SUBJECT Charles (C)	TIME
PHYSICS (F)	10.30 A.M. TO 11.50 A.M.

MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING
60	80 MINUTES	70 MINUTES

QUESTION BOOKLET DETAILS				
VERSION CODE	SERIAL NUMBER			
A - 1	009281			

DO's:

- 1. Check whether the CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- This Question Booklet is issued to you by the invigilator after the 2nd Bell i.e., after 10.30 a.m.
- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet.
- The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 5. Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'TS:

- THE TIMING MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED / MUTILATED/SPOILED.
- Until the 3rd Bell is rung at 10.40 a.m.:
 - Do not remove the seal / staple present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

INSTRUCTIONS TO CANDIDATES

- This question booklet contains 60 questions and each question will have four different options / choices.
- After the 3rd Bell is rung at 10.40 a.m., remove the seal / staple present on the right hand side of this question booklet and start answering on the OMR answer sheet.
- 3. During the subsequent 70 minutes:
 - Read each question carefully.
 - Choose the correct answer from out of the four available options / choices given under each question.
 - Completely darken/shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN against the
 question number on the OMR answer sheet.

CORRECT METHOD OF SHADING THE CIRCLE ON THE OMR SHEET IS SHOWN BELOW:

- Please note that even a minute unintended ink dot on the OMR sheet will also be recognised and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- Use the space provided on each page of the question booklet for Rough work AND do not use the OMR answer sheet for the same.
- After the last bell is rung at 11.50 a.m., stop writing on the OMR answer sheet and affix your LEFT HAND THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- 7. Hand over the OMR ANSWER SHEET to the room invigilator as it is.
- After separating and retaining the top sheet (KEA Copy), the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of One year.

1.	The number	er of significant figures in	the numbers 4.	8000×10^4 and 48000.50 are respecti	velv
	(1)	5 and 7	(2)		very
	(3)		(4)	5 and 6	
2		10,30 A.M. TO 11.5			
2.		eans emission of electron			
		a stable nucleus radioactive nucleus .	(2)	outermost electron orbit innermost electron orbit	
3.	An electric it is	heater rated 220 V and 5	50 W is connec	cted to A.C. mains. The current draw	n by
	(1)	2.5 A	(2)	O.4 A S. HUM RATEL	
	(3)	1.25 A	(2) (4)	0.8 A	
4.	speed of 3 journey is	ms ⁻¹ and 5 ms ⁻¹ respect	distance is covively. The ave	covers half the distance with a spee ered in two equal time intervals wi rage speed of the particle for the en	ith a
	(1)	$\frac{8}{3}$ ms ⁻¹	(2)	$\frac{4}{3}$ ms ⁻¹ ms ⁻¹ ms behave a second	
	(3)	$\frac{16}{3}$ ms ⁻¹	(4)	$\frac{4}{3} \text{ ms}^{-1}$ $\frac{3}{8} \text{ ms}^{-1}$	
5.	The momen			and mass 'M' about diameter is	
	(1)	$\frac{\mathrm{Mr}^2}{4}$	(2)	$\frac{Mr^2}{2}$	
	(3)	$\frac{\mathrm{Mr}^2}{12}$	(4)	2	
, mail	A body of n	nass 0.05 kg is observed	to fall with an	acceleration of 9.5 ms ⁻² . The oppos	ing
		on the body is (g :	= 9.8 ms ⁻²).	The might independent TD immunes:	
		0.15 N Zero	(2) Andrews are (4) 11	0.030 N 0.015 N	
	Total of the last	1020 13 2 10 13 15 15 15 15 15 15 15 15 15 15 15 15 15	GAME and the sales by	ork and Bisto and the baladance?	
				CHRIST WETHOD OF STADUKE FR	
,			minimized my exce		

	called	al solution in which b				
	(1)	gels		foams		
	(3)	liquid crystals	(4)	emulsions		
8.	In fog, pho	tographs of the object uring visible light beca	iuse		ns are more c	ear than those
	(1)	scattering of I-R ligh	it is more than visit	ole light		
	(2)	the intensity of I-R li	ight from the objec	t is less		
	(3)	scattering of I-R ligh	it is less than visible	e light	21 51517	
	(4)	I-R radiation has less	ser wavelength that	n visible rad	liation	
		current co-planar force				directions on a
9.		current co-planar force	es 1 N, 2 N and 5	iv acting an	ong director	
	body	can keep the body in	aquilibrium if 1 N	and 2 N ac	t at right angle	s.
	(1)	can keep the body in	v in equilibrium	and 21 vac		
	(2)	cannot keep the body can keep the body in	y in equilibrium if 1 N	and 3 N ac	t at an acute a	ngle.
	(3)	can keep the body in	equilibrium if 2 N	and 3 N ac	t at right angle	es.
	(4)	can keep the body in	requilibrium ir 2 i	und 5 11 sie		
10	Sound way	ves transfer				
	(1)	energy	(2)	momentu		
	(3)	both energy and mo	mentum (4)	only enci	gy not momen	tum w sal f
11.		0.15 ms	1			
		A	100000 — В	77		
	spring of	spring constant 10.8 was given an initial vo	B of masses 2 kg and Nm ⁻¹ are placed elocity of 0.15 ms ⁻¹ oring during the mo	and 3 kg re on a friction in the direction is	niess horizoni	al surface. The
	(1)	0.02 m		0.05 m 0.01 m		
	(3)	0.03 m	(4)			
			Space For Rough V	Vork		

12. G.P. Thomson experimentally confirmed the existence of matter waves by the phenomena

(1) refraction

(2) polarisation

(3) scattering

(4) diffraction

13. The resistance of a wire at 300 K is found to be 0.3 Ω . If the temperature co-efficient of resistance of wire is 1.5×10^{-3} K⁻¹, the temperature at which the resistance becomes 0.6Ω is

(1) 345 K

(2) 993 K

- (3) 690 K
- 34 (4) 720 K

14.

The work done by a force acting on a body is as shown in the graph. The total work done in covering an initial distance of 20 m is

(1) 200 J

(2) 400 J

(3) 175 J

(4) 225 J

15. Two luminous point sources separated by a certain distance are at 10 km from an observer. If the aperture of his eye is 2.5×10^{-3} m and the wavelength of light used is 500 nm, the distance of separation between the point sources are just seen to be resolved is

(1) 24.4 m

(2) 2.44 m

(3) 1.22 m

(4) 12.2 m

- 16. A door of 1.6 m wide requires a force of 1 N to be applied at the free end to open or close it. The force that is required at a point 0.4 m distant from the hinges for opening or closing the door is
 - 3.6 N (1)

2.4 N

(3) 4 N

- (4) 1.2 N
- 17. 0.1 m³ of water at 80 °C is mixed with 0.3 m³ of water at 60 °C. The final temperature of the mixture is
 - 70 °C (1)

60 °C

(3) 75°C

- 65 °C (4)
- 18. The spectral series of the hydrogen atom that lies in the visible region of the electromagnetic spectrum
 - Balmer (1)

- (2)Lyman
- (3) Brackett (4) Paschen

19.

