NTSE STAGE - I
 (2016-17)
 02/2016-17
 MENTAL ABILITY TEST SOLUTIONS

1. $z+y+z=0$
$\therefore \frac{(\mathrm{x}+\mathrm{y})(\mathrm{y}+\mathrm{z})(\mathrm{z}+\mathrm{x})}{\mathrm{xyz}}+11$
$=\frac{-z \times-x \times-y}{x y z}+11$
$=-1+11=10$
2. $\quad \sin A+\cos A=\sqrt{2} \cos A$
$\sin A=(\sqrt{2}-1) \cos A$
$\tan A=\sqrt{2}-1$
$(\sqrt{2}+1) \tan A=1$
3. $\sqrt{(k-5)^{2}+(2+2)^{2}}=\sqrt{(k-1)^{2}+(2+2)^{2}}$
$\Rightarrow(\mathrm{k}-5)^{2}-(\mathrm{k}-1)^{2}=0$
$\Rightarrow(\mathrm{k}-5)^{2}=(\mathrm{k}-1)^{2}$
$\Rightarrow \mathrm{k}-5=|\mathrm{k}-1|$
$\Rightarrow \mathrm{k}-5=-\mathrm{k}+1$
$\Rightarrow \mathrm{k}= \pm 3$
$\Rightarrow \mathrm{k}^{2}+7=16$
4. $s=x \Rightarrow S A=6 x^{2}$
$s_{1}=1.4 x \Rightarrow S A_{1}=6(1.4 x)^{2}=6\left(1.96 x^{2}\right)$
\therefore increase $\%=\frac{6 \mathrm{x}^{2}(1.96-1)}{6 \mathrm{x}^{2}} \times 100$
= 96\%
5. $\alpha+\beta=6$
$\alpha^{2}+\beta^{2}=10$
$\alpha \beta=\frac{(\alpha+\beta)^{2}-\left(\alpha^{2}+\beta\right)^{2}}{2}$
$=\frac{36-10}{2}$
$=13$
$p=13$
6. $54 \mathrm{~km} / \mathrm{hr}=\left(54 \times \frac{5}{18}\right) \mathrm{m} / \mathrm{s}=15 \mathrm{~m} / \mathrm{s}$
\therefore Length of train $=(15 \times 12) \mathrm{m}$
$=180 \mathrm{~m}$
7. $x+y=9$
$(10 x+y)-(10 y+x)=45$
$9(x-y)=45$
$x-y=5$
$\therefore \mathrm{x}=7, \mathrm{y}=2$
$\therefore 72$ is the number
8. All multiples of 8 from 16 to 88 .
\therefore Total 10 numbers
9. $3=x+\frac{1}{1+\frac{1}{5+\frac{1}{3}}}$
$\Rightarrow 3=x+\frac{1}{1+\frac{3}{16}}$
$\Rightarrow 3=x+\frac{16}{19}$
$\Rightarrow \mathrm{x}=3-\frac{16}{19}$
$\Rightarrow x=\frac{41}{19}$
10. $\frac{x+1}{x-1}+\frac{x-1}{x+1}-\frac{\left(2 x^{2}-2\right)}{x^{2}+1}$

$$
\begin{aligned}
& =\frac{(x+1)^{2}\left(x^{2}+1\right)+(x-1)^{2}\left(x^{2}+1\right)-2\left(x^{2}-1\right)^{2}}{\left(x^{2}+1\right)\left(x^{2}-1\right)} \\
& =\frac{\left(x^{2}+1\right)\left((x+1)^{2}+(x-1)^{2}\right)-2\left(x^{2}-1\right)^{2}}{\left(x^{2}+1\right)\left(x^{2}-1\right)} \\
& =\frac{\left(x^{2}+1\right)\left(2 x^{2}+2\right)-2\left(x^{2}-1\right)^{2}}{\left(x^{2}+1\right)\left(x^{2}-1\right)} \\
& =\frac{2\left(\left(x^{2}+1\right)^{2}-\left(x^{2}-1\right)^{2}\right)}{\left(x^{2}+1\right)\left(x^{2}-1\right)} \\
& =\frac{2\left[2 x^{2}\right][2]}{x^{4}-1} \\
& =\frac{8 x^{2}}{x^{4}-1}
\end{aligned}
$$

11. $\mathrm{c}+\mathrm{h}=29$

$$
4 c+2 h=92
$$

$$
\therefore 2 c=34
$$

$$
c=17
$$

$h=12$
12. $\frac{16}{d}+\frac{8}{u}=6 \Rightarrow 8 x+4 y=3$
$\frac{6}{u}+\frac{24}{d}=6 \Rightarrow 4 x+y=1$
$\left[\frac{1}{d}=x, \frac{1}{u}=y\right]$
Solving, we get, $y=1 / 2, x=1 / 8$
$\Rightarrow b+s=8\{b$ represents Parth's speed $\}$
$b-s=2$ \{s represents speed of stream\}
$\Rightarrow \mathrm{b}=5 \mathrm{~km} / \mathrm{hr}$
13. $\log \frac{75}{16}-\log \frac{25}{81}+\log \frac{32}{243}$
$=\log \left[\frac{75}{16} \times \frac{32}{243} \times \frac{81}{25}\right]$
$=\log 2$
14. At 4:15, angle between hands $=|(4 \times 30)-(5.5 \times 15)|$
$=|120-82.5|$
$=37.5^{0}$
15. $3 \sqrt{5}+5 \sqrt{5}=17.88$
$8 \sqrt{5}=17.88$
$\sqrt{5}=2.235$
$\sqrt{80}+6 \sqrt{5}=10 \sqrt{5}=22.35$
16. LCM of $30 \mathrm{sec}, 1 \mathrm{~min}, 45 \mathrm{sec}$ and $75 \mathrm{sec}=15 \mathrm{~min}$
\therefore at 9:15 AM, they will simultaneously change again.
17. $\frac{\mathrm{A}}{\mathrm{D}}=\frac{\mathrm{A}}{\mathrm{B}} \times \frac{\mathrm{B}}{\mathrm{C}} \times \frac{\mathrm{C}}{\mathrm{D}}=\frac{2}{3} \times \frac{2}{4} \times \frac{2}{5}=\frac{2}{15}$
18.

