Marking Scheme

SUMMATIVE ASSESSMENT - I (2014-15)
 Mathematics (Class - X)

General Instructions:

1. The Marking Scheme provides general guidelines to reduce subjectivity and maintain uniformity. The answers given in the marking scheme are the best suggested answers.
2. Marking be done as per the instructions provided in the marking scheme. (It should not be done according to one's own interpretation or any other consideration).
3. Alternative methods be accepted. Proportional marks be awarded.
4. If a question is attempted twice and the candidate has not crossed any answer, only first attempt be evaluated and 'EXTRA' be written with the second attempt.
5. In case where no answers are given or answers are found wrong in this Marking Scheme, correct answers may be found and used for valuation purpose.

प्रश्न संख्या 1 से 4 में प्रत्येक का 1 अंक है।

Question numbers $\mathbf{1}$ to $\mathbf{4}$ carry one mark each

1
$\triangle \mathrm{AOP} \sim \triangle \mathrm{BOQ}$ (AA similarity)

$$
\begin{aligned}
& \frac{\mathrm{AO}}{\mathrm{AP}}=\frac{\mathrm{BO}}{\mathrm{BQ}} \Rightarrow \frac{6}{4}=\frac{4.5}{\mathrm{BQ}} \\
& \Rightarrow \quad B Q=3
\end{aligned}
$$

$=(2)^{2}+1=5$
10. $\frac{1-\cot ^{2} 45^{\circ}}{1+\sin ^{2} 90^{\circ}}$
$=10 \cdot \frac{1-1}{1+1^{2}}$
$=0$
$4 \quad$ New median $=21$

खण्ड-ब / SECTION-B

प्रश्न संख्या 5 से 10 में प्रत्येक का 2 अंक है।

Question numbers 5 to 10 carry two marks each.

Since $64=2^{6}$ which is of the form $2^{m} 5^{n}$, for non negative integers m and n Hence $\frac{13}{64}$ is a terminating decimal $\frac{13}{64}=\frac{13}{2^{6}} \times \frac{5^{6}}{5^{6}}=\frac{13 \times 5^{6}}{10^{6}}$ Hence it has 6 decimal places.
is $1.2^{2} .3 .5 \mathrm{~m}$

$$
=60 \mathrm{~m}
$$

$\frac{2}{4} \neq \frac{k}{6}$
$k \neq 3$
\therefore For all real values of k , except 3 the given pair of equations will have a unique solution.

8
distance $=\sqrt{(50)^{2}+(120)^{2}}$
$=130 \mathrm{~m}$
50 m

9

$$
1 \div \frac{1}{\sqrt{3}}[\sqrt{3} \cdot 1]=1
$$

Arranging in ascending order according to height:
Height (in cm) frequenc y (f) Cumulative frequency (c.f.) 148 2 3 149 14 17 150 12 29

152	8	37
154	7	44
155	4	48
160	2	50
$\Sigma \mathrm{f}=50$		

$\Sigma \mathrm{f}=\mathrm{n}=50$, which is even
Average of $\frac{50}{2}$ and $\frac{50}{2}+1$, i.e., $25^{\text {th }}$ and $26^{\text {th }}$ observation $=150$ median $=150 \mathrm{~cm}$.

खण्ड-स / SECTION-C

प्रश्न संख्या 11 से 20 में प्रत्येक का $\mathbf{3}$ अंक है।

Question numbers $\mathbf{1 1}$ to $\mathbf{2 0}$ carry three marks each.
$7 2 \longdiv { 9 6 1 }$
$\frac{72}{24) 72(3}$

72
0

$\mathrm{HCF}=24$
$96 m+72 n=24$
for $\mathrm{m}=1$ and $\mathrm{n}=-1$

$$
\begin{aligned}
& (x-\sqrt{2}) \text { is a factor } \\
& \frac{x^{2}+(3-\sqrt{2}) x-3 \sqrt{2}}{x-\sqrt{2}}=x+3
\end{aligned}
$$

other zero $=-3$

$y=\frac{2 x-8}{3}$	
	$\Rightarrow \quad$$4 x-6 y=16$ $2 x-3 y=8$
x 1 4 y -2 0	x 1 4 y -2 0

Graphs
Coincident lines
Infinitely many solutions
$\frac{1}{y}+\frac{4}{x}=27 \quad \frac{1}{y}+\frac{2}{x}=21$
Put $\frac{1}{y}=v, \quad \frac{1}{x}=u$
$4 u+v=27$
$2 u+v=21$
$u=3$,
$v=15$
$x=\frac{1}{3}$,
$y=\frac{1}{15}$

16
17

$$
\begin{aligned}
\text { LHS } & =\left(\frac{\sin \theta+\cos \theta-1}{\sin \theta}\right)\left(\frac{\cos \theta+\sin \theta+1}{\cos \theta}\right) \\
& =\frac{(\sin \theta+\cos \theta)^{2}-1}{\sin \theta \cdot \cos \theta} \\
& =\frac{2 \sin \theta \cos \theta}{\sin \theta \cos \theta}=2
\end{aligned}
$$

18

$$
\begin{aligned}
\sin 2 x & =\sin 30^{\circ} \cos \left(90^{\circ}-30^{\circ}\right)+\sin \left(90^{\circ}-30^{\circ}\right) \cos 30^{\circ} \\
& =\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}=1 \\
& =\sin 90^{\circ} \\
\therefore 2 x & =90^{\circ} \Rightarrow x=45^{\circ}
\end{aligned}
$$

19

C.I	f	u_{i}	$f_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
$0-20$	14	-2	-28
$20-40$	p	-1	-p
$40-60$	24	0	0
$60-80$	10	2	32
$80-100$	2	3	20
$100-120$	$82+\mathrm{p}$		6
a $=$ assumed mean $=50$			

```
formula of mean
Mean=52.4=50+\frac{30-p}{82+p}\times20
2.4(82+p)=(30-p)20
p=18
```