A graph of pressure versus volume for an ideal gas for different processes is as shown. In the graph curve OC represents

- isothermal process (1)
- isobaric process (2)

adiabatic process (3)

isochoric process (4)

- 20. Which of the following statement does not hold good for thermal radiation?
- (1) The frequency changes when it travels from one medium to another.
 - (2) The speed changes when it travels from one medium to another.
 - (3) They travel in straight line in a given medium.
 - (4) The wavelength changes when it travels from one medium to another.

21.

A planet revolves round the Sun in an elliptical orbit. The linear speed of the planet will be maximum at

(1) B

(2) A

(3) C

(4) D

22.

Horizontal tube of non-uniform cross-section has radii of 0.1 m and 0.05 m respectively at M and N. For a streamline flow of liquid the rate of liquid flow is

- (1) greater at M than at N
- (2) greater at N than at M
- (3) same at M and N

(4) continuously changes with time

23. A resistor and a capacitor are connected in series with an a.c. source. If the potential drop across the capacitor is 5 V and that across resistor is 12 V, the applied voltage is

(1) 17 V

from the source. The mills of Va (2) with the waves at P & Q is

12 V (3)

24. The amount of heat energy radiated by a metal at temperature 'T' is 'E'. When the temperature is increased to 3T, energy radiated is

(1) 9 E

a gnatata (3) of 27 Event mem

the sw(4) 81 E witheren

25. The angle of minimum deviation for an incident light ray on an equilateral prism is equal to its refracting angle. The refractive index of its material is

26.

(A)

(B)

In the following combination of logic gates, the outputs of A, B and C are respectively

(1) \$ 0, 1, 0 | the same part (2) | (2) | 1, 1, 0 | the same to

(3) 4-1, 0, 1 1 bons altigor (

(4) 0, 1, 1

								uniformly					
no	n-absorbing	mediu	ım. Two	poi	nts P a	nd Q ar	re at a	distance of	4 m	and	9 m respec	tivel	ly
fro	m the source	e. The	ratio of	amp	olitudes	of the v	vaves a	t P & Q is			(I)		

(1)	4
(1)	9

(3)
$$\frac{9}{4}$$

28. A galvanometer of resistance 240 Ω allows only 4% of the main current after connecting a shunt resistance. The value of the shunt resistance is

- (1) $(20\,\Omega_{
 m distribution}$ and (2) (2) (3) (4) (4)

- (3) 5Ω
- at harmon sti to (4) ini $10~\Omega$ order will assent equipo

29. The phenomena in which proton flips is

(1) lasers

(2) radioactivity

(3)nuclear fusion (4) nuclear magnetic resonance

30. $y = 3 \sin \pi \left(\frac{t}{2} - \frac{x}{4}\right)$ represents an equation of a progressive wave, where 't' is in second and 'x' is in mater. The triangle of the second and 'x' is in mater. 'x' is in metre. The distance travelled by the wave in 5 seconds is

> 10 m (1)

(2) 5 m

(3)32 m (4) 8 m

31. According to the quark model, it is possible to build all the hadrons using

- (1) 3 quarks and 2 antiquarks
- (2)3 quarks and 3 antiquarks
- (3) 2 quarks and 2 antiquarks
- (4) 2 quarks and 3 antiquarks

- 32. An α -particle of mass 6.4×10^{-27} kg and charge 3.2×10^{-19} C is situated in a uniform electric field of 1.6×10^5 V m⁻¹. The velocity of the particle at the end of 2×10^{-2} m path when it starts from rest is
 - (1) $8 \times 10^5 \text{ ms}^{-1}$

(2) $16 \times 10^5 \text{ ms}^{-1}$

- (3) $4\sqrt{2} \times 10^5 \text{ ms}^{-1}$
- (4) $2\sqrt{3} \times 10^5 \text{ ms}^{-1}$
- 33. A cylindrical tube open at both the ends has a fundamental frequency of 390 Hz in air. If 1/4th of the tube is immersed vertically in water the fundamental frequency of air column is
 - (1) 130 Hz

390 Hz (2)

520 Hz (3)

- (4) 260 Hz
- 34. The surface temperature of the stars is determined using
- (1) Wein's displacement law (2) Rayleigh-Jeans law
- (3) Kirchoff's law (4) Planck's law

35.

The charge deposited on 4 µF capacitor in the circuit is

 $12 \times 10^{-6} \,\mathrm{C}$ (1)

 $24 \times 10^{-6} \,\mathrm{C}$

 $36 \times 10^{-6} \, \text{C}$ (3)

 $6 \times 10^{-6} \, \text{C}$ (4)

36.	A parallel beam of light is incident on a converging lens parallel to its principal axis. As one
	moves away from the lens on the other side of the principal axis, the intensity of light

- (1) continuously increases
- (2) continuously decreases
- (3) first increases and then decreases
- (4) first decreases and then increases

37. Continuous emission spectrum is produced by

- (1) Mercury vapour lamp
- (2) Sodium vapour lamp

(3) The Sun

(4) Incandescent electric lamp

38. A coil of 'n' number of turns is wound tightly in the form of a spiral with inner and outer radii 'a' and 'b' respectively. When a current of strength I is passed through the coil, the magnetic field at its centre is

 $(1) \quad \frac{\mu_0 n I}{2(b-a)}$

 $(2) \quad \frac{2\mu_0 nI}{b}$

(3) $\frac{\mu_0 nI}{2(b-a)} \log_e \frac{b}{a}$

(4) $\frac{\mu_0 nI}{(b-a)} \log_e \frac{a}{b}$

39. A ray of light is incident on a plane mirror at an angle of 60°. The angle of deviation produced by the mirror is

(1) 30°

(2) 60°

(3) 90°

(4) 120°

- **40.** The electric potential at any point x, y, z in metres is given by $V = 3x^2$. The electric field at a point (2 m, 0, 1 m) is
 - (1) -6 V m^{-1}

(2) 6 V m⁻¹

(3) - 12 V m⁻¹

- (4) 12 V m⁻¹
- **41.** Young's double slit experiment gives interference fringes of width 0.3 mm. A thin glass plate made of material of refractive index 1.5 is kept in the path of light from one of the slits, then the fringe width becomes
 - (1) 0.3 mm

(2) 0.45 mm

(3) 0.15 mm

(4) zero

42.

