sqrt{2}}$
B) 2
C) $\sqrt{2}$
D) $\frac{1}{2}$
36. Which of the following subsets of the complex plane is simply connected?
A) $\{z:|z|>1\}$
B) $\{z:|z-1| \leq 2\} \cup\{z:|z+1| \leq 2\}$
C) $\{z: 0<|z|<1\}$
D) $\{z:|z-1|>1\}$
37. Let T be the Mobius transformation defined by $T(z)=\frac{z+i}{i z+1}$. Then T maps the real axis $\{z: \operatorname{Im} z=0\}$ onto
A) the imaginary axis $\{z: \operatorname{Re} z=0\}$
B) the unit circle $\{z:|z|=1\}$
C) the line $\{z: \operatorname{Re} z=1\}$
D) the circle $\{z:|z-i|=1\}$
38. Let $f(z)=\sin \frac{\pi}{z}, z \in \mathbb{C}, z \neq 0$. Then which of the following statements is incorrect.
A) $f(z)$ has infinite number of zeros in \mathbb{C}
B) $z=0$ is an essential singularity of f
C) $\lim _{|z| \rightarrow \infty} f(z)=0$
D) $f(z)$ is bounded in the annulus $\{z: 0<|z|<1\}$
39. The residue at $z=1$ of the function $\frac{1}{(z-1)(z-3)^{2}}$ is
A) 2
B) 0
C) $\frac{1}{4}$
D) 4
40. The coefficient of $\frac{1}{z}$ in the Laurent series expansion of $f(z)=\frac{1}{z(z-1)}$ in the region $1<|z|<\infty$ is
A) 1
B) 0
C) -1
D) 2
41. Which of the following permutations is even
A) $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1\end{array}\right)$
B) $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 4 & 2 & 1\end{array}\right)$
C) $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3\end{array}\right)$
D) $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4\end{array}\right)$
42. If $a+b i$ with $a, b \in \mathbb{Z}$ is a unit in the ring $\mathbb{Z}[i]$ of Gaussian integers, then which of the following is true
A) $a=1$
B) $a=-1$
C) $b=1$
D) $a b=0$
43. Which of the following groups is cyclic
A) $\mathbb{Z}_{6} \oplus \mathbb{Z}_{8}$
B) $\mathbb{Z}_{3} \oplus \mathbb{Z}_{16}$
C) $\mathbb{Z}_{4} \oplus \mathbb{Z}_{12}$
D) $\mathbb{Z}_{2} \oplus \mathbb{Z}_{24}$
44. The order of the element $(2,2)$ in the group $\mathbb{Z}_{4} \oplus \mathbb{Z}_{6}$ is
A) 2
B) 4
C) 6
D) 8
45. For which of the following numbers all groups of that order are abelian
A) 6
B) 8
C) 12
D) 25
46. Which of the following pair of groups are isomorphic
A) \mathbb{Z}_{24} and $\mathbb{Z}_{8} \oplus \mathbb{Z}_{3}$
B) \mathbb{Z}_{25} and $\mathbb{Z}_{5} \oplus \mathbb{Z}_{5}$
C) \mathbb{Z}_{4} and $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
D) \mathbb{Z}_{20} and $\mathbb{Z}_{2} \oplus \mathbb{Z}_{10}$
47. Which of the following maps is a homomorphism on the ring $\mathbb{Z} \times \mathbb{Z}$
A) $\phi(x, y)=(2 x, 2 y)$
B) $\phi(x, y)=(x+y, 0)$
C) $\phi(x, y)=(2 x, 3 y)$
D) $\phi(x, y)=(y, x)$
48. Which of the following is a unit in the $\operatorname{ring} \mathbb{Z}(\sqrt{2})=\{a+b \sqrt{2}: a, b \in \mathbb{Z}\}$
A) $3+2 \sqrt{2}$
B) $2+3 \sqrt{2}$
C) $2+\sqrt{2}$
D) $1+2 \sqrt{2}$
49. Which of the following equations has a solution in \mathbb{Z}_{18}
A) $3 x=5$
B) $4 x=3$
C) $5 x=4$
D) $6 x=7$
50. Which of the following polynomials is not irreducible in $\mathbb{Z}_{3}[x]$
A) $x^{2}+1$
B) $x^{2}+x+2$
C) $x^{3}+x^{2}+2$
D) $x^{3}+x+1$
51. Which of the following is an ideal in the ring $F[x]$ of all polynomials over a field F
A) set of all polynomials in $F[x]$ of degree >1
B) set of all polynomials in $F[x]$ of degree ≤ 1
C) set of all polynomials in $F[x]$ without constant term
D) set of all polynomials $f(x) \in F[x]$ such that $f(0) \neq 0$
52. The degree of the field extension $[\mathbb{Q}(\sqrt{2}+\sqrt{3}), \mathbb{Q}]$ is
A) 1
B) 2
C) 3
D) 4
53. Which of the following statement is not true about an algebraically closed field K
A) Every non constant polynomial in $K[x]$ has a zero in K