$2 B+C=\frac{1}{4} \times \frac{22}{7} \times 7^{2}$
$=\frac{77}{2}$
$B+C=\frac{1}{2} \times 7^{2}=\frac{49}{2}$
$\therefore B=\frac{28}{2}=14 \Rightarrow$ Shaded area $=28 \mathrm{~cm}^{2}$
19. $\ell=x$
$h=\frac{3}{2} x$
$w=\frac{1}{2} \cdot \frac{3}{2} x$
$=\frac{3}{4} x$
\therefore Area of floor $=\frac{3}{4} \mathrm{x}^{2}$
$4 \times \frac{3}{4} x^{2}=432$
$x^{2}=144$
$x=12$
\therefore height $=\frac{3}{2} x=18$
20. $3^{15}+3^{16}+3^{17}$
$=3^{15}(1+3+9)$
$=13 \times 3^{15} \Rightarrow$ Divisible by 13
21.
$C I=6000\left(1+\frac{5}{100}\right)^{2}-6000$
$=6000 \times \frac{441}{400}-6000$
$=615$
SI $=\frac{6000 \times 5 \times 2}{100}=600$
\therefore difference $=$ Rs 15
22. $(3.5)^{3}-(2.5)^{3}=27.25$
23. $\sqrt{13-x \sqrt{10}}=\sqrt{8}+\sqrt{5}$
$\Rightarrow 13-x \sqrt{10}=8+5+2 \sqrt{8} \sqrt{5}$
$\Rightarrow-x \sqrt{10}=4 \sqrt{10}$
$\Rightarrow x=-4$
24.

$\Rightarrow B C=10 \mathrm{~cm}$ (Tangents from a point to the circle are of equal length)
25. SP of $5=\mathrm{CP}$ of 3

Let CP of 1 be Re 1
SP of $5=3$

CP of $5=5$
\Rightarrow Loss of $5=2$
\Rightarrow Loss $\%=\frac{2}{5} \times 100=40 \%$ loss
26. The required sequence is:

MLKJIHGFEDCBAZYXWVUTSRQPON
27. THREAT \rightarrow RHTTAE
\Rightarrow PEARLY \rightarrow AEPYLR
Logic: First half is reversed, then second half of reversed.
28. The pattern is: $\times 2-2, \times 3-2, \times 4-2, \times 5-2$

So, next term is $308 \times 6-2=1846$
29. The arrangement is:

Kamal, Rashi, Vinita, Preeti, Leela
$\therefore 3^{\text {rd }}$ in order of height is Vinita.
30. Figure (1) is the best illustration.
31. From Venn Diagram
32. From Venn Diagram
33. From Venn Diagram
34. 1. $-7 \div 7 \times 7+7=0$
2. $(7+7 \times 7) \div 7-7=1$
3. $7-7 \times 7 \div 7+7=7$
4. $7-(7 \div 7 \times 7+7)=-7$
35.

The triangles are represented by C, D, E, H, K, M, AC, CD, BD, CF, DG, KM, EGK, CFK, DGM, MGH, ABCD, CDFG, ACFKE, EFKGHM and DGMBH.
So, 21 triangles.
Total number of triangles $=21$
36. Lateral inversion.
37. $20 \div 10=2$ [T is $20, \mathrm{~J}$ is 10]
$\Rightarrow 24 \div 8=3[\mathrm{X}$ is $24, \mathrm{H}$ is 8$]$
38. $\frac{15 \times 6 \times 4}{10}=36$
$\frac{6 \times 7 \times 5}{10}=21$
$\frac{50 \times 10 \times 10}{10}=500$

Solutions 39-41

The arrangement is:

39. no correct option*. R is fourth to the right of M .
40. F is second to the left of T.
41. F is third to the left of R and fourth to the right of R.
42. Final movement $=45^{\circ}$ ACW
\therefore Answer $=$ West
43. you $\rightarrow \mathrm{ke}$, come \rightarrow se
\Rightarrow here \rightarrow ne
44. $4^{2}+2^{2}+1^{2}=21$
and $5^{2}+3^{2}+8^{2}=98$
$\Rightarrow 6^{2}+7^{2}+3^{2}=94$
45.

$\therefore \mathrm{C}$ is grandfather or grandmother.
46. 6 R8SIR3Q5P7Q4P2
$=6 \times 8 \div 1 \times 3-5+7-4+2$
$=144$
47. 1. 659 AND 837
2. 837 AND 485
3. 976 AND 659
4. 976 AND 936
\therefore Highest is 976 and 936 .
48. 12:00-9:30
$=2: 30$.
49. $\quad \mathrm{A} \longleftrightarrow \mathrm{D}, \mathrm{C} \longleftrightarrow \mathrm{E}, \mathrm{B} \longleftrightarrow \mathrm{F}$
$\therefore(2)$ will be formed.
50. By observation.