Near a circular loop of conducting wire as shown in the figure an electron moves along a straight line. The direction of the induced current if any in the loop is

(1) clockwise

(2) anticlockwise

(3) zero

(4) variable

- 43. Hydrogen atom from excited state comes to the ground state by emitting a photon of wavelength λ . If R is the Rydberg constant, the principal quantum number 'n' of the excited state is
 - (1) $\sqrt{\frac{\lambda}{\lambda R 1}}$

(2) $\sqrt{\frac{\lambda R^2}{\lambda R - 1}}$

(3) $\sqrt{\frac{\lambda R}{\lambda - 1}}$

- (4) $\sqrt{\frac{\lambda R}{\lambda R 1}}$
- 44. The magnetic dipole moment of a current loop is independent of
 - (1) number of turns
 - (2) area of the loop
 - (3) current in the loop
 - (4) magnetic field in which it is lying
- 45. In ruby laser, the stimulated emission is due to transition from
 - (1) any higher state to lower state
 - (2) metastable state to ground state
 - (3) any higher state to ground state
 - (4) metastable state to any lower state
- **46.** A direct current I flows along the length of an infinitely long straight thin walled pipe, then the magnetic field
 - (1) is zero only along the axis of the pipe
 - (2) is zero at any point inside the pipe
 - (3) is maximum at the centre and minimum at the edges
 - (4) is uniform throughout the pipe but not zero

	(1)	0.15 m	(2)	0.30 m	
	(3)	0.6 m	(4)	0.45 m	
48.	Two source	es are said to be coherent if	f they produce	waves	
	(1)	of equal wavelength			
	(2)	of equal speed			
	(3)	having same shape of wa	ve front		
	(4)	having a constant phase of	difference		
49.				orm a triangle. Across 3 Ω resistor a or is	3 V
	(1)	1 A	(2)	2 A children on the last	
	(3)	1.5 A	(4)	0.75 A	
50.		1.5 A on emitter amplifier the inp	t inggry, the s		
50.			t inggry, the s		
50.	In a comm	on emitter amplifier the inp	out signal is ap	olied across	
	In a comme (1) (3) In a radioa	on emitter amplifier the inp emitter – collector base – emitter	out signal is app (2) (4)	olied across collector – base	toms
	In a comme (1) (3) In a radioa	on emitter amplifier the inpenitter – collector base – emitter active disintegration, the rain instant of time equal to i	out signal is app (2) (4)	olied across collector – base anywhere	toms

52. A ray of light is incident on a surface of glass slab at an angle 45°. If the lateral shift produced per unit thickness is $\frac{1}{\sqrt{3}}$ m, the angle of refraction produced is

$$(1) \quad \tan^{-1}\left(1-\sqrt{\frac{2}{3}}\right)$$

$$(2) \quad \sin^{-1}\left(1-\sqrt{\frac{2}{3}}\right)^{1}$$

(3)
$$\tan^{-1}\left(\sqrt{\frac{2}{\sqrt{3}-1}}\right)$$

$$(4) \quad \tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

53. Ferromagnetic materials used in a transformer must have

- (1) high permeability and low hysterisis loss
- (2) high permeability and high hysterisis loss
- (3) low permeability and low hysterisis loss
- (4) low permeability and high hysterisis loss

54. According to Newton's Corpuscular Theory, the speed of light is

- (1) lesser in rarer medium
- (2) lesser in denser medium
- (3) independent of the medium
- (4) same in all the media

55. For the constructive interference the path difference between the two interfering waves must be equal to

(1) 2nπ

(2) n2

 $(3) \quad (2n+1)\frac{\lambda}{2}$

(4) $(2n+1)\lambda$

56.	The accurate	measurement	of	emf	can	be	obtained	using
-----	--------------	-------------	----	-----	-----	----	----------	-------

(1) Voltmeter

(2) Voltameter

(3) Potentiometer

(4) Multimeter

57. The kinetic energy of an electron gets tripled, then the de-Broglie wavelength associated with it changes by a factor

(1) $\sqrt{3}$

(2) $\frac{1}{\sqrt{3}}$

(3) 3

(4) $\frac{1}{3}$

58. Which of the following is not a thermodynamic co-ordinate?

(1) Pressure (P)

- (2) Volume (V)
- (3) Temperature (T)

(4) Gas constant (R)

59. Two solid pieces, one of steel and the other of aluminium when immersed completely in water have equal weights. When the solid pieces are weighed in air

- (1) steel piece will weigh more
- (2) they have the same weight
- (3) aluminium piece will weigh more
- (4) the weight of aluminium is half the weight of steel

60. The amount of energy released when one microgram of matter is annihilated is

(1) $9 \times 10^{10} \text{ kWh}$

(2) $3 \times 10^{10} \text{ kWh}$

(3) $0.5 \times 10^5 \text{ kWh}$

(4) $0.25 \times 10^5 \text{ kWh}$

SUBJECT	TIME
CHEMISTRY	02.30 P.M. TO 03.50 P.M.

MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING
60 missing	80 MINUTES	70 MINUTES

QUESTION BOOKLET DETAILS				
VERSION CODE	SERIAL NUMBER			
A - 1	603480			

DO's:

- 1. Check whether the CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- This Question Booklet is issued to you by the invigilator after the 2nd Bell i.e., after 02.30 p.m.
- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet.
- The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'TS:

- THE TIMING MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED / MUTILATED/SPOILED.
- 2. Until the 3rd Bell is rung at 02.40 p.m.:
 - Do not remove the seal / staple present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

INSTRUCTIONS TO CANDIDATES

- 1. This question booklet contains 60 questions and each question will have four different options / choices.
- After the 3rd Bell is rung at 02.40 p.m., remove the seal / staple present on the right hand side of this question booklet and start answering on the OMR answer sheet.
- 3. During the subsequent 70 minutes:
 - · Read each question carefully.
 - Choose the correct answer from out of the four available options / choices given under each question.
 - Completely darken/shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN against the
 question number on the OMR answer sheet.

${\tt CORRECT\,METHOD\,OF\,SHADING\,THE\,CIRCLE\,ON\,THE\,OMR\,SHEET\,IS\,SHOWN\,BELOW:}$

- Please note that even a minute unintended ink dot on the OMR sheet will also be recognised and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- Use the space provided on each page of the question booklet for Rough work AND do not use the OMR answer sheet for the same.
- 6. After the last bell is rung at 03.50 p.m., stop writing on the OMR answer sheet and affix your LEFT HAND THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- 7. Hand over the OMR ANSWER SHEET to the room invigilator as it is.
- After separating and retaining the top sheet (KEA Copy), the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of One year.

		(A)		
1.	The ore t	that is concentrated by Froth Floa	tation pro	cess is
	(1)		(2)	Malachite
	(3)	Zincite	(4)	Cinnabar
2.	The corre	ect set of four Quantum numbers	for outerr	most electron of Potassium $(Z = 19)$ is
	(1)	$4, 0, 0, \frac{1}{2}$	(2)	$3, 0, 0, \frac{1}{2}$
	(3)	$4, 1, 0, \frac{1}{2}$	(4)	$3, 1, 0, \frac{1}{2}$
3.		of mass x kg is moving with a von $x = 0.05$ m. Hence x is $x = 0.05$ m.		100 ms ⁻¹ . Its de Broglie wavelength is
	(1)	0.15 kg	(2)	0.2 kg
	(3)	0.1 kg	(4)	0.25 kg
4.	The corre	ect order of ionisation energy of C	C, N, O, F	is
	(1)	C < N < O < F	(2)	C < O < N < F
	TO COMPANY	Panul Service Co.	33722	to-strain amount with the party and a second

- The oxide of an element whose electronic configuration is $1s^2 \ 2s^2 \ 2p^6 \ 3s^1$ is 5.
 - (1) Basic

