Class - Mathematics
 Class - IX

Time: 3 hrs
Marks: 80
General Instructions:
(i) All questions are compulsory.
(ii) The question paper consists of 30 questions divided into four sections A, B, C
and D. Section A contains 10 questions of 1 mark each, Section B is of 5
questions of 2 marks each, Section C is of 10 questions of 3 marks each and
section D is of 5 questions of 6 marks each.
(iii) There is no overall choice. However, an internal choice has been provided in
sections B,C and D
(iv) In question on construction, the drawing should be neat and exactly as per
the given measurements.
(v) Use of calculator is not permitted.

SECTION A

(Qns 1 - 10 carry 1 mark each)

1. Find four rational numbers between $3 / 5$ and $4 / 5$.
2. Find $P(1)$ and $P(2)$ if $P(x)=3 x+1$
3. In which quadrant or on which axis do each of the following points lie? . (-$2,4),(-1,0),(1,2)$ and $(-3,-5)$
4. Find the value of k if $x=2, y=1$ is a solution of the equation $2 x+3 y=k$.
5. Write any two postulates of Euclid
6. If $x+y=w+z$, then show that $A O B$ is a line $A D$ and $B C$ equal perpendiculars to a line segment $A B$,Show that $C D$ bisects $A B$

7. Find x and y if $A B / / C D, \angle \mathrm{APQ}=50^{\circ}$ and $\angle \mathrm{PRD}=127^{\circ}$.

8. Evaluate 103×107 by using a suitable identity.
9. Simplify $2^{2 / 3} \cdot 2^{1 / 3}$.
10. Write two solutions of $2 x+y=7$.

SECTION - B

(Qns $11-16$ carry 2 marks each)
11. Find remainder when $x^{3}+3 x^{2}+3 x+1$ is divided by $(x-1)$ by using factor theorem.
12. Prove that angle opposite to equal sides of an isosceles triangle are equal.
13. Draw the graph of $x+y=3$.
14. Expand $(x-2 y)^{3}$
15. Expand $(2 x+1)^{3}$.
16. Rationalise $1 / \sqrt{ } 7$.

SECTION - C

(Qns 17-28 carry 3 marks each)
17. Find the value of k if $x-1$ is a factor of $x^{2}-3 x+k$
18. Simplify $1 /(\sqrt{ } 7-\sqrt{ } 2)$.
19. Factorise $9 x^{2}+6 x y+y^{2}$
20. Solve $2 x+1=x-3$ and represent the solutions on the Cartesian plane.
21. In figure, line PQ and RS intersect each other at O . If $\angle \mathrm{POR}: \angle \mathrm{ROQ}=$ 5:7.Find all the angles.

22. Prove that the sum of the angles of a triangle is 180.
23. In figure $O A=O B$ and $O C=O D$ Show that $\triangle A O D \cong \triangle B O C$.

24. In $\triangle A B C$, the bisector $A D$ of A is perpendicular to $B C$. Show that $A B=A C$.
25. In figure $\mathrm{QT} \perp \mathrm{PR}, \angle \mathrm{TQR}=40$ and $\angle \mathrm{SPR}=30$, find x and y .

26. Express the following equations in the form of $a x+b y+c=0$ (i) $x-y / 5$ $=10$
(ii) $y-2=0$
27. Express $0.3333 \ldots$.... in the form of p / q.
28. Evaluate (999) ${ }^{3}$.

SECTION - C

(Qns 29-34 carry 6marks each)
29. Factorise $49 a^{2}+70 a b+25 b^{2}$
(i) $25 / 4 x^{2}-y^{2} / 9$
30. If the point $(3,4)$ lies on the graph $3 y=a x+7$, find the value of a.
31. In figure the sides $A B$ and $A C$ of a triangle are produced to points E and D respectively .If bisectors BF and CG of $\angle \mathrm{CBE}$ and $\angle \mathrm{BCD}$ respectively meet at the point O ,then prove that $\angle \mathrm{BOC}=90-1 / 2 \angle B A C$.

32. Line segment $A B$ is parallel to another line segment CD, O is the mid-point of $A D$. Show that (i) $\triangle A O B \cong \triangle D O C \quad$ (ii) O is also the mid-point of $B C$.

33. In an isosceles triangle $A B C$ with $A B=A C$, D and E are points on $B C$ such that $B E=C D$. Show that $A D=A E$.

34.Factorise (i) $8 x^{3}-64 y^{3}$ (ii) $125 a^{3}+27 b^{3}$.

