ITL Public School	
Answer Key Summative Assessment - 1 (2015-16)	
Mathematics - Set A	
Date:	Class: VII
Time: 3 hrs	M. M: 90
General Instructions:	
1. Read the question paper carefully and answer legibly.	
2. All questions are compulsory.	
3. The question paper consist of 31 questions divided into four sections A, B, C and D	
4. Section A each, Sectio of 4 mark	of 2 marks 11 questions
5. Use of calculators is not permitted.	

	Section $-\mathbf{A}$	
Q1.	Find the complement of 75°. 15^{0}	1
Q2.	In $\triangle \mathrm{PQR}$ and $\Delta \mathrm{STU}, \mathrm{PQ}=\mathrm{ST}, \mathrm{QR}=\mathrm{TU}$ and $\angle \mathrm{Q}=\angle \mathrm{T}$. Name the congruence criterion by which the two triangles will be congruent. SAS	1
Q3.	Write a pair of negative integers whose difference is -10. -15 and $-5,-15-(-5)=-15+5=-10$	
Q4.	Compare: 1.05×10^{5} and 1.5×10^{4} $1.05 \times 10^{5}>1.5 \times 10^{4}$	1
	\quad Section $-\mathbf{B}$	1
Q5.	Solve $5 l-3=12$. $5 l=12+3$ $5 l=15$ $l=3$	a) Express 235.5223 in the standard form. 2.355223×10^{2}
Q6.	3	

	LCM of 3 and $7=21$ $\frac{-2 \times 7}{3 \times 7}=\frac{-14}{21}, \frac{-1 \times 3}{7 \times 3}=\frac{-3}{21}$ hence 3 rational numbers $\mathrm{b} / \mathrm{w} \frac{-2}{3}$ and $\frac{-1}{7}$ are $\frac{-4}{21}, \frac{-5}{21}, \frac{-6}{21}$	
Q11.	In the given figure the arms of two angles are parallel. If $\angle A B C=65^{0}$ then find the $\angle D G C$ and $\angle D E F$.	3

	$\begin{array}{\|lll} \hline 39-39 & & 39+3 \\ 0 & 42 \end{array}$			
Q18.	Ranbir's father's age is 4 years more than 4 times Ranbir's age. Find Ranbir's age, if his father is 44 years old. Let Ranbir's age be x yrs ($1 / 2$ mark) ATQ $4 x+4=44$ (1 mark) $4 x=44-4(1 / 2 \text { mark }), \quad x=40 / 4(1 / 2 \text { mark }), x=10$ Hence Ranbir's age is 10 yrs. ($1 / 2$ mark)	3		
Q19.	a) Arrange the following in ascending order $: \frac{-2}{7}, \frac{-2}{3}, \frac{-2}{5}$ ($1 / 2$ mark for each correct place) $\frac{-2}{3}<\frac{-2}{5}<\frac{-2}{7}$ b) Represent $\frac{-7}{3}$ on the number line. It lies between -2 and -3 ($1 / 2$ mark), no.line equal divisions ($1 / 2$ mark) correct point ($1 / 2$ mark)	3		
Q20.	Find the value of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ if $l \\| m$ and $p \\| q$. $\mathrm{x}=105^{\circ}$ (Corresponding angles) (1 mark) $\mathrm{y}=75^{\circ}$ (Alternate angles) (1 mark) $\mathrm{y}=\mathrm{z}=75^{\circ}$ (Alternate exterior angles) (1 mark)	3		
	Section - D			
Q21.	Name the following pairs of angles : a) Vertically opposite angles. $\angle \mathrm{EOD}$ and $\angle \mathrm{AOB}$ b) Adjacent complementary angles. $\angle \mathrm{AOB}$ and $\angle \mathrm{BOC}$ c) Linear pair. $\angle \mathrm{AOE}$ and $\angle \mathrm{EOD}$ d) Equal supplementary angles. $\angle \mathrm{AOC}$ and $\angle \mathrm{COD}$	4		
Q22.	ABC is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$ and AD is one of its altitudes. a) State the three pairs of equal parts in $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ADC}$. (2 marks) $\mathrm{AB}=\mathrm{AC}$ (Given) $, \angle \mathrm{ADB}=\angle \mathrm{ADC}=90^{\circ}, \mathrm{AD}=\mathrm{AD}$ (Common) b) Is $\triangle \mathrm{ADB} \cong \triangle \mathrm{ADC}$? Give reason. By RHS (1 mark) c) Is $\mathrm{BD}=\mathrm{CD}$? Give reason. CPCT ($1 / 2$ mark) d) Is $\angle \mathrm{BAD}=\angle \mathrm{CAD}$? Give reason. CPCT ($1 / 2$ mark)	4		