(2) Acidic

- (3) Neutral
- (4) Amphoteric

6.	The char	acteristic not re	elated to alkal	i metal	is			
	(1)	low melting I	point					
	(2)	low electrone	gativity					
	(3)	high ionisatio	on energy					
	(4)	their ions are	isoelectronic	with n	oble gas	ses		
7.	Among t	he following, t	he compound	that co	ntains i	onic, covalen	t and coordina	te linkage is
	(1)	NaCl			(2)	CaO		
	(3)	NH ₃			(4)	NH ₄ Cl		
8.		nt molecule A				The number	of lone pair a	nd bond pair
	(1)	3 and 1			(2)	1 and 3		
	(3)	2 and 2			(4)	0 and 4		
9.	After the	f carbon dioxi completion of carbonate was doric acid requi	of the reaction completely ne	n, the s	solution ed with	was evapora 0.1 N Hydrod	ated to drynes	ss. The solid
	(1)	500 cm^3			(2)	400 cm^3		
	(3)	300 cm^3			(4)	200 cm^3		
			Space	For Re	ough W	ork		

10.	A bivaler	nt metal has an equivalent mass of	32. The	molecular mass of the metal nitrate is
	(1)	192	(2)	188 Malog gualiene and 111
	(3)	182	(4)	168 Chilleanna cale, w. i

- 11. The r.m.s. velocity of molecules of a gas of density 4 kg m⁻³ and pressure 1.2×10^5 Nm⁻² is
 - (1) 120 ms⁻¹

(2) 600 ms⁻¹

(3) 300 ms⁻¹

- (4) 900 ms⁻¹
- 12. 0.5 mole of each of H₂, SO₂ and CH₄ are kept in a container. A hole was made in the container. After 3 hours, the order of partial pressures in the container will be
 - (1) $pH_2 > pSO_2 > pCH_4$
- (2) $pH_2 > pCH_4 > pSO_2$
- (3) $pSO_2 > pH_2 > pCH_4$
- (4) $pSO_2 > pCH_4 > pH_2$
- 13. The enthalpy of formation of NH_3 is -46 kJ mol^{-1} . The enthalpy change for the reaction :

$$2NH_3(g) \longrightarrow N_2(g) + 3H_2(g)$$
 is

(1) +92 kJ

(2) +46 kJ

(3) +184 kJ

- (4) +23 kJ
- 14. 5 moles of SO₂ and 5 moles of O₂ are allowed to react. At equilibrium, it was found that 60% of SO₂ is used up. If the partial pressure of the equilibrium mixture is one atmosphere, the partial pressure of O₂ is
 - (1) 0.21 atm

(2) 0.41 atm

(3) 0.82 atm

(4) 0.52 atm

15.	2HI(g)		H ₂ (g) +	I ₂ (g
	10000				

The equilibrium constant of the above reaction is 6.4 at 300 K. If 0.25 mole each of $\rm H_2$ and $\rm I_2$ are added to the system, the equilibrium constant will be

(1) 3.2

(2) 1.6

(3) 6.4

(4) 0.8

16. Rate of physical adsorption increases with

- (1) decrease in pressure
- (2) increase in temperature

a third for what has been safe and in

- (3) decrease in surface area
- (4) decrease in temperature

17. IUPAC name of (CH₃)₃CCl

- (1) 2 chloro 2 methyl propane
- (2) t-butyl chloride

- (3) n-butyl chloride
- (4) 3-chloro butane

18. Lucas test is associated with

(1) Carboxylic acid

(2) Alcohols

(3) Aldehydes

(4) Phenols

19. An organic compound on heating with CuO produces CO₂ but no water. The organic compound may be

(1) Methane

- (2) Ethyl iodide
- (3) Carbon tetrachloride
- (4) Chloroform

20. The condensation polymer among the following	20.	The	condensation	polyn	ner among	g the	following	is
--	-----	-----	--------------	-------	-----------	-------	-----------	----

(1) PVC

(2) Polyethene

(3) Rubber

(4) Protein

21. The order of stability of metal oxides is

- (1) $\text{Fe}_2\text{O}_3 < \text{Cr}_2\text{O}_3 < \text{A}l_2\text{O}_3 < \text{MgO}$
- (2) $Fe_2O_3 < Al_2O_3 < Cr_2O_3 < MgO$
- (3) $Al_2O_3 < MgO < Fe_2O_3 < Cr_2O_3$
- (4) $Cr_2O_3 < MgO < Al_2O_3 < Fe_2O_3$

22. The temperature of the slag zone in the metallurgy of Iron using blast furnace is

- (1) 400 700 °C
- (2) 800 1000 °C
- (3) 1200 1500 °C
- (4) 1500 1600 °C

23. The function of Fe(OH)3 in the contact process is

- (1) to remove moisture
- (2) to remove dust particles
- (3) to remove arsenic impurity
- (4) to detect colloidal impurity

	-	Space For Rough Work
	(3)	3 (4) 4
	(1)	1 (2) 2
27.		enetic moment of a transition metal ion is $\sqrt{15}$ B.M. Therefore the number of electrons present in it is
	(4)	formation of lead chromate
	(3)	formation of red vapours
	(2)	liberation of Chlorine
	(1)	formation of Chromyl chloride
26.	The inco	rrect statement in respect of Chromyl chloride test is
		The same of the sa
	(4)	to obtain low temperature
	(3)	in filling airships
	(2)	in radiotherapy for treatment of cancer
	(1)	in high temperature welding
25.	Argon is	used
	L L	
	(4)	Nessler's reagent
	(3)	Tollen's reagent
	(2)	Group reagent for the analysis of III group basic radical.
	(1)	Group reagent for the analysis of IV group basic radical.

28. The IUPAC name of [Co(NH₃)₅ ONO]²⁺ ion is

- Penta ammine nitro cobalt (III) ion
- Penta ammine nitro cobalt (IV) ion
- Penta ammine nitrito cobalt (IV) ion
- (4) Penta ammine nitrito cobalt (III) ion

29. The oxidation state of Fe in the brown ring complex: [Fe(H₂O)₅ NO]SO₄ is

(1) +2

(2) +1 (4) 0

(3) +3

30. The correct statement with regard to H_2^+ and H_2^- is

- (1) H_2^- is more stable than H_2^+
- (2) H_2^+ is more stable than H_2^-
- (3) Both H_2^+ and H_2^- are equally stable
- (4) Both H_2^+ and H_2^- do not exist

31. Arrange the following in the increasing order of their bond order:

 O_2, O_2^+, O_2^- and O_2^{--}

(1) O_2^+, O_2, O_2^-, O_2^-

(2) O_2, O_2^+, O_2^-, O_2^-

(3) $O_2^{--}, O_2^{-}, O_2, O_2^{+}$

(4) $O_2^{--}, O_2^{-}, O_2^{+}, O_2$

32.	2 gm of a radioactive sample having half life of 15 days was synthesised on 1st Jan 2009.
	The amount of the sample left behind on 1st March, 2009 (including both the days)

(1) 1 gm

(2) 0.5 gm

(3) 0 gm

(4) 0.125 gm

33. For a chemical reaction $A \to B$, the rate of the reaction is 2×10^{-3} mol dm⁻³ s⁻¹, when the initial concentration is 0.05 mol dm⁻³. The rate of the same reaction is 1.6×10^{-2} mol dm⁻³ s⁻¹ when the initial concentration is 0.1 mol dm⁻³. The order of the reaction is

