ITL Public School Answer Key Summative Assessment – 1 (2015-16) Mathematics – Set A

Date:

Class: VII

M. M: 90

General Instructions:

Time: 3 hrs

- 1. Read the question paper carefully and answer legibly.
- 2. All questions are compulsory.
- 3. The question paper consist of 31 questions divided into four sections A,B,C and D
- 4. Section A comprises of 4 question of 1 mark each, section B comprises of 6 questions of 2 marks each, Section C comprises of 10 questions of 3 marks each and Section D comprises of 11 questions of 4 marks each
- 5. Use of calculators is not permitted.

	Section – A	
Q1.	Find the complement of 75° . 15°	1
Q2.	In \triangle PQR and \triangle STU, PQ = ST, QR = TU and \angle Q = \angle T. Name the congruence criterion by which the two triangles will be congruent. SAS	1
Q3.	Write a pair of negative integers whose difference is -10. -15 and -5, $-15 - (-5) = -15 + 5 = -10$	1
Q4.	Compare: 1.05×10^{5} and 1.5×10^{4} $1.05 \times 10^{5} > 1.5 \times 10^{4}$	1
	Section – B	
Q5.	Solve $5l - 3 = 12$. 5l = 12 + 3 5l = 15 l = 3	2
Q6.	 a) Express 235.5223 in the standard form. 2.355223 × 10² b) To what power (-3) should be raised to get -27? 3 	2
Q7.	If $\triangle PQR \cong \triangle XYZ$, write all the corresponding sides and angles of both the triangles which will equal. PQ = XY, QR = YZ, PR = XZ, $\angle P = \angle X$, $\angle Q = \angle Y$, $\angle R = \angle Z$	2
Q8.	Find the value of x. if $l \parallel m$ x + 130 = 180, x = 180 - 130 = 50 ⁰	2
Q9.	Shubham withdraws Rs. 7000 from his bank account in which he deposited Rs.8,500 the previous week. If withdrawal of amount from the account is represented by a negative integer, then how will you represent the amount deposited? Find the balance in Shubham's account after withdrawal. Amount deposited = $+8500$ Amount withdrawal = -7000 Balance in the account = $8500 + (-7000) = 8500 - 7000 = \text{Rs}$. 1500	2
Q10.	Find 3 rational numbers between $\frac{-2}{-2}$ and $\frac{-1}{-1}$.	2

	LCM of 3 and 7 = 21	
	$\frac{-2 \times 7}{3 \times 7} = \frac{-14}{21}, \frac{-1 \times 3}{7 \times 3} = \frac{-3}{21} \text{ hence 3 rational numbers b/w} \frac{-2}{3} \text{ and } \frac{-1}{7} \text{ are } \frac{-4}{21}, \frac{-5}{21}, \frac{-6}{21}$ Section – C	
011		
Q11.	In the given figure the arms of two angles are parallel. If $\angle ABC = 65^{\circ}$ then find the $\angle DGC$ and $\angle DEF$.	3
	650	
	B G C E F	
	$\angle DGC = \angle ABC = 65^{\circ}$ (1) since AB DE (¹ / ₂)	
012	$\angle DGC = \angle DEF = 65^{\circ}(1)$ since BC EF (1/2)	
Q12.	The perimeter of a triangle is 72cm and the lengths of the sides are in the ratio 2:3:4. Find the lengths of the three sides. Let the sides be 2x, 3x and 4x ($\frac{1}{2}$) ATQ perimeter = 2x + 3x + 4x = 72 (1) $9x = 72$, $x = 8$. ($\frac{1}{2}$)	3
	Hence sides are $2 \times 8 = 16$ cm, $3 \times 8 = 24$ cm, $4 \times 8 = 32$ cm (1)	
Q13.	Simplify using laws of exponents:	
	a) $(-1)^{201} \times (-3)^4$ (-1) × 81 (1 mark) = -81 (¹ / ₂)	1 1⁄2
	b) $[2^2]^3$ $2^{2\times3} = 2^6(\frac{1}{2}) = 64(\frac{1}{2})([a^m]^n = a^{mn})$ (¹ / ₂)	1 1⁄2
Q14.	In an isosceles $\triangle ABC$, in which $AB = AC$, AD is the median to the side BC. Is $\triangle ADB \cong \triangle$	3
	ADC ? Give reasons to support your answer.	
	Fig. (1 mark)	
	$AB = AC (given) (\frac{1}{2} mark)$	
	$BD = CD (AD is the median) (\frac{1}{2} mark)$	
	$AD = AD (common) (\frac{1}{2} mark)$ $\Delta ADB \cong \Delta ADC (By SSS) (\frac{1}{2} mark)$	
Q15.	Anvesha thinks of a number. If he takes 5 away from $\frac{3}{2}$ of the number, the result is 23. Find the	3
X ¹⁰¹		C
	number. Let the no.be <i>x</i>	
	ATQ $\frac{3}{2}x - 5 = 23$, $\frac{3}{2}x = 23 + 5$, $3x = 28 \times 2$, $x = \frac{28 \times 2}{3}$, $x = 14$	
	Hence the no.she thought is 14.	
Q16.	In a class of 35 students, $\frac{1}{5}$ of the total number of students like to study English, $\frac{2}{5}$ of the total	3
	number like to study Mathematics and the remaining students like to study Science.a) How many students like to study English?	
	Statements ($\frac{1}{2}$ mark), No.of students who like English = $\frac{1}{5} \times 35 = 7$ ($\frac{1}{2}$ mark)	
	b) How many students like to study Science?	
	No.of students who like Maths $=\frac{2}{5} \times 35 = 2 \times 7 = 14$ (¹ / ₂ mark)	
	No.of students who like Science = $35 - (7 + 14) = 35 - 21 (1 \text{ mark}) = 14 (\frac{1}{2} \text{ mark})$	
Q17.	After simplifying put appropriate sign in the box.	3
	39 + (-21) - 18 39 - (-21) + (-18)	
	39 - 21 - 18 $39 + 21 - 18$	

