SUBJECT : PHYSICS	DAY-2
SESSION : MORNING	TIME: 10.30 A.M. TO 11.50 A.M.

MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING
60	80 MINUTES	70 MINUTES

QUESTION BOO	KLET DETAILS
VERSION CODE	SERIAL NUMBER
A - 1	472657

DOs:

- 1. Check whether the CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- 2. This Question Booklet is issued to you by the invigilator after the 2nd Bell i.e., after 10.30 a.m.
- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet.
- 4. The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 5. Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'TS:

- 1. THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED/MUTILATED/SPOILED.
- 2. The 3rd Bell rings at 10.40 a.m., till then;
 - Do not remove the paper seal present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

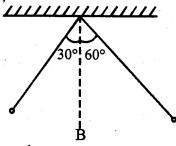
- 1. This question booklet contains 60 questions and each question will have one statement and four distracters. (Four different options / choices.)
- 2. After the 3rd Bell is rung at 10.40 a.m., remove the paper seal on the right hand side of this question booklet and check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced by a complete test booklet. Read each item and start answering on the OMR answer sheet.
- 3. During the subsequent 70 minutes:
 - Read each question carefully.
 - Choose the correct answer from out of the four available distracters (options / choices) given under each question / statement.
 - Completely darken / shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN
 against the question number on the OMR answer sheet.

Correct Method of shading the circle on the OMR answer sheet is as shown below:

- 4. Please note that even a minute unintended ink dot on the OMR answer sheet will also be recognised and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- 5. Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
- 6. After the last bell is rung at 11.50 a.m., stop writing on the OMR answer sheet and affix your LEFT HAND THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- 7. Hand over the **OMR ANSWER SHEET** to the room invigilator as it is.
- 8. After separating the top sheet (Our Copy), the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of ONE year.

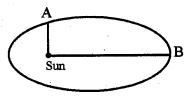
- 1. Which one of the following is NOT correct?
 - (1) Dimensional formula of thermal conductivity (K) is $M^{1}L^{1}T^{-3}K^{-1}$
 - (2) Dimensional formula of potential (V) is $M^1L^2T^3A^{-1}$
 - (3) Dimensional formula of permeability of free space (μ_0) is $M^1L^1T^{-2}A^{-2}$
 - (4) Dimensional formula of RC is $M^0L^0T^{-1}$
- 2. In a lift moving up with an acceleration of 5 ms^{-2} , a ball is dropped from a height of 1.25 m. The time taken by the ball to reach the floor of the lift is (nearly) $(g = 10 \text{ ms}^{-2})$
 - (1) 0.3 second

(2) 0.2 second


(3) 0.16 second

- (4) 0.4 second
- 3. A gun fires a small bullet with kinetic energy K. Then kinetic energy of the gun while recoiling is
 - (1) K

(2) more than K


(3) less than K

- (4) \sqrt{K}
- 4. From a fixed support, two small identical spheres are suspended by means of strings of length 1 m each. They are pulled aside as shown and then released. B is the mean position. Then the two spheres collide,

- (1) at B after 0.25 second
- (2) at B after 0.5 second
- (3) on the right side of B after some time
- (4) on the right side of B when the strings are inclined at 15° with B

- 5. A truck accelerates from speed v to 2v. Work done in during this is
 - (1) three times as the work done in accelerating it from rest to v.
 - (2) same as the work done in accelerating it from rest to v.
 - (3) four times as the work done in accelerating it from rest to v.
 - (4) less than the work done in accelerating it from rest to v.
- 6. Earth is moving around the Sun in elliptical orbit as shown. The ratio of OB and OA is R. Then the ratio of Earth at A and B is

(1) R^{-1}

 $(2) \quad \sqrt{R}$

(3) R

- (4) $R^{2/3}$
- 7. A projectile is projected at 10 ms⁻¹ by making at an angle 60° to the horizontal. After some time its velocity makes an angle of 30° to the horizontal. Its speed at this instant is
 - (1) $\frac{10}{\sqrt{3}}$

(2) $10\sqrt{3}$

 $(3) \quad \frac{5}{\sqrt{3}}$

- (4) $5\sqrt{3}$
- 8. For which combination of working temperatures of source and sink, the efficiency of Carnot's heat engine is maximum?
 - (1) 600 K, 400 K

(2) 400 K, 200 K

(3) 500 K, 300 K

(4) 300 K, 100 K

- 9. A solid cylinder of radius R made of a material of thermal conductivity K_1 is surrounded by a cylindrical shell of inner radius R and outer radius 2R made of a material of thermal conductivity K_2 . The two ends of the combined system are maintained at two different temperatures. Then there is no loss of heat across the cylindrical surface and the system is in steady state. The effective thermal conductivity of the system is
 - (1) $K_1 + K_2$

(2) $\frac{K_1 K_2}{K_1 + K_2}$

(3) $\frac{3K_1 + K_2}{4}$

- (4) $\frac{K_1 + 3K_2}{4}$
- 10. Two stars A and B radiate maximum energy at the wavelengths of 360 nm and 480 nm respectively. Then the ratio of the surface temperatures of A and B is
 - (1) 3:4