(1) 3

(2)

(3) 2

(4) 0

34. For the decomposition of a compound AB at 600 K, the following data were obtained:

[AB] mol dm ⁻³	Rate of decomposition of AB in mol dm ⁻³ s ⁻¹
0.20	2.75 × 10 ⁻⁸
0.40	11.0×10 ⁻⁸
0.60	24.75 × 10 ⁻⁸

The order for the decomposition of AB is

(1) 1

(2) 2

(3) 1.5

(4) 0

35. The rate equation for a reaction : $A \to B$ is $r = K[A]^{\circ}$. If the initial concentration of the reactant is a mol dm⁻³, the half life period of the reaction is

(1) $\frac{a}{K}$

(2) $\frac{2a}{K}$

 $(3) \quad \frac{a}{2K}$

(4) $\frac{K}{a}$

36. 30 cc of $\frac{M}{3}$ HCl, 20 cc of $\frac{M}{2}$ HNO₃ and 40 cc of $\frac{M}{4}$ NaOH solutions are mixed and the volume was made up to 1 dm³. The pH of the resulting solution is

(1) 1

(2) 3

(3) 8

(4) 2

37. An aqueous solution containing 6.5 gm of NaCl of 90% purity was subjected to electrolysis. After the complete electrolysis, the solution was evaporated to get solid NaOH. The volume of 1 M acetic acid required to neutralise NaOH obtained above is

(1) 100 cm^3

(2) 200 cm³

 $(3) 1000 \text{ cm}^3$

(4) 2000 cm³

38. The standard electrode potential for the half cell reactions are :

 $Zn^{++} + 2e^{-} \longrightarrow Zn \quad E^{\circ} = -0.76 \text{ V}$

 $Fe^{++} + 2e^{-} \longrightarrow Fe \quad E^{\circ} = -0.44 \text{ V}$

The E.M.F. of the cell reaction:

 $Fe^{++} + Zn \longrightarrow Zn^{++} + Fe$ is

(1) +1.20 V

(2) +0.32 V

(3) -0.32 V

(4) -1.20 V

39.	10 ° M P	NaOH is diluted 100 times. The pH of the o	inuted base is
	(1)	between 6 and 7 (2)	between 10 and 11
	(3)	between 7 and 8 (4)	between 5 and 6
40.		ectrolysis of acidulated water, it is desired Γ .P. condition. The current to be passed is	
	(1)	19.3 Amp (2)	0.965 Amp
	(3)	1.93 Amp (4)	9.65 Amp
41.	The one	which decreases with dilution is	
	(1)	Specific conductance (2)	Equivalent conductance
	(3)	Molar conductance (4)	
		a boungment and to the	
42.	which m	oressure of pure 'A' is 70 mm of Hg at 25 ole fraction of A is 0.8. If the vapour pre vapour pressure of pure 'B' at 25 °C is	
	(1)	70 mm (2)	140 mm
	(3)	28 mm (4)	56 mm
43.	A 6% sol	ution of urea is isotonic with me and the	
	(1)	6% solution of Glucose (2)	25% solution of Glucose
	(3)	1 M solution of Glucose (4)	0.05 M solution of Glucose

		Space For Rough W	Tout-
	(4)	decreases electron density at meta position	on which we have the mo
	(3)	decreases electron density at ortho and p	ara positions
	(2)	increases electron density at ortho and pa	ara positions
	(1)	increases electron density at meta position	on
47.	In electro	ophillic aromatic substitution reaction, the	nitro group is meta directing because it
	(3)	AB ₂ (4)	A ₃ B
	(1)	AB (2)	AB ₃
46.	lattice po	ound of 'A' and 'B' crystallises in a cubic pints at the corners of the cube. The 'B' at e probable empirical formula of the compo	oms occupy the centre of each face of the
	(3)	$\Delta H = 0 \tag{4}$	$\Delta E = 0$
	(1)	***	
45.	For the re	eaction $H_2O(l) \rightleftharpoons H_2O(g)$ at 373 K and	one atmospheric pressure
	(4)	to minimise the snow fall.	
	(3)	to minimise the wear and tear of the road	
	(2)	to minimise the accumulation of dust on	the road
	(1)	to minimise pollution	
44.	In countr	ries nearer to polar region, the roads are sp	For 1, 10 1, 10 1

48.	CH ₃ COO	$DH \xrightarrow{LiA/H_4} X \xrightarrow{Ct} 300$	$\stackrel{1}{\circ}$ Y $\stackrel{\text{dilute}}{\sim}$ NaOH	Z		
	In the ab	ove reaction Z is				
	(1)	Ketol		(2)	Acetal	
	(3)	Butanol		(4)	Aldol	
49.	The best		ersion of an a	lcohol	into an alky	yl chloride is by treating the
	(1)	SOCl ₂ in presence of	of pyridine			
	(2)	Dry HCl in the prese	ence of anhydr	rous Zi	nCl_2	
	(3)	PCl ₃				
	(4)	PCl ₅				
)				
50.	The elec	rophile involved in th	e sulphonation	n of Be	nzene is	
	(1)	H ₃ O		(2)	SO ₃	
	(3)	SÖ _{3 salle molecul} T		(4)	DUA.	
51.	The carb	on-carbon bond lengtl	h in Benzene i	S		
	(1)	in between C ₂ H ₆ and	d C ₂ H ₂	(2)	in between	C ₂ H ₄ and C ₂ H ₂
	(3)	in between C ₂ H ₆ and	d C ₂ H ₄	(4)	same as in	C_2H_4
52.		pound which is not and calcium acetate is	formed during	g the o	lry distillati	on of a mixture of calcium
	(1)	Propanone		(2)	Ethanal	
	(3)	Methanal		(4)	Propanal	

53.	An organic compound X is oxidised by using acidified K2Cr2O7. The product obtained
	reacts with Phenyl hydrazine but does not answer silver mirror test. The possible structure of X is

(2) CH₃CHO

(4) $CH_3 - C - CH_3$

54. The reaction involved in the oil of Winter Green test is Salicylic acid. $\xrightarrow{\Delta}$ Conc. H_2SO_4 product. The product is treated with Na_2CO_3 solution. The missing reagent in the above reaction is

(1) Ethanol

(2) Methanol

(3) Phenol

(4) NaOH

55. The compound which forms acetaldehyde when heated with dilute NaOH is

(1) 1 Chloro ethane

(2) 1, 2 Dichloro ethane

(3) 1, 1 Dichloro ethane

(4) 1, 1, 1 Trichloro ethane

56. Arrange the following in the increasing order of their basic strengths:
CH₃NH₂, (CH₃)₂NH, (CH₃)₃N, NH₃

(1) $(CH_3)_3N < NH_3 < CH_3NH_2 < (CH_3)_2 NH$

(2) $CH_3NH_2 < (CH_3)_2NH < (CH_3)_3N < NH_3$

(3) $NH_3 < (CH_3)_3N < (CH_3)_2NH < CH_3NH_2$

 $(4) \quad \mathrm{NH_3} < (\mathrm{CH_3})_3 \mathrm{N} < \mathrm{CH_3} \mathrm{NH_2} < (\mathrm{CH_3})_2 \mathrm{NH}$