B) Every polynomial in $K[x]$ of degree n has a factorization into n linear factors in $K[x]$
C) Irreducible polynomials in $K[x]$ have degree ≤ 1
D) Every extension of K is an algebraic extension
54. Let $K=\mathbb{Q}(\alpha)$ where α is the real cube root of 2 , then the order of the automorphism group Aut (K, \mathbb{Q}) is
A) 1
B) 2
C) 4
D) 6
55. Let σ be an automorphism in $\operatorname{Aut}(\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q})$. Then which of the following can not hold
A) $\sigma(\sqrt{2})=-\sqrt{2}$
B) $\sigma(\sqrt{2})=\sqrt{3}$
C) $\sigma(\sqrt{2}+\sqrt{3})=\sqrt{2}-\sqrt{3}$
D) $\sigma(\sqrt{2}+\sqrt{3})=-\sqrt{2}+\sqrt{3}$
56. In the vector space \mathbb{R}^{3} over \mathbb{R}, W is the subspace given by $W=$ $\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}+x_{2}+x_{3}=0\right\}$. Then $\operatorname{dim} W$ is
A) 0
B) 1
C) 2
D) 3
57. Which of the following is a linearly independent set in \mathbb{R}^{2}
A) $\{(1,-1),(-2,2)\}$
B) $\{(1,-1),(3,-1)\}$
C) $\{(1,2),(2,4)\}$
D) $\{(3,1),(-3,-1)\}$
58. Which of the following is an eigen vector of the matrix $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$
A) $\left[\begin{array}{l}1 \\ 2\end{array}\right]$
B) $\left[\begin{array}{l}2 \\ 1\end{array}\right]$
C) $\left[\begin{array}{l}3 \\ 0\end{array}\right]$
D) $\left[\begin{array}{l}0 \\ 2\end{array}\right]$
59. Which of the following matrix is diagonalizable
A) $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$
В) $\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$
C) $\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 3\end{array}\right]$
D) $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$
60. Let T from \mathbb{R}^{2} to \mathbb{R}^{3} be defined by $T(x, y)=(x+y, x+y, 0)$. Then $\operatorname{rank} T$ is
A) 0
B) 1
C) 2
D) 3
61. With usual metric in \mathbb{R} which of the following subspaces of \mathbb{R} is complete
A) the rationals in \mathbb{R}
B) the irrationals in \mathbb{R}
C) the closed interval $[0,1]$
D) the open interval $(0,1)$
62. With usual topology on the spaces concerned which of the following spaces is not connected?
A) $\{z \in \mathbb{C}:|z|<1\}$
B) $\{x \in \mathbb{R}:|x|<1\}$
C) $\{z \in \mathbb{C}:|z|>1\}$
D) $\{x \in \mathbb{R}:|x|>1\}$
63. Which of the following is not a property of \mathbb{R} (with usual topology)
A) second countability
B) compactness
C) separability
D) local compactness
64. Which among the following topologies on \mathbb{R} is an example of a topology not induced by a pseudo metric?
A) usual topology
B) discrete topology
C) indiscrete topology
D) cofinite topology
65. Which of the following functions $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is not a metric
A) $d(x, y)=|x-y|$
B) $d(x, y)=2|x-y|$
C) $d(x, y)=\frac{|x-y|}{1+|x-y|}$
D) $d(x, y)=|x-y|^{2}$
66. Let X be a topological space and let A, B be subsets of X. Then it is not always true that
A) $\overline{\bar{A}}=\bar{A}$
B) $\overline{(A \cup B)}=\bar{A} \cup \bar{B}$
C) $\overline{(A \cap B)}=\bar{A} \cap \bar{B}$
D) $\bar{X}=X$
67. With the usual topology, which of the following subspaces of \mathbb{R} is not homeomorphic to $(0,1)$?
A) $\{x \mid x>0\}$
B) $[0,1]$
C) \mathbb{R}
D) $(-1,1)$
68. Let X be a metric space. Three of the following properties of X are equivalent to each other, pick the odd one out
A) X is compact
B) X is sequentially compact
C) X has the Bolzano-Weierstrass property
D) X is totally bounded
69. Let \mathbb{R} be the space of real numbers with usual topology. Which of the following subspaces of \mathbb{R} is compact?