(2) 81:256

(3) 4:3

- (4) 256:81
- 11. Two solids P and Q float in water. It is observed that P floats with half of its volume immersed and Q floats with $\frac{2}{3}^{rd}$ of its volume is immersed. The ratio of densities of P and Q is
 - (1) 4/3

(2) 3/4

(3) 2/3

- (4) 3/2
- 12. The equation of a transverse wave is given by $y = 0.05 \sin \pi (2t 0.02x)$, where x, y are in metre and t is in second. The minimum distance of separation between two particles which are in phase and the wave velocity are respectively _____
 - (1) $50 \text{ m}, 50 \text{ ms}^{-1}$

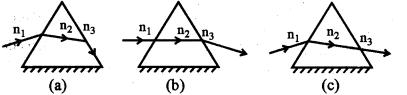
(2) 100 m, 100 ms⁻¹

(3) 50 m, 100 ms⁻¹

- (4) 100 m, 50 ms⁻¹
- 13. The frequency of the second overtone of the open pipe is equal to the frequency of the first overtone of the closed pipe. The ratio of the lengths of the open pipe and the closed pipe is
 - (1) 2:1

(2) 1:2

(3) 1:3


(4) 3:1

- 14. A person with vibrating tuning fork of frequency 338 Hz is moving towards a vertical wall with a speed of 2 ms⁻¹. Velocity of sound in air is 340 ms⁻¹. The number of beats heard by that person per second is
 - (1) 2

(2) 4

(3) 6

- (4) 8
- 15. Pick out the WRONG statement from the following:
 - (1) Lateral shift increases as the angle of incidence increases.
 - (2) Lateral shift increases as the value of refractive index increases.
 - (3) Normal shift decreases as the value of refractive index increases.
 - (4) Both normal shift and lateral shift are directly proportional to the thickness of the medium.
- 16. The refraction through the prisms are as shown. Pick out the WRONG statement from the following. Path of the light ray in

- (1) a is correct if $n_2 > n_1$ and $n_2 > n_3$
- (2) b is correct if $n_1 = n_2$ and $n_2 > n_3$
- (3) c is correct if $n_2 < n_1$ and $n_2 = n_3$
- (4) d is correct if $n_1 > n_2$ and $n_2 < n_3$
- 17. The distance between an object and its real image produced by a converging lens is 0.72 m. The magnification is 2. What will be the magnification when the object is moved by 0.04 m towards the lens?
 - (1) 2

(2) 4

(3) 3

(4) 6

Space For Rough Work

A-1

(d)

18. The speed of light in media M_1 and M_2 are 1.5×10^8 ms⁻¹ and 2×10^8 ms⁻¹ respectively. A ray travels from medium M_1 to the medium M_2 with an angle of incidence θ . The ray suffers total internal reflection. Then the value of the angle of incidence θ is

$$(1) > \sin^{-1}\left(\frac{3}{4}\right)$$

$$(2) < \sin^{-1}\left(\frac{3}{4}\right)$$

$$(3) = \sin^{-1}\left(\frac{4}{3}\right)$$

$$(4) \leq \sin^{-1}\left(\frac{3}{4}\right)$$

19. Which of the following phenomena support the wave theory of light?

- (a) scattering
- (b) interference
- (c) diffraction

(d) velocity of light in a denser medium is less than the velocity of light in the rarer medium

(1) a, b, c

(2) a, b, d

(3) b, c, d

(4) a, c, d

20. White light reflected from a soap film (Refractive Index = 1.5) has a maxima at 600 nm and a minima at 450 nm with no minimum in between. Then the thickness of the film is

- $\sim 10^{-7} \, \text{m}.$
- $\overline{(1)}$ 1

(2) 2

(3) 3

(4) 4

21. A cylindrical tube of length 0.2 m and radius R with sugar solution of concentration 'C' produce a rotation of θ in the plane of vibration of a plane polarized light. The same sugar solution is transferred to another tube of length 0.3 m of same radius. The remaining gap is filled by distilled water. Now the optical rotation produced is

(1) **θ**

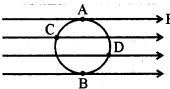
(2) $2\frac{\theta}{3}$

 $(3) \quad 3\frac{\theta}{2}$

 $(4) \quad 9\frac{\theta}{4}$

- 22. Radii of curvature of a converging lens are in the ratio 1:2. Its focal length is 6 cm and refractive index is 1.5. Then its radii of curvature are _____ respectively.
 - (1) 9 cm and 18 cm

(2) 6 cm and 12 cm


(3) 3 cm and 6 cm

- (4) 4.5 cm and 9 cm
- 23. A small oil drop of mass 10^{-6} kg is hanging in at rest between two plates separated by 1 mm having a potential difference of 500 V. The charge on the drop is _____ (g = 10 ms⁻²)
 - (1) $2 \times 10^{-9} \text{ C}$

(2) $2 \times 10^{-11} \text{ C}$

(3) $2 \times 10^{-6} \,\mathrm{C}$

- (4) $2 \times 10^{-8} \,\mathrm{C}$
- 24. A uniform electric field in the plane of the paper as shown. Here A, B, C, D are the points on the circle. V_1 , V_2 , V_3 , V_4 are the potentials at those points respectively. Then