	39 - 39 39 + 3	
Q18.	Ranbir's father's age is 4 years more than 4 times Ranbir's age. Find Ranbir's age, if his father is 44 years old.	3
	Let Ranbir's age be x yrs ($\frac{1}{2}$ mark)	
	ATQ $4x + 4 = 44$ (1 mark)	
	4x = 44 - 4 (¹ / ₂ mark), $x = 40/4$ (¹ / ₂ mark), $x = 10$	
010	Hence Ranbir's age is 10 yrs. ($\frac{1}{2}$ mark)	2
Q19.	a) Arrange the following in ascending order : $\frac{2}{7}$, $\frac{2}{3}$, $\frac{2}{5}$	3
	(¹ / ₂ mark for each correct place) $\frac{-2}{3} < \frac{-2}{5} < \frac{-2}{7}$	
	b) Represent $\frac{-7}{3}$ on the number line.	
	It lies between -2 and -3 (¹ / ₂ mark), no.line equal divisions (¹ / ₂ mark) correct point (¹ / ₂ mark)	
Q20.	Find the value of x, y, z if $l \parallel m$ and $p \parallel q$.	3
	A A	
	105° x z l	
	$ \underbrace{105^{\circ}}_{} \underbrace{x_{\prime}}_{} \xrightarrow{z_{}} 1 $	
	√ 75 ⁰	
	m y y	
	p q	
	$x = 105^{\circ}$ (Corresponding angles) (1 mark)	
	$y = 75^{\circ}$ (Alternate angles) (1 mark) $y = 7 = 75^{\circ}$ (Alternate axterior angles) (1 mark)	
	$y = z = 75^{\circ}$ (Alternate exterior angles) (1 mark) Section – D	
021	Name the following poirs of angles:	4
Q21.	 Name the following pairs of angles : a) Vertically opposite angles. ∠EOD and ∠AOB 	4
	b) Adjacent complementary angles. $\angle AOB$ and $\angle BOC$	
	c) Linear pair. $\angle AOE$ and $\angle EOD$	
	d) Equal supplementary angles. $\angle AOC$ and $\angle COD$	
	∕ E	
	$ \xrightarrow{A} \xrightarrow{O} \xrightarrow{D} $	
	B ↓C	
Q22.	ABC is an isosceles triangle with $AB = AC$ and AD is one of its altitudes.	4
-	a) State the three pairs of equal parts in $\triangle ADB$ and $\triangle ADC$. (2 marks)	
	$AB = AC \text{ (Given)}, \angle ADB = \angle ADC = 90^{\circ}, AD = AD \text{ (Common)}$	
	b) Is $\triangle ADB \cong \triangle ADC$? Give reason. By RHS (1 mark)	
	c) Is $BD = CD$? Give reason. CPCT ($\frac{1}{2}$ mark)	
	d) Is $\angle BAD = \angle CAD$? Give reason. CPCT ($\frac{1}{2}$ mark)	