A) $(0,1)$
B) $[0,1] \cup[2,3]$
C) $[0,1)$
D) set of all rationals in \mathbb{R}
70. Let (X, τ) be the Sierpinski topology with $X=\{a, b\}, \tau=\{\phi,\{a\}, X\}$. Then X is not a
A) compact space
B) connected space
C) T_{0} space
D) T_{1} space
71. Let X be the normed linear space of square summable real sequences with $\left\|\|_{2}\right.$ and Y be the subspace generated by the elements $(1,0,0, \ldots)$ and $(0,1,0, \ldots)$. If $U=\left\{x \in X:\|x\|_{2}<1\right\}$ Then
A) $Y+U$ is open in X
B) $Y+U$ is closed in X
C) $Y+U$ is neither open nor closed in X
D) $Y+U$ is not bounded in X
72. Let X be the complex normed linear space of summable sequences of complex numbers with norm $\left\|\|_{1}\right.$ and $Y=\left\{x \in X:\|x\|_{1} \leq 1\right\}$ then
A) Y is compact and convex
B) Y is compact but not convex
C) Y is neither compact nor convex
D) Y is convex but not compact
73. Let $X=C_{00}$, the space of all real sequences which have only finitely many nonzero members, and f be the linear functional on X defined by $f(x(1), x(2), \ldots)=x(1)+x(2)+\cdots$ for $x=(x(1), x(2), \ldots) \in X$. Then f is continuous
A) with respect to $\left\|\|_{1}\right.$ and $\| \|_{2}$ but not with respect to $\left\|\|_{\infty}\right.$
B) with respect to $\left\|\|_{1}\right.$ and $\| \|_{\infty}$ but not with respect to $\left\|\|_{2}\right.$
C) with respect to $\left\|\|_{2}\right.$ and $\| \|_{\infty}$ but not with respect to $\left\|\|_{1}\right.$
D) with respect to $\left\|\left\|_{1},\right\|\right\|_{2}$ and $\left\|\|_{\infty}\right.$
74. Let $X=C_{00}$ with $\left\|\|_{\infty}\right.$ and $F: X \rightarrow l^{\infty}$ be a bounded linear map. Then there is a bounded linear map $G: C_{0} \rightarrow l^{\infty}$ such that
A) G is unique, $G / C_{00}=F$ and $\|F\|<\|G\|$
B) G is unique, $G / C_{00}=F$ and $\|F\|=\|G\|$
C) $G / C_{00}=F$ and $\|F\|=\|G\|$ but G is not necessarily unique
D) G is unique, $R(G)=R(F)$ and $\|F\|<\|G\|$
75. Let X be a normed linear space and Y be a subspace of X with basis $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$. Let $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}$ be linear functionals with

$$
x_{i}^{\prime}\left(y_{j}\right)= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

If $Z=\left\{x: x_{j}^{\prime}(x)=0\right.$, for $\left.j=1,2, \ldots, n\right\}$ then which one of the following is not correct?
A) $Y \cap Z=\{0\}$
B) $Y+Z=X$
C) Z is open
D) Z is closed
76. If H is the Hilbert space of square summable sequences of complex numbers and if $x=(x(1), x(2), \ldots) \in H$ has the property that $2 \sum_{i=1, i \neq j}^{\infty}|x(i)|^{2}+$ $|x(j)-1|^{2}+|x(j)+1|^{2}=18$ then $\|x\|$ is equal to
A) 1
B) 2
C) $2 \sqrt{2}$
D) 4
77. Let H be the complex Hilbert space of square summable sequences of complex numbers and $T: H \rightarrow H$ be defined $T(x(1), x(2), \ldots)=$ $(0, x(1), x(2), \ldots)$ for $x=(x(1), x(2), \ldots) \in H$. Then which one of the following is not correct?
A) T is bounded
B) $\|T\|=1$
C) T is one-one but not onto
D) T is one-one and onto
78. Let M be a closed subspace of a complex Hilbert space H. Let P and Q be orthogonal projections of H onto M and M^{\perp} respectively. Then the set of all values of α, β such that $\alpha P+\beta Q$ is selfadjoint is
A) ϕ
B) $\{1\}$
C) the set of all real numbers
D) set of all complex numbers
79. Let H be the real Hilbert space $L^{2}([0,2 \pi])$ and f be a linear functional on H defined by $f(x)=\int_{0}^{2 \pi} x \sin 2 x d x$. Then $\|f\|$ is
A) 1
B) π
C) 2π
D) $\sqrt{\pi}$
80. Let X_{1} and X_{2} be closed subspaces of a Hilbert space H and let P_{1} and P_{2} be orthogonal projections on X_{1} and X_{2} respectively. If $\langle x, y\rangle=0$ for all $x \in X_{1}, y \in X_{2}$ then which one of the following is not correct?
A) $X_{1}+X_{2}$ is a closed subspace of H
B) $P_{1}-P_{2}$ is an orthogonal projection
C) $\left(P_{1}-P_{2}\right)^{2}$ is an orthogonal projection
D) $P_{1}+P_{2}$ is an orthogonal projection