- $(1) \quad V_A = V_C, V_B = V_D$
- $(2) \quad V_A = V_C, V_B > V_D$
- $(3) \quad V_A > V_C, V_B > V_D$
- $(4) \quad V_A = V_B, V_C = V_D$
- 25. Two metal spheres of radii 0.01 m and 0.02 m are given a charge of 15 mC and 45 mC respectively. They are then connected by a wire. The final charge on the first sphere is $\times 10^{-3}$ C.
 - (1) 40

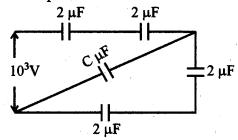
(2) 30

(3) 20

- (4) 10
- 26. Two concentric spheres of radii R and r have positive charges q_1 and q_2 with equal surface charge densities. What is the electric potential at their common centre?
 - $(1) \quad \frac{\sigma}{\epsilon_0} (R + r)$

 $(2) \quad \frac{\sigma}{\epsilon_0} (R - r)$

 $(3) \quad \frac{\sigma}{\epsilon_0} \left(\frac{1}{R} + \frac{1}{r} \right)$

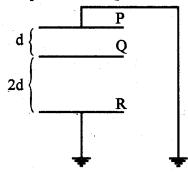

 $(4) \quad \frac{\sigma}{\epsilon_0} \left(\frac{R}{r} \right)$

- 27. When an additional charge of 2C is given to a capacitor, energy stored in it is increased by 21%. The original charge of the capacitor is
 - (1) 30 C

(2) 40 C

(3) 10 C

- (4) 20 C
- 28. When a potential difference of 10^3 V is applied between A and B, a charge of 0.75 mC is stored in the system of capacitors as shown. The value of C is (in μ F)



 $(1) \frac{1}{2}$

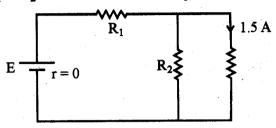
(2) 2

(3) 2.5

- (4) 3
- 29. See the diagram. Area of each plate is 2.0 m^2 and $d = 2 \times 10^{-3} \text{ m}$. A charge of $8.85 \times 10^{-8} \text{ C}$ is given to Q. Then the potential of Q becomes

(1) 13 V

(2) 10 V


(3) 6.67 V

(4) 8.825 V

Space For Rough Work

- Three conductors draw currents of 1 A, 2 A and 3 A respectively, when connected in turn **30.** across a battery. If they are connected in series and the combination is connected across the same battery, the current drawn will be

- (2) $\frac{3}{7}$ A (4) $\frac{5}{7}$ A
- In the circuit, $R_1 = R_2$. The value of E and R_1 are ____ (E EMF, R_1 resistance) 31.

 $180 \text{ V}, 60 \Omega$ (1)

(2) $120 \text{ V}, 60 \Omega$

180 V, 10 Ω (3)

- (4) $120 \text{ V}, 10 \Omega$
- Masses of three wires of copper are in the ratio of 1:3:5 and their lengths are in the ratio 32. of 5:3:1. The ratio of their electrical resistances is
 - (1) 1:3:5

(2) 5:3:1

(3) 1:15:125

- (4) 125:15:1
- For a transformer, the turns ratio is 3 and its efficiency is 0.75. The current flowing in the 33. primary coil is 2 A and the voltage applied to it is 100 V. Then the voltage and the current flowing in the secondary coil are _____ respectively.
 - (1) 150 V, 1.5 A

(2) 300 V, 0.5 A

(3) 300 V, 1.5 A (4) 150 V, 0.5 A

34. A proton and helium nucleus are shot into a magnetic field at right angles to the field with same kinetic energy. Then the ratio of their radii is

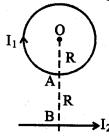
(1) 1:1

(2) 1:2

(3) 2:1

(4) 1:4

35. Two identical circular coils A and B are kept on a horizontal tube side by side without touching each other. If the current in the coil A increases with time, in response, the coil B


(1) is attracted by A

(2) remains stationary

(3) is repelled

(4) rotates

36. In the diagram, I_1 , I_2 are the strength of the currents in the loop and straight conductors respectively. OA = AB = R. The net magnetic field at the centre O is zero. Then the ratio of the currents in the loop and the straight conductors is

(1) π

(2) 2π

(3) $\frac{1}{\pi}$

 $(4) \quad \frac{1}{2\pi}$

37. Two tangent galvanometers, which are identical except in their number of turns, are connected in parallel. The ratio of their resistances of the coils is 1:3. If the deflections in the two tangent galvanometers are 30° and 60° respectively, then the ratio of their number of turns is

(1) 1:1

(2) 3:1

(3) 1:2

(4) 1:6

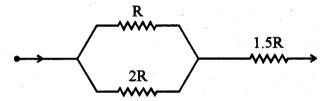
- 38. A charged particle with a velocity $2 \times 10^3 \text{ ms}^{-1}$ passes undeflected through electric field and magnetic fields in mutually perpendicular directions. The magnetic field is 1.5 T. The magnitude of electric field will be
 - (1) $1.5 \times 10^3 \,\mathrm{NC}^{-1}$