Q23.	a) Each side of a regular polygon is 4.6 cm in length. The perimeter of the polygon is 23 cm . Find the number of sides of the polygon. Statements ($1 / 2 \mathrm{mark}$) No.of sides $=$ perimeter \div side $=23 \div 4.6=5$ b) How much less is 300.5 km than 405.7 km ? $405.7-300.5=105.2$ Hence statement	$\begin{aligned} & 21 / 2 \\ & 11 / 2 \end{aligned}$
Q24.	Simplify using laws of exponents: $\frac{343 \times 3^{3} \times 64}{12^{2} \times 2^{4} \times 7}$ (Also mention the laws used) $\begin{aligned} & \frac{7^{3} \times 3^{3} \times 2^{6}}{(2 \times 3)^{2} \times 2^{4} \times 7}=\frac{7^{3} \times 3^{3} \times 2^{6}}{2^{2} \times 3^{2} \times 2^{4} \times 7}=\frac{7^{3} \times 3^{3} \times 2^{6}}{2^{2+4} \times 3^{2} \times 7}=\frac{7^{3} \times 3^{3} \times 2^{6}}{2^{2+4} \times 3^{2} \times 7}=\frac{7^{3} \times 3^{3} \times 2^{6}}{2^{6} \times 3^{2} \times 7} \\ & =7^{3-1} \times 3^{3-2} \times 2^{6-6}=7^{2} \times 3^{1} \times 2^{0}=49 \times 3 \times 1=147 \end{aligned}$ Laws (1 mark)	4
Q25.	A certain freezing process requires that room temperature be lowered from $40^{\circ} \mathrm{C}$ at the rate of $5^{\circ} \mathrm{C}$ every hour. Find the room temperature 10 hours after the process begins. Initial temp. $=40^{\circ} \mathrm{C}(1 / 2 \mathrm{mark})$ Rate of change $=-5^{\circ} \mathrm{c}$ per hr ($1 / 2$ mark) Change in $10 \mathrm{hrs}=-5 \times 10=-50^{\circ} \mathrm{C}$ (1 mark) Final temp. $=-50+40=-10^{\circ} \mathrm{C}(2 \mathrm{marks})$	4
Q26.	In a class test containing 18 questions, 5 marks are given for every correct answer, (-2) marks are given for every incorrect answer and zero for not attempting any question. a) Garima attempts all questions but only 12 of her answers are correct. What will be her score? Statements ($1 / 2$ mark), $12 \times(+5)+6 \times(-2)=60+(-12)=48$ b) One of her friends attempted 11 questions but gets only 6 answers correct. What will be her score? $6 \times(+5)+5 \times(-2)=30+(-10)=20$	$2+2$
Q27.	Find the value of : a) $\left[\frac{9}{2} \times\left(\frac{-7}{4}\right)\right]+\left[(-4) \div \frac{2}{3}\right]$ $\frac{-63}{8}+\left[-4 \times \frac{3}{2}\right]=\frac{-63}{8}-\frac{12}{2}=\frac{-63-48}{8}=\frac{-111}{8}$ b) $\left[\frac{5}{63}-\left(\frac{-6}{21}\right)\right] \div\left[\frac{5}{3}+\frac{3}{5}\right]$ $\frac{5+18}{63} \div \frac{25+9}{15}=\frac{23}{63} \times \frac{15}{34}=\frac{23}{21} \times \frac{5}{34}=\frac{115}{714}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$
Q28.	Simplify using laws of exponents: (Also mention the laws used) a) $\frac{a^{2} \times a^{3} \times b^{3} \times b^{4}}{a^{5} \times b^{2}}=\frac{a^{2+3} \times b^{3+4}}{a^{5} \times b^{2}}=\frac{a^{5} \times b^{7}}{a^{5} \times b^{2}}=a^{5-5} \times b^{7-2}=a^{0} \times b^{5}=b^{5}$ b) $2^{0} \times 3^{0} \times 4^{0}=1 \times 1 \times 1=1$ Laws (1mark)	$\begin{aligned} & 3 \\ & 1 \end{aligned}$

Q29.	In the given figure, line $\boldsymbol{l} \\| \boldsymbol{m}$ and \boldsymbol{n} is transversal. Find the value of $\boldsymbol{x}, \boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c}.	

