```
2008-PUNJAB TECHNICAL UNIVERSITY
                                    B.E / B.TECH
    SOFTWARE DEVELOPMENT QUESTION PAPER
```


ANSWER ALL QUESTIONS.

1. Let $g(x)$ be a continuous function such that 0ò $1 g(t) d t=2$. Let $f(x)=1 / 20$ ò $(x-t) 2 g(t) d t$ then find $f^{\prime}(x)$ and hence evaluate f " (x).
2. Find area of region bounded by the curve $y=[\sin x+\cos x]$ between $x=0$ to $x=2 p$.
3. Solve: $[3 O ̈ x y+4 y-7 O ̈ y] d x+[4 x-7 O ̈ x y+5 O ̈ x] d y=0$.
4. $f(x+y)=f(x)+f(y)+2 x y-1 " x, y$. f is differentiable and $f^{\prime}(0)=\cos a$. Prove that $f(x)>0 "^{n}$ Î R.
5. Show that 0 òp q3 $\ln \sin q d q=3 p / 20$ òp q2 $\ln [O ̈ 2 \sin q] d q$.
6. A function f : $R ® R$ satisfies $f(x+y)=f(x)+f(y)$ for all x, y Î R and is continuous throughout the domain. If $I 1+I 2$ $+I 3+I 4+I 5=450$, where $\operatorname{In}=$ n. 0 òn $f(x) d x$. Find $f(x)$.
7. [Figure for question 7]Let T be an acute angled triangle. Inscribe rectangles R \& S as shown. Let $A(X)$ denote the area of any polygon X. Find the maximum value of $[A(R)+A(S)] / A(T)$.
8. Evaluate 0òx dx .
9. Let $f(x)$ be a real valued function not identically equal to zero such that $f(x+y n)=f(x)+(f(y)) n$; y is real, n is odd and $n>1$ and $f^{\prime}(0)^{3} 0$. Find out the value of $f^{\prime}(10)$ and $f(5)$.
10. Evaluate: 0 ò 11/\{ $(5+2 x-2 x 2)(1+e(2-4 x))\} d x$
11. If $f(x)$ is a monotonically increasing function " $x \hat{I} R, f$ " $(x)>0$ and $f-1(x)$ exists, then prove that å $\{f-1(x i) / 3\}<f$ $-1(\{x 1+x 2+x 3\} / 3), i=1,2,3$
12. Let $P(x)=\tilde{O}(x-a i)$, where $i=1$ to n. and all ai's are real. Prove that the derivatives $P^{\text {' }}(x)$ and P " (x) satisfy the inequality $P^{\prime}(x) 2^{3} P(x) P^{\prime \prime}(x)$ for all real numbers x.
13. Determine the value of 0 ò $1 \mathrm{xa}-1 .(\ln \mathrm{x}) \mathrm{n} \mathrm{dx}$ where a $\mathrm{I}\{2,3, \ldots\}$ and n Î N.
14. Evaluate oे $\sin \mathrm{xdx} /[\sin (\mathrm{x}-\mathrm{p} / 6) \cdot \sin (\mathrm{x}+\mathrm{p} / 6)]$
15. Discuss the applicability of Rolle's theorem to $f(x)=\log [x 2+a b /\{(a+b) x\}]$ in the interval $[a, b]$.
16. Let the curve $y=f(x)$ passes through (4,-2) and satisfies the differential equation: $y(x+y 3) d x=x(y 3-x) d y$ and $y=g(x)=[$ Integral $1 / 8$ to $\sin s q . x] \sin -1 O ̈ t d t+[$ Integral $1 / 8$ to $\cos s q . x] \cos -1$ Öt dt, $0 £ x £ p / 2$. Find the area of the region bounded by the curves $\mathrm{y}=\mathrm{f}(\mathrm{x}), \mathrm{y}=\mathrm{g}(\mathrm{x})$ and $\mathrm{x}=0$.
17. Find the polynomial function $f(x)$ of degree 6 which satisfies : $\operatorname{Lim}(x ® 0)[1+f(x) / x 3] 1 / x=e 2$ and has local maxima at $\mathrm{x}=1$ and local minima at $\mathrm{x}=0,2$.
18. Find all the values of $a\left(a^{1} 0\right)$ for which: 0 òx $(t 2-8 t+13) d t=x \sin (a / x)$. Find that solution.
19. [Figure for question 19]Three squares are shown in the diagram. The largest has side $A B$ of length 1 . The others have side $A C$ of length x and side $D E$ of length y. As D moves along $A B$, find the values of x and y for which $x 2+y 2$ is a minimum. What is this minimum?
20. Suppose that the cubic polynomial $\mathrm{h}(\mathrm{x})=\mathrm{x} 3-3 \mathrm{bx} 2+3 \mathrm{cx}+\mathrm{d}$ has a local maximum $\mathrm{A}(\mathrm{x} 1, \mathrm{y} 1)$ and a local minimum at $B(x 2, y 2)$. Prove that the point of inflection of h is at the midpoint of the line segment $A B$.
21. $y=f(x)$ be a curve passing through $(1,1)$ such that the triangle formed by the coordinate axes and the tangent at any point of the curve lies in the first quadrant and has area 2 . Form the differential equation and determine all such possible curves.
22. Let f be a real-valued function defined for all real nos. x such that, for some positive constant a, the equation $f(x+a)=1 / 2+O \quad(f(x)-(f(x)) 2)$ holds for all x. (a) Prove that the function f is periodic. (b) For $a=1$, give an example of a non-constant function with the required properties.
23. Suppose $\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$ are fixed real numbers such that a quadrilateral can be formed with side's $\mathrm{p}, \mathrm{q}, \mathrm{r}$, and s in clockwise order. Prove that the vertices of the quadrilateral of maximum area lie on a circle.
24. Evaluate 0 ò $\mu(x-x 3 / 2+x 5 /(2.4)-x 7 /(2.4 .6)+\ldots)(1+x 2 / 22+x 4 /(2242)+x 6 /(224262)+\ldots) d x$.
25. Let f be a twice-differentiable real-valued function satisfying $\mathrm{f}(\mathrm{x})+\mathrm{f}$ \"e; $(\mathrm{x})=-\mathrm{xg}(\mathrm{x}) \mathrm{f}^{\prime}(\mathrm{x})$, where $\mathrm{g}(\mathrm{x})^{3} 0$ for all real x. Prove that $|f(x)|$ is bounded.
26. Let f be a real function on the real line with continuous 3rd derivative. Prove that there exists a point such that $f(a) . f^{\prime}(a) . f$ "(a).f "'(a) ${ }^{3} 0$.
27. The area between the 2 curves defined by $y=1 / 2 x-(x)^{1 / 2}$ and $y=k \sin (p x), k^{3} 1$, in the interval $0 £ x £ 1$, is found to be equal to 2 sq. units. Find the constant k.Here (x) denotes an integer nearest to x. e.g. (1.3)=1; (1.5)=2; (1.7)=2 and so on.