(2) $2 \times 10^3 \text{ NC}^{-1}$

(3) $3 \times 10^3 \text{ NC}^{-1}$

- (4) $1.33 \times 10^3 \text{ NC}^{-1}$
- 39. In R-L-C series circuit, the potential differences across each element is 20 V. Now the value of the resistance alone is doubled, then P.D. across R, L and C respectively
 - (1) 20 V, 10 V, 10 V

(2) 20 V, 20 V, 20 V


(3) 20 V, 40 V, 40 V

- (4) 10 V, 20 V, 20 V
- **40.** A rectangular coil of 100 turns and size 0.1 m × 0.05 m is placed perpendicular to a magnetic field of 0.1 T. If the field drops to 0.05 T in 0.05 second, the magnitude of the e.m.f. induced in the coil is
 - $(1) \quad \sqrt{2}$

(2) $\sqrt{3}$

(3) $\sqrt{0.6}$

- (4) $\sqrt{6}$
- 41. In the circuit diagram, heat produces in R, 2R and 1.5R are in the ratio of

(1) 4:2:3

(2) 8:4:27

(3) 2:4:3

(4) 27:8:4

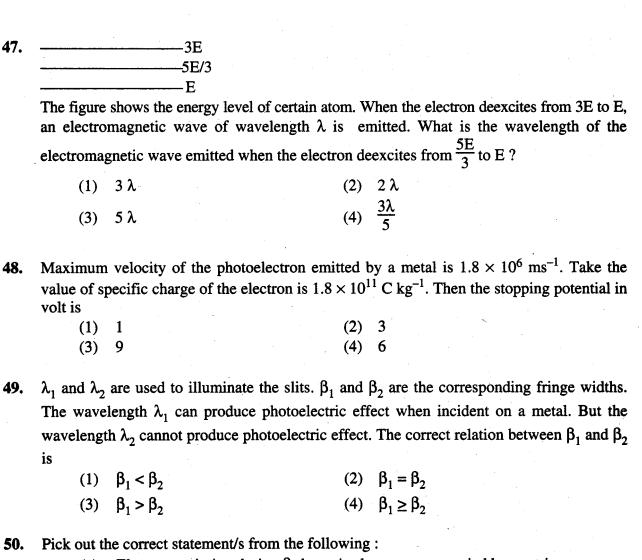
Space For Rough Work

42.	A series combination of resistor (R), capacitor (C) is connected to an A.C. source of
	angular frequency 'w'. Keeping the voltage same, if the frequency is changed to w/3, the
	current becomes half of the original current. Then the ratio of the capacitive reactance and
	resistance at the former frequency is

(1)
$$\sqrt{0.6}$$

(2)
$$\sqrt{3}$$

(3)
$$\sqrt{2}$$


(4)
$$\sqrt{6}$$

- 43. Pick out the correct statement from the following:
 - (1) Mercury vapour lamp produces line emission spectrum.
 - (2) Oil flame produces line emission spectrum.
 - (3) Band spectrum helps us to study molecular structure.
 - (4) Sunlight spectrum is an example for line absorption spectrum.
- 44. Light emitted during the deexcitation of electron from n = 3 to n = 2, when incident on a metal, photoelectrons are just emitted from that metal. In which of the following deexcitations photoelectric effect is not possible?
 - (1) From n = 2 to n = 1
- (2) From n = 3 to n = 1
- (3) From n = 5 to n = 2
- (4) From n = 4 to n = 3
- **45.** The additional energy that should be given to an electron to reduce its de-Broglie wavelength from 1 nm to 0.5 nm is
 - (1) 2 times the initial kinetic energy
 - (2) 3 times the initial kinetic energy
 - (3) 0.5 times the initial kinetic energy
 - (4) 4 times the initial kinetic energy
- **46.** The ionisation energy of an electron in the ground state of helium atom is 24.6 eV. The energy required to remove both the electron is
 - (1) 51.8 eV

(2) 79 eV

(3) 38.2 eV

(4) 49.2 eV

- (a) Electron emission during β-decay is always accompanied by neutrino.
- (b) Nuclear force is charge independent.
- (c) Fusion is the chief source of stellar energy.
- (1) (a), (b) are correct.
- (2) (a), (c) are correct.

(3) only (a) is correct.

(4) (b), (c) are correct.

51.	A nucleus	$_{Z}\!X^{A}$	emits	an	α-particle	with	velocity	ν.	The	recoil	speed	of	the	daughte	r
	nucleus is				,										

$$(1) \quad \frac{A-4}{4v}$$

$$(2) \quad \frac{4v}{A-4}$$

$$(4) \quad \frac{v}{4}$$

52. A radioactive substance emits 100 beta particles in the first 2 seconds and 50 beta particles in the next 2 seconds. The mean life of the sample is

(1) 4 seconds

(2) 2 seconds

(3) $\frac{2}{0.693}$ seconds

(4) 2×0.693 seconds

53. In which of the following statements, the obtained impure semiconductor is of p-type?

- (1) Germanium is doped with bismuth (2) Silicon is doped with antimony
- (3) Germanium is doped with gallium (4) Silicon is doped with phosphorus

54. The width of the depletion region in a P-N junction diode is

- (1) increased by reverse bias
- (2) increased by forward bias
- (3) decreased by reverse bias
- (4) independent of the bias voltage

55. When the transistor is used as an amplifier

- (1) Emitter-base junction must be reverse biased, Collector-base junction must be forward biased.
- (2) Emitter-base junction must be forward biased, Collector-base junction must be forward biased.
- (3) Emitter-base junction must be reverse biased, Collector-base junction must be reverse biased.
- (4) Emitter-base junction must be forward biased, Collector-base junction must be reverse biased.