(1)	Ghee	(2) Groundnut oil	
(3)	Sunflower oil	(4) Ginger oil	
A diabeti	ic person carries a pocket o	f Glucose with him always, because	
(1)	Glucose reduces the blood	d sugar level.	
(2)	Glucose increases the blo	od sugar level almost instantaneousl	y.
(3)	Glucose reduces the blood	d sugar level slowly.	
(4)	Glucose increases the blo	od sugar level slowly.	
		ino acids. The maximum number of	tripeptides that can
(1)	7465	(2) 5360	
(3)	8000	(4) 6470	
Cooking	is fast in a pressure cooker	, because	
(1)	food is cooked at constant	t volume.	
(2)	loss of heat due to radiation	on is minimum.	
(3)	food particles are effective	ely smashed.	
(4)	water boils at higher temp	perature inside the pressure cooker.	
	a make characteristics		
	(3) A diabete (1) (2) (3) (4) There are be obtain (1) (3) Cooking (1) (2) (3)	(3) Sunflower oil A diabetic person carries a pocket of (1) Glucose reduces the blood (2) Glucose increases the blood (3) Glucose reduces the blood (4) Glucose increases the blood (5) Glucose increases the blood (6) Glucose increases the blood (7) Glucose increases the blood (8) Glucose increases the blood (9) Glucose increases the blood (1) Glucose increases the blood (2) Increases the blood (3) Food increases the blood (4) Glucose increases the blood (5) Glucose increases the blood (6) Glucose increases the blood (7) Glucose increases the blood (8) Glucose increases the blood (9) Glucose increases the blood (1) Glucose increases the blood (2) Glucose increases the blood (3) Glucose increases the blood (4) Glucose increases the blood (6) Glucose increases the blood (7) Glucose increases the blood (8) Glucose increases the blood (9) Glucose increases the blood (1) Food is cooked at constant (1) Food is cooked at constant (2) Ioss of heat due to radiation (3) Food particles are effective	(3) Sunflower oil (4) Ginger oil A diabetic person carries a pocket of Glucose with him always, because (1) Glucose reduces the blood sugar level. (2) Glucose increases the blood sugar level almost instantaneousl. (3) Glucose reduces the blood sugar level slowly. (4) Glucose increases the blood sugar level slowly. There are 20 naturally occurring amino acids. The maximum number of be obtained is (1) 7465 (2) 5360 (3) 8000 (4) 6470 Cooking is fast in a pressure cooker, because (1) food is cooked at constant volume. (2) loss of heat due to radiation is minimum. (3) food particles are effectively smashed.

57. The one which has least Iodine value is

SUBJECT	TIME
BIOLOGY	10.30 A.M. TO 11.50 A.M.

1	MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING
	60	80 MINUTES	70 MINUTES

MENTION YOUR	QUESTION BOO	KLET DETAILS	
CET NUMBER	VERSION CODE	SERIAL NUMBER	
	A - 1	416449	
	12	410445	

DO's:

- 1. Check whether the CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- This Question Booklet is issued to you by the invigilator after the 2nd Bell i.e., after 10.30 a.m.
- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet.
- The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 5. Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'TS:

- THE TIMING MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED.
 MUTILATED/SPOILED.
- Until the 3rd Bell is rung at 10.40 a.m.:
 - Do not remove the seal / staple present on the right hand side of this question booklet.
 - · Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

INSTRUCTIONS TO CANDIDATES

- 1. This question booklet contains 60 questions and each question will have four different options / choices.
- After the 3rd Bell is rung at 10.40 a.m., remove the seal / staple present on the right hand side of this question booklet and start answering on the OMR answer sheet.
- During the subsequent 70 minutes:
 - Read each question carefully.
 - Choose the correct answer from out of the four available options / choices given under each question.
 - Completely darken/shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN against the
 question number on the OMR answer sheet.

CORRECT METHOD OF SHADING THE CIRCLE ON THE OMR SHEET IS SHOWN BELOW:

- Please note that even a minute unintended ink dot on the OMR sheet will also be recognised and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- Use the space provided on each page of the question booklet for Rough work AND do not use the OMR answer sheet for the same.
- After the last bell is rung at 11.50 a.m., stop writing on the OMR answer sheet and affix your LEFT HAND THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- 7. Hand over the OMR ANSWER SHEET to the room invigilator as it is.
- After separating and retaining the top sheet (KEA Copy), the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of One year.

1.	Which of	the following hormones does not naturally occur in plants?
	(1)	IAA (2) GA
	(3)	ABA (4) 2, 4 – D
2.		uantity of fluid is filtered every day by the nephrons in the kidneys. Only about s excreted as urine. The remaining 99% of the filtrate
	(1)	is lost as sweat and an additional and a supply a s
	(2)	is stored in the urinary bladder
	(3)	is reabsorbed into the blood
	(4)	gets collected in the renal pelvis
3.	When DN	IA replication starts
	(1)	The hydrogen bonds between the nucleotides of two strands break.
	(2)	The phosphodiester bonds between the adjacent nucleotides break.
	(3)	The bonds between the nitrogen base and deoxyribose sugar break.
	(4)	The leading strand produces okazaki fragments.
4.	Fleshy fru	nits with stony endocarp are called
	(1)	Berries (2) Pomes and the second of the seco
	(3)	Drupes (4) Capsules
		makes and Miller will be a first of the many marks and the control of the little of th
5.	Which stat	ement about photosynthesis is false?
	(1)	Photosynthesis is a redox process in which water is oxidised and carbon dioxide is reduced.
	(2)	The enzymes required for carbon fixation are located only in the grana of chloroplasts.
	(3)	In green plants, both PS I and PS II are required for the formation of NADPH + H ⁺ .
	(4)	The electron carriers involved in photophosphorylation are located on the thylakoid membranes

6.	Darwinisi	n explains all the follow	wing except			
	(1)	Organisms tend to pro	oduce more	number of offspring than can survive		
	(2)	Offspring with better environment	r traits that	overcome competition are best suited	for the	
	(3)	Variations are inherit	ed from pare	rents to offspring through genes		
	(4)	Within each species,	there are var	riations		
7.		The state of the s		cultured to get callus by tissue culture n in the cells of the callus?	ethod.	
	(1)	21	(2)	14		
	(3)	56	(4)	28		
			n'n inay so	M sent comprise part of the latest services		
8.	flowers. A	A true breeding plant producing red flowers is crossed with a pure plant producing white flowers. Allele for red colour of flower is dominant. After selfing the plants of first filial generation, the proportion of plants producing white flowers in the progeny would be				
	(1)	$\frac{1}{4}$	(2)	$\frac{1}{3}$		
	(3)	$\frac{1}{2}$	(4)	$\frac{3}{4}$		
9.	Which of the following prevents the conversion of prothrombin to thrombin in an undamaged blood vessel?					
	(1)	Calcium ions	(2)	Thromboplastin		
	(3)	Fibrinogen	(4)	Heparin		
	The characteristic that is shared by urea, uric acid and ammonia is/are					
10.	The characteristic that is shared by urea, uric acid and ammonia is/are					
10.		y are nitrogenous waste				