Daily wage (in ₹)	$200-$ 250	$250-$ 300	$300-$ 350	$350-$ 400	$400-$ 450	$450-$ 500	$500-$ 550
f	3	4	8	7	6	6	7
cf	3	7	15	22	28	34	41

$\mathrm{n}=\Sigma \mathrm{I}=41 \Rightarrow \frac{\mathrm{n}}{2}=20.5 \Rightarrow$ median class $=350-400$
$I=350, f=7, c f=15$
Median formula
Median $=350+\frac{20.5-15}{7} \times 50$

$$
=389.28
$$

खण्ड-द / SECTION-D

प्रश्न संख्या 21 से 31 में प्रत्येक का 4 अंक है।

Question numbers 21 to $\mathbf{3 1}$ carry four marks each.
$\mathrm{LCM}=378$
$\frac{\mathrm{LCM}}{\mathrm{HCF}}=\frac{378}{18}=21$
Thus HCF divides LCM exactly
\therefore two numbers with HCF and LCM as 18 and 378 are possible.

Sol : Let full fare of one ticket $=x$

Let reservation charges $=y$

Then
$2 x+2 y=1700$
$x+y=850$ \qquad
$3 x+4 y=2700$ \qquad (II)

On solving the both equations
$x=₹ 700$ and $y=₹ 150$
Value: Mr. Sharma is honest, respect for Nation.

$$
\begin{array}{lll}
10 x+y=(10 y+x)+9 & \Rightarrow & 9 x-9 y=9 \\
& \Rightarrow & x-y=1 \\
(10 x+y)+(10 y+x)=99 & \Rightarrow & x+y=9 \\
x=5, y=4 & & \\
\text { number }=45 & &
\end{array}
$$

Remainder $=x-1$
Verification

25
In $\triangle \mathrm{ABC}, \mathrm{DP} \| \mathrm{BC}$, so by B.P.T.

$$
\begin{equation*}
\frac{A D}{D B}=\frac{A P}{P C} \tag{1}
\end{equation*}
$$

In $\triangle A B C, E Q \| A C$, so by B.P.T.

$$
\frac{\mathrm{BE}}{\mathrm{EA}}=\frac{\mathrm{BQ}}{\mathrm{QC}}=\frac{\mathrm{AD}}{\mathrm{EA}} \longrightarrow \text { (2) }(\mathrm{Q} \mathrm{AD}=\mathrm{BE})
$$

from (1) and (2)
$A D=\frac{A P^{\times} D B}{P C}=\frac{B Q^{\times} E A}{C Q}$
$\frac{A P}{P C}=\frac{B Q}{Q C}(Q \quad D B=A B-A D=A B-B E=A E)$
So, by converse of B.P.T.

$$
\mathrm{PQ} \| \mathrm{AB}
$$

$\mathrm{AB}=\mathrm{AC} \Rightarrow \angle \mathrm{B}=\angle \mathrm{C}$ \qquad
$\mathrm{BC}^{2}=\mathrm{AC} \times \mathrm{CD}$
$\frac{B C}{A C}=\frac{C D}{B C}$
(1) and (2) give
$\triangle \mathrm{BCA} \sim \triangle \mathrm{DCB}$ (SAS similarity)

$$
\begin{aligned}
& \frac{B C}{D C}=\frac{C A}{C B}=\frac{B A}{D B} \\
& \Rightarrow \frac{B A}{C A}=\frac{D B}{C B}
\end{aligned}
$$

Using (1) $\mathrm{DB}=\mathrm{CB}$

$$
\begin{aligned}
(\operatorname{cosec} \theta+\cot \theta)^{2} & =\left(\frac{1+\cos \theta}{\sin \theta}\right)^{2}=\frac{(1+\cos \theta)^{2}}{1-\cos ^{2} \theta} \\
& =\frac{1+\cos \theta}{1-\cos \theta} \\
& =\frac{\sec ^{\theta}+1}{\sec ^{\theta}-1}
\end{aligned}
$$

$$
\tan \theta=\frac{\mathrm{n}}{\mathrm{~m}}
$$

$$
\frac{\tan \theta+\cot ^{\theta}}{\tan \theta-\cot ^{\theta}}=\frac{\frac{n}{m}+\frac{m}{n}}{\frac{n}{m}-\frac{m}{n}}=\frac{n^{2}+m^{2}}{n^{2}-m^{2}}
$$

Also, $\frac{n \sin \theta+m \cos \theta}{n \sin \theta-m \cos \theta}=\frac{n \tan \theta+m}{n \tan \theta-m}=\frac{n^{2}+m^{2}}{n^{2}-m^{2}}$

Let $\mathrm{a}=$ assumed mean $=24$
Formula of mean

$$
\begin{aligned}
& \text { Mean }=21.7=24+\frac{2 y-27}{40} \times 4 \\
& \\
& \quad 2.3=27-2 y \Rightarrow \quad y=2 \\
& \Rightarrow \quad 28+x+y=40 \text { and } y=2 \quad \Rightarrow \quad x=10 \\
& x=10, y=2
\end{aligned}
$$

Drawing of curve, median from ogive \approx ' 45 years'

C. I.	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$
f	9	11	17	26	13	8	11	4	1
c.f	9	20	37	63	76	84	95	99	100

$$
\begin{aligned}
& \frac{\sum \mathrm{f}}{2}=50 \Rightarrow \quad \text { Median class }=40-50 \\
& \text { Median }=40+\frac{50-37}{26} \times 10=45 \text { years }
\end{aligned}
$$