What will are equal. (1) (3) The bindi and 7 Me	be the total activity 200 dis/min 500 dis/min ng energy/nucleon V respectively. If the released is 26.9 MeV	(2) (4) of deuteron $\binom{1}{1}H^2$) a	250 dis/min 150 dis/min nd the helium atom s fuse to form a sin 25.8 MeV	er of atoms in A and B in $({}_{2}He^{4})$ are 1.1 MeV igle helium atom, then
What will are equal. (1) (3) The bindi and 7 Me the energy (1)	be the total activity 200 dis/min 500 dis/min ng energy/nucleon V respectively. If the released is 26.9 MeV	(2) (4) of deuteron (1H ²) are two deuteron aton (2)	250 dis/min 150 dis/min nd the helium atom s fuse to form a sin 25.8 MeV	n (₂ He ⁴) are 1.1 MeV
What will are equal. (1) (3) The bindi and 7 Me the energy (1)	be the total activity 200 dis/min 500 dis/min ng energy/nucleon V respectively. If the released is 26.9 MeV	(2) (4) of deuteron (1H ²) are two deuteron aton (2)	250 dis/min 150 dis/min nd the helium atom s fuse to form a sin 25.8 MeV	n (₂ He ⁴) are 1.1 MeV
What will are equal. (1) (3) The bindi and 7 Me	be the total activity 200 dis/min 500 dis/min ng energy/nucleon V respectively. If the released is	(2) (4) of deuteron $\binom{1}{1}H^2$) a	250 dis/min 150 dis/min nd the helium atom s fuse to form a sin	n (₂ He ⁴) are 1.1 MeV
What will are equal. (1) (3) The bindi	be the total activity 200 dis/min 500 dis/min ng energy/nucleon	(2) (4) of deuteron $\binom{1}{1}H^2$) a	250 dis/min 150 dis/min nd the helium aton	n (₂ He ⁴) are 1.1 MeV
What will are equal. (1) (3)	be the total activity 200 dis/min 500 dis/min	(2) (4)	250 dis/min 150 dis/min	
What will are equal. (1)	be the total activity 200 dis/min	(2	250 dis/min	er of atoms in A and B
What will are equal.	be the total activity		250 dis/min	er of atoms in A and B
What will		after 4 days ? Giver		er of atoms in A and B
			life of A is 1 day a	
(3)	NAND gate	(4)	NOR gate	
(1)	AND gate		•	·
	on will serve as	is connected to b	- .	a NAND gate. The
(4)	Radioactive eleme	nt can undergo spor	itaneous fission.	
` '	0 0.		•	,
` '		_		
` '			The state of the s	
(3)	Proton	(4)	π-meson	
(1)	Neutron	(2)	Positron	
	(3) Which one (1) (2) (3) (4) The output combination (1) (3) A and B	(3) Proton Which one of the following is (1) In forward biased (2) If the packing frac (3) Binding energy is (4) Radioactive eleme The output of an OR gate combination will serve as (1) AND gate (3) NAND gate A and B are the two radioactive radioact	(3) Proton (4) Which one of the following is NOT correct? (1) In forward biased condition diode con (2) If the packing fraction is negative, the (3) Binding energy is the energy equivale (4) Radioactive element can undergo spon The output of an OR gate is connected to be combination will serve as (1) AND gate (2) (3) NAND gate (4) A and B are the two radioactive elements. The activity of 1200 disintegrations/minute. The half	 (3) Proton (4) π-meson Which one of the following is NOT correct? (1) In forward biased condition diode conducts. (2) If the packing fraction is negative, the element is stable. (3) Binding energy is the energy equivalent to mass defect. (4) Radioactive element can undergo spontaneous fission. The output of an OR gate is connected to both the inputs of combination will serve as (1) AND gate (2) NOT gate

56. Which of the following is not made by quarks?

SUBJECT: CHEMISTRY	DAY-2
SESSION: AFTERNOON	TIME: 02.30 P.M. TO 03.50 P.M.

MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING
60	80 MINUTES	70 MINUTES

MENTION YOUR	QUESTION BOO	OKLET DETAILS
CET NUMBER	VERSION CODE	SERIAL NUMBER
	A - 1	633409

DOs:

- 1. Check whether the CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- 2. This Question Booklet is issued to you by the invigilator after the 2nd Bell i.e., after 2.30 p.m.
- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet.
- 4. The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 5. Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'TS:

- 1. THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED/MUTILATED/SPOILED.
- 2. The 3rd Bell rings at 2.40 p.m., till then;
 - Do not remove the paper seal present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- 1. This question booklet contains 60 questions and each question will have one statement and four distracters. (Four different options / choices.)
- 2. After the 3rd Bell is rung at 2.40 p.m., remove the paper seal on the right hand side of this question booklet and check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced by a complete test booklet. Read each item and start answering on the OMR answer sheet.
- 3. During the subsequent 70 minutes:
 - Read each question carefully.
 - Choose the correct answer from out of the four available distracters (options / choices) given under each question / statement.
 - Completely darken / shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN against the question number on the OMR answer sheet.