C. They are all equally toxic

D. They are produced in the kidneys

(1) A and D

(2) A, C and D

(3) A only

(4) A and C

- 11. A RBC and a plant cell (with thick cell wall) are placed in distilled water. The solute concentration is the same in both the cells. What changes would be observed in them? The RBC would increase in size and burst while the plant cell would remain (1) about the same size. The plant cell would increase in size and burst while the RBC would remain (2)about the same size. Both plant cell and RBC would decrease in size and collapse. (3) Both plant cell and RBC would not undergo any change. (4) Which of the following hormones does not contain a polypeptide? (1) Oxytocin (2) Insulin (3) Antidiuretic hormone (4) Prostaglandin 13. Ribose sugar is present in (1) RNA only RNA polymerase and ATP RNA and ATP (3) RNA polymerase, RNA and ATP
- 14. Most of the endangered species are the victims of
 - (1) Habitat destruction
 - (2) Over-hunting
 - (3) Acid rain
 - (4) Competition with introduced species

- 15. Damage to thymus in a child may lead to
 - (1) a reduction in the haemoglobin content in blood
 - (2) a reduction in the amount of plasma proteins
 - (3) loss of antibody mediated immunity
 - (4) loss of cell mediated immunity
- 16. The diagram of the section of a maize grain is given below. Identify the parts labelled A, B, C and D.

- (1) A Cotyledon, B Coleoptile, C Scutellum, D Epithelium
- (2) A Endosperm, B Coleoptile, C Scutellum, D Epithelium
- (3) A Endosperm, B Coleorrhiza, C Scutellum, D Epithelium
- (4) A Endosperm, B Coleoptile, C Scutellum, D Aleurone layer
- 17. Examples for lateral meristems are
 - (1) Fascicular cambium and procambium
 - (2) Procambium and dermatogen
 - (3) Fascicular cambium and cork cambium
 - (4) Phellogen and procambium

18.	Vitellog	enesis occurs during the formation of
	(1	
	(2	
	(3) Secondary oocyte in the fallopian tube
	(4	Primary oocyte in the Graafian follicle
19.		rium is capable of withstanding extreme heat, dryness and toxic chemicals. This is that it is probably able to form
	(1) Endospores
	(2) Endotoxins
	(3) Endogenous buds
	(4	A thick peptidoglycan wall
20.	In the ab (1)	
21.	The gree	atest threat to genetic diversity in agricultural crops is
<i>2</i> 1.	(1	are a digitar place of the property of the pro
	(2	such a such a Guinni Lucide - Dealth a tribut - II sur a fel al
	(3	
	(4	extensive use of insecticides and pesticides
22.	Nosema	bombycis which causes pebrine in silk worms is a
	(1) Virus (2) Bacterium
	(3)) Protozoan (4) Fungus

- 23. Palaeontologists unearthed a human skull during excavation. A small fragment of the scalp tissue was still attached to it. Only little DNA could be extracted from it. If the genes of the ancient man need to be analysed, the best way of getting sufficient amount of DNA from this extract is
 - (1) Subjecting the DNA to polymerase chain reaction
 - (2) Subjecting the DNA to gel electrophoresis
 - (3) Treating the DNA with restriction endonucleases
 - (4) Hybridising the DNA with a DNA probe
- 24. Which of the following would be in insignificant amount in xylem sap?
 - (1) Nitrates

(2) Phosphates

(3) Water

- (4) Sugar
- 25. If the person shows the production of interferons in his body, chances are that he is suffering from
 - (1) Malaria

(2) Measles

(3) Tetanus

- (4) Anthrax
- 26. The RER in the cell synthesised a protein which would be later used in building the plasma membrane. But it is observed that the protein in the membrane is slightly different from the protein made in the RER. The protein was probably modified in another cell organelle. Identify that organelle in the given diagram.

(1) A

(2) B

(3) C

(4) D

Space For Rough Work

27.	The respi	ratory quotient du	ring cellular	respi	ration would depen	d on
	(1)	the nature of th	e substrate			
	(2)	the amount of carbon dioxide released				
	(3)	the amount of o	xygen utilise	d		
	(4)	the nature of en	zymes involv			
28.	Which of	the following is r	not a green ho	ouse g	gas ?	
	(1)	Carbon monoxi	ide	(2)	Methane	
	(3)	Oxygen		(4)	Water vapour	
29.	mothers					ners were colour blind and obability of their daughters
	(1)	75 %		(2)	0 %	
	(3)	25 %		(4)	50 %	
30.	An anim	al which has both	exoskeletal a	nd en	doskeletal structur	es is
	(1)	Tortoise		(2)	Frog	
	(3)	Jelly fish		(4)	Fresh water muss	el digitation com all angle tall y breakt
31.					s in metaphase of ch of the secondary	first meiotic division. What spermatocyte?
	(1)	8		(2)	16	
	(3)	24		(4)	32	
32.	Identify	the group which ir	ncludes anima	ıls all	of which give birt	h to young ones directly.
	(1)	Platypus, Pengu	uin, Bat, Hipp	opot	amus	
	(2)	Shrew, Bat, Kiv	wi, Cat			
	(3)	Lion, Whale, O	strich, Bat			
	(4)					
	1.1					

33. Compare the statements A and B:

Statement A: Blood sugar level falls rapidly after hepatectomy.

Statement B: The glycogen of the liver is the principal source of blood sugar.

Select the correct description:

- (1) Statement A is correct and B is wrong.
- (2) Statement A is wrong and B is correct.
- (3) Both the statements A and B are correct and B is not the reason for A.
- (4) Both the statements A and B are correct and B is the reason for A.

34. What is/are true about heart wood?

- It does not help in water conduction.
- B. It is also called alburnum.
- C. It is dark in colour but very soft.
- D. It has tracheary elements which are filled with tannin, resin, etc.
 - (1) A and D
- (2) B and D

(3) A, B and C

(4) B, C and D

35. Compare the statements A and B.

Statement A: Auxins promote apical dominance by suppressing the activity of lateral buds.

Statement B: In moriculture, periodic pruning of shoot tips is done to make mulberry plants bushy.

Select the correct description:

- (1) Statement A is correct and B is wrong.
- (2) Statement A is wrong and B is correct.
- (3) Both the statements A and B are correct and A is not the reason for B.
- (4) Both the statements A and B are correct and A is the reason for B.

36. Bryophytes resemble algae in the following aspects:

- Differentiation of plant body into root, stem and leaves and autotrophic nutrition.
- (2) Thallus like plant body, presence of roots and autotrophic nutrition.
- (3) Thallus like plant body, lack of vascular tissues and autotrophic nutrition.
- (4) Filamentous body, presence of vascular tissues and autotrophic nutrition.

37. Compare the statements A and B.

Statement A: A monocistronic mRNA can produce several types of polypeptide chains.

Statement B: The terminator codon is present on the mRNA.

Select the correct description:

- (1) Statement A is correct and B is wrong.
- (2) Statement A is wrong and B is correct.
- (3) Both the statements A and B are correct.
- (4) Both the statements A and B are wrong.

