2008-PUNJAB TECHNICAL UNIVERSITY
 B.TECH I SEMESTER REGULAR EXAMINATION SWITCHING THEORY AND LOGIC DESIGN
 (ELECTRICAL AND ELECTRONICS ENGINEERING)

ANSWER ANY FIVE QUESTIONS ALL QUESTIONS CARRY EQUAL MARKS

MARKS [16*5=80]

1. (a) Perform the following using BCD arithmetic.
i. $712910+771110$
ii. $812410+812710$
(b) Convert the following.
i. $\mathrm{AB} 16=() 10$
ii. $12348=() 10$
iii. $101100112=() 10$
iv. $77210=() 16$
2. (a) Convert the following expressions in to sum of products and product of sums
i. $(A B+C)\left(B+C^{\prime} D\right)$
ii. $x^{\prime}+x\left(x+y^{\prime}\right)\left(y+z^{\prime}\right)$
(b) Obtain the Dual of the following Boolean expressions.
i. $\left(\mathrm{AB}^{\prime}+\mathrm{AC}^{\prime}\right)\left(\mathrm{BC}+\mathrm{BC}^{\prime}\right)(\mathrm{ABC})$
ii. $A B^{\prime} C+A^{\prime} B C+A B C$
iii. $(A B C)^{\prime}(A+B+C)^{\prime}$
iv. $A+B^{\prime} C\left(A+B+C^{\prime}\right)$
3. (a) What is meant by a prime implicant, an essential prime implicant, and a secondary essential prime implicant?
(b) Minimize following function using Map method F (A, B, C, D) $=\mathrm{QM}(2,3,8,12,13)+\mathrm{d}(10,14)$
4. (a) Implement the following multiple output combinational logic using a 4 line to 16 line Decoder.
$Y 1=^{-} A^{-} B{ }^{-} C^{-} D+{ }^{-} A^{-} B C D+{ }^{-} A^{-} B C^{-} D+{ }^{-} A B C^{-} D+A^{-} B C^{-} D+A^{-} B C D$
$\mathrm{Y} 2=^{-} \mathrm{A}^{-} \mathrm{B}^{-} \mathrm{CD}+{ }^{-} \mathrm{AB}{ }^{-} \mathrm{C}^{-} \mathrm{D}+\mathrm{A}^{-} \mathrm{BC}^{-} \mathrm{D}+\mathrm{ABC}^{-} \mathrm{D}$
$Y 3=^{-} A B C D+A B C^{-} D+A B C D$.
(b) Explain the terms Multiplexing and Demultiplexing.
5. (a) Specify the size of a ROM (number of words and numbers bits per word) that will accommodate the truth table of a BCD to seven segment decoder with an enable input.
(b) Write a brief note on programmable logic devices.
6. (a) Find a modulo-6 gray code using k-Map \& design the corresponding counter.
(b) Compare synchronous \& Asynchronous.
7. A clocked sequential circuit is provided with a single input x and single output Z. Whenever the input produce a string of pulses 111 or 000 and at the end of the sequence it produce an output $Z=1$ and overlapping is also allowed.
(a) Obtain State - Diagram.
(b) Also obtain state - Table.
(c) Find equivalence classes using partition method \& design the circuit using D flip-flops.
8. For the ASM chart
(a) Draw the state diagram.
(b) Design the control unit using D flip-flops and a decoder.