Correct Method of shading the circle on the OMR answer sheet is as shown below:

- 4. Please note that even a minute unintended ink dot on the OMR answer sheet will also be recognised and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- 5. Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
- 6. After the last bell is rung at 3.50 p.m., stop writing on the OMR answer sheet and affix your LEFT HAND THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- 7. Hand over the **OMR ANSWER SHEET** to the room invigilator as it is.
- 8. After separating the top sheet (Our Copy), the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of ONE year.

 \mathbf{C}

1.	The proce	ss of zone re	efining is used in	n the purification	on of
	(1)	Al		(2)	Ge
	(3)	Cu		(4)	Ag

2. The number of water molecules present in a drop of water weighing 0.018 gm is

$$(1) \quad 6.022 \times 10^{26}$$

$$(2) \quad 6.022 \times 10^{23}$$

(3)
$$6.022 \times 10^{19}$$

(4)
$$6.022 \times 10^{20}$$

3. Empirical formula of a compound is CH₂O and its molecular mass is 90, the molecular formula of the compound is

(1)
$$C_3H_6O_3$$

(2)
$$C_2H_4O_2$$

(3)
$$C_6H_{12}O_6$$

4. Hybridised states of carbon in Graphite and Diamond are respectively

(1)
$$sp^3$$
, sp^3

$$(2) \quad sp^3, sp^2$$

$$(3) sp2, sp2$$

$$(4) sp2, sp3$$

5. The mass of 112 cm³ of NH₃ gas at STP is

Space For Rough Work

6.	IUPAC name of CH ₃ -	CH - CH ₂	$-CH - CH_3$ is
	J	1	
		OH	COOH

- (1) 4-hydroxy 1 methyl pentanoic acid
- (2) 4-hydroxy 2 methyl pentanoic acid
- (3) 2-hydroxy 4 methyl pentanoic acid
- (4) 2-hydroxy 2 methyl pentanoic acid

7. Alkali metals have negative reduction potential and hence they be
--

(1) Oxidising agents

(2) Lewis bases

(3) Reducing agents

(4) Electrolytes

8. Which of the following gases has the highest value of RMS-velocity at 298 K?

(1) CH₄

(2) CO

(3) Cl_2

(4) CO₂

9. Cycloalkane formed when 1, 4-dibromopentane is heated with Sodium is

(1) Methyl cyclobutane

(2) Cyclopentane

(3) Cyclobutane

(4) Methyl cyclopentane

10.	In the reaction, 2FeSO ₄	$+ H_2SO_4 + H_2O_2 \rightarrow$	$Fe_2(SO_4)_3 + 2H_2O_4$, the oxidizing agent is
	•	22	4 TJ Z	,

(1) FeSO₄

(2) H_2SO_4

(3) H_2O_2

(4) Both H_2SO_4 and H_2O_2

11. Given Thermochemical equation, $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(l)}$; $\Delta H = -571.6$ kJ. Heat of decomposition of water is