38. Stoma opens when

- (1) Guard cells swell by endosmosis due to influx of hydrogen ions (protons)
- (2) Guard cells swell by endosmosis due to efflux of potassium ions.
- (3) Guard cells swell due to a decrease in their water potential.
- (4) Guard cells swell due to an increase in their water potential.

39. Which of the following is properly matched?

- (1) Echinodermata Asteroidea Star fish
- Arthropoda Insecta Spider
- (3) Mollusca Cephalopoda Unio
- (4) Platyhelminthes Trematoda Planaria

40.				ng from an abnormally low body temperature,
		Pons		scan would probably show a tumor in Cerebellum
			(4)	
	(3)	Hypothalamus	(4)	militaria il terrora al teste
41.	Identify th	ne incorrect statement wi	th respect	to Calvin cycle.
	(1)			oound formed is phosphoglycerate.
	(2)		The second second	sed during carbon fixation.
	(3)			eaction is used to reduce diphosphoglycerate.
	(4)	The carboxylation of Ru		
42.	The agent	s which are known to cau	ise CJD ar	e HIPUNESTE HERBYTE JULY JOHN SE
	(1)	A class of bacteria	(2)	A class of viruses
	(3)	Fungi	(4)	Protein particles
43.	In crop in	provement programmes,	virus-free	clones can be obtained through
	(1)	Hybridization	(2)	Embryo culture
	(3)	Shoot apex culture	(4)	Grafting
44.		is suffering from free of eyes and watery eyes.		sodes of nasal discharge, nasal congestion, the symptoms of
	(1)	Bronchitis	(2)	Rhinitis Harris to the sea mela A The
	(3)	Bronchial carcinoma	(4)	Cyanosis
45.		ortant events in the hum in a proper sequence.	an female	reproductive cycle are given below. Arrange
	A - Secre	etion of FSH, B - Grov	vth of cor	rpus luteum, C - Growth of the follicle and

oogenesis, D - Ovulation, E - Sudden increase in the levels of LH

(1)
$$A \rightarrow C \rightarrow E \rightarrow D \rightarrow B$$

$$(1) \quad A \rightarrow C \rightarrow E \rightarrow D \rightarrow B \qquad (2) \quad A \rightarrow D \rightarrow C \rightarrow E \rightarrow B$$

(3)
$$B \rightarrow A \rightarrow C \rightarrow D \rightarrow E$$

$$(4) \quad C \to A \to D \to B \to E$$

Space For Rough Work

11

46.	Compare	the statements A and B.					
	Statemen	t A: Ranikhet disease is the	e disea	se of poultry.			
	Statemen	Statement B: It is caused by a virus.					
	Select th	e correct description :					
	(1)	Statement A is correct and	B is w	rong. 120 complate to your air oil winealt			
	(2)	Statement A is wrong and I	B is co	rrect.			
	(3)	Both the statements A and	B are	wrong.			
	(4)	Both the statements A and	B are o	correct.			
47.	given belo	ow, the possible genotypes of	the pa				
	8.6			IAIA and IOIO			
	(3)	I ^A I ^O and I ^O I ^O	(4)	IAIA and IAIO			
48.	A dorsal l	norn is present on the	of m	ulberry silk worm (caterpillar).			
	(1)	8 th abdominal segment	(2)	5 th abdominal segment			
	(3)	2 nd thoracic segment	ej mje	Head			
49.		has an androecium with n	onade	lphous stamens, monothecous and reniform ation.			
	The plant	could be					
	(1)	Vinca					
	(3)	Hibiscus	(4)	Rauwolfia			
50.	Transpirat	tion facilitates					
	(1)			Absorption of water by roots			
	(3)	Excretion of minerals					

The cross section of the body of an invertebrate is given below. Identify the animal which has this body plan.

- (1) Round worm
- (2) Planaria

(3) Earthworm

- (4) Cockroach
- 52. In an experiment demonstrating the evolution of oxygen in Hydrilla, Sodium bicarbonate is added to water in the experimental set-up. What would happen if all other conditions are favourable?
 - Amount of oxygen evolved increases as the availability of carbon dioxide increases.
 - (2) Amount of oxygen evolved decreases as the availability of carbon dioxide increases.
 - (3) Amount of oxygen evolved increases as carbon dioxide in water is absorbed by sodium bicarbonate.
 - (4) Amount of oxygen evolved decreases as carbon dioxide in water is absorbed by sodium bicarbonate.
- 53. Which substance is in higher concentration in blood than in glomerular filtrate?
 - (1) Glucose

- (2) Urea
- (3) Plasma proteins
- (4) Water
- 54. All the following are included under in situ conservation except
 - (1) Biosphere reserve
- (2) National park

(3) Sanctuary

(4) Botanical garden

55. Match the compounds given in column-I with the number of carbon atoms present in them which are listed under column-II. Choose the answer which gives the correct combination of alphabets of the two columns.

	Column – I	Column – II
A.	Oxaloacetate p.	6 – C compound
B.	Phosphoglyceraldehyde q.	5 – C compound
C.	Isocitrate r.	4 – C compound
D.	α-Ketoglutarate s.	3 - C compound
	A Committee of the control of the co	2 - C compound
	(1) $A = r, B = s, C = p, D = q$	(2) $A = r, B = t, C = p, D = q$
	(3) $A = q, B = s, C = p, D = t$	(4) $A = s, B = t, C = q, D = r$

- 56. Identify the correctly matched pair/pairs of the germ layers and their derivatives :
 - A. Ectoderm Epidermis
 - B. Endoderm Dermis
 - C. Mesoderm Muscles
 - D. Mesoderm Notochord
 - E. Endoderm Enamel of teeth
 - (1) A, B, C and E only
- (2) A and D only
- (3) A and B only
- (4) A, C and D only
- 57. Identify the correct statement:
 - (1) The age of the plant can be determined by its height.
 - (2) Healing of damaged tissue is because of the activity of sclerenchyma cells.
 - (3) Grafting is difficult in monocot plants as they have scattered vascular bundles.
 - (4) Because of marked climatic variations, plants growing near the sea shore do not produce annual rings.

- 58. Blood stains are found at the site of a murder. If DNA profiling technique is to be used for identifying the criminal, which of the following is ideal for use?
 - (1) Erythrocytes
- (2) Leucocytes

(3) Platelets

(4) Serum

- 59. During endocytosis,
 - (1) the cell digests itself
 - (2) the cell engulfs and internalises materials using its membrane
 - (3) the cell enables the extracellular digestion of large molecules
 - (4) the cell divides its cytoplasm during mitosis
- **60.** Match the names of the economically important plants (or their products) listed in Column-I with the families to which they belong given in column-II. Choose the answer which gives the correct combination of alphabets of the two columns:

	Column – I			Column - II
A.	Sunflower		p.	Acanthaceae
В.	Tulsi		q.	Compositae
C.	Coffee		r.	Labiatae
D.	Vasaka		s.	Rubiaceae
		e	t.	Euphorbiaceae

- (1) A = q, B = r, C = s, D = p
- (2) A = q, B = s, C = p, D = t
- (3) A = s, B = r, C = p, D = q
- (4) A = r, B = t, C = s, D = q