	1	
	B D C	
Q23.	a) Each side of a regular polygon is 4.6cm in length. The perimeter of the polygon is 23cm. Find the number of sides of the polygon.	2 1/2
	Statements ($\frac{1}{2}$ mark) No.of sides = perimeter ÷ side = $23 \div 4.6 = 5$ b) How much less is 300.5 km than 405.7 km? 405.7 - 300.5 = 105.2 Hence statement	1 1/2
Q24.	Simplify using laws of exponents: $\frac{343 \times 3^3 \times 64}{12^2 \times 2^4 \times 7}$ (Also mention the laws used)	4
	$\frac{7^{3} \times 3^{3} \times 2^{6}}{(2 \times 3)^{2} \times 2^{4} \times 7} = \frac{7^{3} \times 3^{3} \times 2^{6}}{2^{2} \times 3^{2} \times 2^{4} \times 7} = \frac{7^{3} \times 3^{3} \times 2^{6}}{2^{2+4} \times 3^{2} \times 7} = \frac{7^{3} \times 3^{3} \times 2^{6}}{2^{2+4} \times 3^{2} \times 7} = \frac{7^{3} \times 3^{3} \times 2^{6}}{2^{6} \times 3^{2} \times 7}$ $= 7^{3-1} \times 3^{3-2} \times 2^{6-6} = 7^{2} \times 3^{1} \times 2^{0} = 49 \times 3 \times 1 = 147$ Laws (1 mark)	
Q25.	A certain freezing process requires that room temperature be lowered from 40°C at the rate of 5°C every hour. Find the room temperature 10 hours after the process begins. Initial temp. = 40°C ($\frac{1}{2}$ mark) Rate of change = -5°c per hr ($\frac{1}{2}$ mark) Change in 10 hrs = -5× 10 = -50°C (1 mark) Final temp. = -50 + 40 = -10°C (2 marks)	4
Q26.	 In a class test containing 18 questions, 5 marks are given for every correct answer, (-2) marks are given for every incorrect answer and zero for not attempting any question. a) Garima attempts all questions but only 12 of her answers are correct. What will be her score? Statements (¹/₂ mark), 12 × (+5) + 6 × (-2) = 60 + (-12) = 48 b) One of her friends attempted 11 questions but gets only 6 answers correct. What will be her score? 	2+2
Q27.	$6 \times (+5) + 5 \times (-2) = 30 + (-10) = 20$ Find the value of : a) $\left[\frac{9}{2} \times \left(\frac{-7}{4}\right)\right] + \left[(-4) \div \frac{2}{3}\right]$ $\frac{-63}{8} + \left[-4 \times \frac{3}{2}\right] = \frac{-63}{8} - \frac{12}{2} = \frac{-63-48}{8} = \frac{-111}{8}$ b) $\left[\frac{5}{-63} - \left(\frac{-6}{21}\right)\right] \div \left[\frac{5}{3} + \frac{3}{5}\right]$ $\frac{5+18}{63} \div \frac{25+9}{15} = \frac{23}{63} \times \frac{15}{34} = \frac{23}{21} \times \frac{5}{34} = \frac{115}{714}$	22
Q28.	Simplify using laws of exponents: (Also mention the laws used) a) $\frac{a^2 \times a^3 \times b^3 \times b^4}{a^5 \times b^2} = \frac{a^{2+3} \times b^{3+4}}{a^5 \times b^2} = \frac{a^5 \times b^7}{a^5 \times b^2} = a^{5-5} \times b^{7-2} = a^0 \times b^5 = b^5$ b) $2^0 \times 3^0 \times 4^0 = 1 \times 1 \times 1 = 1$ Laws (1mark)	3

Q29.	In the given figure, line $l \parallel m$ and n is transversal. Find the value of x , a , b and c .	4
	a b c	
	$x = 130^{\circ} (VOA)$ a = 130° (Alternate angles) a = c = 130° (VOA)	
	a - c = 130 (VOA) b + c = 180 (Linear pair) $b = 180 - 130$, $b = 50^{\circ}$ 1 mark each part	
Q30.	a) Seema reads $\frac{1}{3}$ part of a book in 1 hour. How much part of the book will she read in $1\frac{2}{3}$	1.5
	hours? Part of book read in $1\frac{2}{3}$ hrs $= 1\frac{2}{3} \times \frac{1}{3} = \frac{5}{3} \times \frac{1}{3} = \frac{5}{9}$ b) If Sanchit finishes the same book in $1\frac{3}{4}$ hours. How much part of the book he would	1.5 1
	have read in 1 hour? Part of book read in 1 hr = $1 \div 1\frac{3}{4} = 1 \div \frac{7}{4} = \frac{4}{7}$ c) Who read the book faster?	
	$\frac{1}{3} < \frac{4}{7}$, Hence Sanchit read faster.	
Q31.	The students of class VII of a school decided to plant trees in the school. Some of the trees were fruit trees. The numbers of non-fruit trees were 5 more than 2 times the number of fruit trees. Find the number of fruit trees planted if they planted 75 non-fruit trees. What value do you learn from this? Let the no.of fruit trees be x ($\frac{1}{2}$ mark)	4
	The no.of non-fruit trees = 75 ATQ $2x + 5 = 75$ (1 mark) $2x = 75 - 5$ ($\frac{1}{2}$ mark), $x = 70/2$ ($\frac{1}{2}$ mark), $x = 35$ ($\frac{1}{2}$ mark) Value – We should plant more and more trees. (1 mark)	