(1) -571.6 kJ

(2) + 571.6 kJ

(3) - 1143.2 kJ

(4) + 285.8 kJ

12. In Buna-S, the symbol 'Bu' stands for

(1) 1-Butene

(2) n-Butene

(3) 2-Butene

(4) Butadiene

13. The electronic configuration of Cu²⁺ ion is

(1) [Ar] $3d^8 4s^1$

(2) [Ar] $3d^9 4s^0$

(3) [Ar] $3d^7 4s^2$

(4) [Ar] $3d^8 4s^0$

14. The yield of the products in the reaction, $A_{2(g)} + 2B_{(g)} \leftarrow C_{(g)} + Q$. kJ would be higher at

(1) High temperature and high pressure

(2) High temperature and low pressure

(3) Low temperature and high pressure

(4) Low temperature and low pressure

15. Mesomeric effect involves

(1) delocalisation of π -electrons

(2) delocalisation of σ -electrons

(3) partial displacement of electrons

(4) delocalisation of π and σ electrons

16. Which one of the following sets of ions represents the collection of isoelectronic species?

(1)
$$K^+$$
, Cl^- , Mg^{2+} , Sc^{3+}

(2)
$$Na^+$$
, Ca^{2+} , Sc^{3+} , F^-

(3)
$$K^+$$
, Ca^{2+} , Sc^{3+} , Cl^-

(4) Na⁺, Mg²⁺, A
$$l^{3+}$$
, C l^{-}

17. Adsorption theory is applicable for

- (1) Homogeneous catalysis
- (2) Heterogeneous catalysis

(3) Autocatalysis

(4) Induced catalysis

	(1)	Chlorination followed by the reaction with alcoholic KOH.					
	(2)	Chlorination followed by the reaction with aqueous KOH.					
	(3)	Chlorination followed by Wurtz	reaction.				
	(4)	Chlorination followed by decar	ooxylation	i.			
			· Pr				
19.	Intramole	cular Hydrogen bonding is forme	d in				
	(1)	H ₂ O	(2)	Salicylaldehyde			
	(3)	NH ₃	(4)	Benzophenone			
			e generalis	e North de la la sea de la companya			
20.		f the reactant is converted into a h of it would react in 100 minutes		n a first order reaction in 25 minutes,			
	(1)	93.75%	(2)	87.5%			
	(3)	75%	(4)	100%			
21.	The numl	per of optical isomers of the comp	pound CH	3 - CHBr - CHBr - COOH is			
	(1)	0	(2)	1			
	(3)	3	(4)	4			
		Space For	Rough W	ork			

18. Methane can be converted into Ethane by the reactions

22.	When limestone is heated, CO ₂ is given off. The metallurgical operation is				
	(1)	Smelting	(2)	Reduction	
	(3)	Calcination	(4)	Roasting	
			18.5		
23.	The rate of	of reaction increases with rise in te	mperatu	re because of	
	(1)	increase in number of activated r	nolecule	es.	
	(2)	increase in energy of activation.			
	(3)	decrease in energy of activation.			
	(4)	increase in the number of effective	ve collisi	ions.	
24.	Meso con	npounds do not show optical activi	ty becau	se	
	(1)	they do not contain chiral carbon	atoms.		
	(2)	(2) they have non-super imposable mirror images.			
	(3) they contain plane of symmetry.				
	(4) they do not contain plane of symmetry.				
25.	When form	nic acid is heated with concentrate	d H ₂ SO	4, the gas evolved is	
	(1)	only CO ₂	(2)	only 'CO'	
	(3)	a mixture of 'CO' and 'CO ₂ '	(4)	a mixture of 'SO ₂ ' and 'CO ₂ '	
		Space For Re	ough Wo	ork	

26.	Temperature coefficient of a reaction is '2'. When temperature is increased from 30 °C to 90 °C, the rate of reaction is increased by				
			(2)	64 times	
	(1)	60 times	(2)	04 times	
	(3)	150 times	(4)	400 times	
27.	Conversion	on of benzene to acetophenone car	n be brou	ght by	
	(1)	Wurtz reaction	(2)	Wurtz-Fittig's reaction	
	(3)	Friedel Crafts alkylation	(4)	Friedel Crafts acylation	
28.	Excess of	PCl ₅ reacts with concentrated H	₂ SO ₄ givi	ng	
	(1)	Chlorosulphuric acid	(2)	Sulphurous acid	
	(3)	Sulphuryl chloride	(4)	Thionyl chloride	
29.	An exam	ple for a neutral buffer is			
	(1)	Ammonium hydroxide and Am	monium	chloride	
	(2)	Acetic acid and Sodium acetate	•		
	(3)	Acetic acid and Ammonium hy	droxide		
	(4)	Citric acid and Sodium citrate			
		Space For	Rough V	Vork	

	(1)	Chain conformation	(2)	Boat conformation
	(3)	Cis conformation	(4)	E-z form
31.	Which of	the following is employed in	flash tubes in	photography ?
	(1)	Ar	(2)	Ne
	(3)	Kr	(4)	Xe
32.	Conjugat	e base of H ₂ PO ₄ is		
	(1)	HPO ₄	(2)	HPO 4
	(3)	H ₃ PO ₄	(4)	PO 4
33.	An alkyl		Sodium in e	ther to form 4, 5-diethyl octane, the
	(1)	CH ₃ (CH ₂) ₃ Br	(2)	$CH_3(CH_2)_5Br$
	(3)	CH ₃ (CH ₂) ₃ CH(Br)CH ₃	(4)	$CH_3 - (CH_2)_2 - CH(Br) - CH_2 - CH_3$

CO²⁺

Ni²⁺

(4)

Space For Rough Work

Fe²⁺

(3) Cr³⁺

(1)

- 35. The emf of a galvanic cell constituted with the electrodes Zn^{2+} | Zn (-0.76 V) and Fe^{2+} | Fe(-0.41 V) is
 - (1) 0.35 V

(2) + 1.17 V

(3) + 0.35 V

- (4) 1.17 V
- 36. Which of the following pairs are correctly matched?

