Class- IX
 Subject - Mathematics

Time : 3hrs
mm 80

Section A (one marks)

1 Find five rational number between $3 / 5$ and $4 / 5$
2 Locate
QUOTE
on number line
3 Find the zero of the $x+5$
4. Find the remainder when $x 3-a x 2+6 x-a$ is divided by $x-a$
5. In which quadrant points $(-2,4)$ and $(3,-1)$ lie?
6. Find the value of k, if $x=2, y=1$ is a solution of the equation $2 x+3 y=k$
7. Define point, line, surface and plane surface
8. If a point C lies between two pints A and B such that $A C=B C$, then prove that $A C=1 / 2 \quad A B$. Explain with drawing
9. Write the formula for Vol. of Cone, and Total surface area of solid sphere 10. The probability of an event lies between -------- and ------1×10
Section B (two marks)
11. Three coins are tossed simultaneously 200 times with the following frequencies of different outcomes:
Outcome
3 heads
2heads
1 heads
no head

Frequency
23
72
77
28
if the three coins are simultaneously tossed again, compute the probability of 2 heads coming up.
12. Find the mean ., median and mode of the scores in 10
matches. $(2,3,4,0,1,3,3,4,3,5)$
13. Show that sum of the angles of a triangle is 1800
14. Rationalize the denominator

QUOTE
15. Verify that $x 3+y 3+z 3-3 x y z=1 / 2(x+y+z)[(x-y) 2+(y-z) 2+(z-x) 2]$ 2x5
Section c (3 marks)
16. Draw on graph paper $x+2 y=6$
17. In Fig. the side of QR of

PQR is produced to a point S . If the bisectors of $\square \mathrm{PQR}$ and $\square \mathrm{PRS}$ meet at point T , prove that $\square \mathrm{QRT}=1 / 2 \square \mathrm{QPR}$
18. Two sides $A B$ and $B C$ and median $A M$ of one triangle $A B C$ are respectively equal to sides $P Q$ and $Q R$ And median $P N$ of
18. Two sides $A B$ and $B C$ and median $A M$ of one triangle $A B C$ are respectively equal to sides PQ and QR And median PN of $\triangle \mathrm{PQR}$. Show that: $\triangle A B M \square \triangle P Q N$ $\Delta \mathrm{ABC} \square \Delta \mathrm{PQR}$
19. In an Isosceles triangle $A B C$ with $A B=A C, D$ and E are points on $B C$ Such that $B E=C D$. Show that $A D=A E$
20. $A B C D$ is a rhombus and P, Q, R AND S are the midpoints of the sides $A B$ $, B C, C D$ and DA respectively, Show that the Quadrilateral PQRS is a rectangle. 21. $A B C D$ is a trapezium with $A B \| D C$. A line parallel to $A C$ intersects $A B$ at X and $B C$ at Y. Prove that ar (ADX) $=\operatorname{ar}(A C Y)$.
22. Construct a triangle whose $\square Y=300$ and $\square=900$ and $X Y+Y Z+Z X=11 \mathrm{~cm}$. 23. The capacity of a clo व००
osed cylindrical vessel of height 1 m is 15.41 litres. How many square meters of metal sheet would be needed to make it?
24. A shot- putt is metallic spheres of a radius 4.9 cm if the density of the metal is 7.8 per cm 3 ; find the mass of the shot-putt.
25. The following observations have been arranged in ascending order If the median of the data is $\quad 63$, find the value of x. $29,32,48,50, x, x+2$, 72,78,84,95 3×10
Section D (6 marks)
26. Two circles intersect at two points B and C. Through B xofolofjoSoSo
, two line segments ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively (See fig.). Prove that ÖCP $=$ Ol QCD
27. $A B C D$ is a quadrilateral and $B E \| A C$ and also $B E$ meets $D C$ produced at E. Show that area of
, two line segments ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively (See fig.). Prove that $\angle A C P=\angle Q C D$
27. $A B C D$ is a quadrilateral and $B E \| A C$ and also $B E$ meets $D C$ produced at
E. Show that area of \triangle ADE is equal to the area of the quadrilateral $A B C D$
28. If $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$ are respectively the mid points of the sides of a parallelogram $A B C D$, show that $\operatorname{ar}(E F G H)=1 / 2(A B C D)$.
29 .Find the area of a triangle using hero
28. If E, F, G, H are respectively the mid points of the sides of a parallelogram $A B C D$, show that $\operatorname{ar}(E F G H)=1 / 2(A B C D)$.
29 .Find the area of a triangle using hero's formula if $\angle B=900$
30. [a] Twenty seven solid iron s] pheres, each of radius r and surface area S are melted to from a sphere with surface area S' Find the (i) radius r' of the new sphere, (ii) ratio of S and S'
[b] A right triangle $A B C$ with side $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and 13 cm is revolved about the side 12 cm ; find the volume of the solid so formed.