	Reactants	Products		
I.	$RX + AgOH_{(aq)}$	ŔH		·
II.	$RX + AgCN_{(alco)}$	RNC		
III.	$RX + KCN_{(alco)}$	RNC		
IV.	$RX + Na_{(ether)}$	R-R		
	(1) I alone	(2	2)	I and II
	(3) II and III	(4	-)	II and IV

- 37. In a transition series, with the increase in atomic-number, the paramagnetism
 - (1) increases gradually
 - (2) decreases gradually
 - (3) first increases to a maximum and then decreases
 - (4) first decreases to a minimum and then increases


38.	Identify a species which is 'NOT' a Bronsted acid but a Lewis acid.			
	(1)	BF ₃	(2)	$H_3^{\dagger}O$
	(3)	NH ₃	(4)	HC <i>l</i>
39.	The comp	ound formed when calcium	m acetate and ca	llcium formate is dry distilled.
	(1)	Acetone	(2)	Acetaldehyde
	(3)	Benzaldehyde	(4)	Acetophenone
40.	d ² sp ³ hyb	ridisation of the atomic or	bitals gives	
	(1)	Square planar structure	(2)	Triangular structure
	(3)	Tetrahedral structure	(4)	Octahedral structure
41.	The pH o	f 10 ⁻⁸ M HC <i>l</i> solution is		
	(1)	8	(2)	6.9586
	(3)	More than 8	(4)	Slightly more than 7
		Spa	ace For Rough V	Vork

Which of	the following is strongly acidic?			
(1)	Phenol	(2)	o-cresol	
(3)	p-nitrophenol	(4)	p-cresol	
				8 3€
A group o	of atoms can function as a ligand on	ily whe	n	
(1)	it is a small molecule.	(2)	it has an unshared electron pair.	
(3)	it is a negatively charged ion.	(4)	it is a positively charged ion.	
Which of	the following is 'NOT' a colligativ	e prope	erty?	
(1)	Elevation in boiling point	(2)	Depression in freezing point	
(3)	Osmotic pressure	(4)	Lowering of vapour pressure	
Acetone a	and Propanal are			
(1)	Functional isomers	(2)	Position isomers	!
(3)	Geometrical isomers	(4)	Optical isomers	
W/b:ab ac	Ala Callarrina in 1			
w men or	the following is diamagnetic?			
(1)	H ₂ ⁺	(2)	He ₂ ⁺	
(3)	O_2	(4)	N_2	
	(1) (3) A group of (1) (3) Which of (1) (3) Acetone a (1) (3) Which of (1)	(3) p-nitrophenol A group of atoms can function as a ligand on (1) it is a small molecule. (3) it is a negatively charged ion. Which of the following is 'NOT' a colligative (1) Elevation in boiling point (3) Osmotic pressure Acetone and Propanal are (1) Functional isomers (3) Geometrical isomers Which of the following is diamagnetic? (1) H ₂ ⁺	(1) Phenol (2) (3) p-nitrophenol (4) A group of atoms can function as a ligand only when (1) it is a small molecule. (2) (3) it is a negatively charged ion. (4) Which of the following is 'NOT' a colligative proper (1) Elevation in boiling point (2) (3) Osmotic pressure (4) Acetone and Propanal are (1) Functional isomers (2) (3) Geometrical isomers (4) Which of the following is diamagnetic? (1) H ₂ ⁺ (2)	(1) Phenol (2) o-cresol (3) p-nitrophenol (4) p-cresol A group of atoms can function as a ligand only when (1) it is a small molecule. (2) it has an unshared electron pair. (3) it is a negatively charged ion. (4) it is a positively charged ion. Which of the following is 'NOT' a colligative property? (1) Elevation in boiling point (2) Depression in freezing point (3) Osmotic pressure (4) Lowering of vapour pressure Acetone and Propanal are (1) Functional isomers (2) Position isomers (3) Geometrical isomers (4) Optical isomers Which of the following is diamagnetic? (1) H ₂ ⁺ (2) He ₂ ⁺

		1) gills of I	n ₂ U. II	ie r	elative lowering in vapour pressure
	(1) 0.05	((2)	0.04
	(3	3) 0.02	((4)	0.01
48.	The rea	gent used to distinguish between a	cetalde	hyd	le and benzaldebyde :
	(1)	Tollen's reagent	(2		Fehling's solution
	(3)	2-4-dinitrophenyl hydrazine	(4	·)	Semicarbazide
49. N	Metallic	lustre is due to			
	(1)	high density of metals			
	(2)	high polish on the surface of me	tals		
	(3)	reflection of light by mobile elec			
	(4)	chemical inertness of metals			
60. W	hich of	the following aqueous solutions wi	ill exhit	oit h	nighest hoiling point 2
	(1)	0.01 M urea	(2)		01 M KNO ₃
	(3)	0.01 M Na ₂ SO ₄	(4)		015 M C ₆ H ₁₂ O ₆
		Space For Ro	ugh Wo		- 12 0

Which on (1)	e of the following gives amine Br_2 in aqueous KOH Cl_2 in Sodium	on heating with amide? (2) Br ₂ in alcoholic KOH (4) Sodium in Ether	
2. The num (1) (3)	- 3	esent in O_2^- molecular ion is (2) 6 (4) 4	
53. The pro (1)	1 AC is Live	temperature, if (2) ΔH is -ve and ΔS is +ve (4) ΔH is +ve and ΔS is equ	
(1	se when reduced with HI and Re 1) n-hexane 3) n-pentane	ed Phosphorus gives (2) n-heptane (4) n-octane	
((1) Adsorption of covalent m (2) The size of the particles (3) The charge on the particle (4) Tyndall effect	olecules on the colloid	
		ice For Rough Work	

in inquite at 100m temperatu	re since they contain higher percentage of
(1) Oleates	(2) Palmitates
(3) Stearates	(4) Myristates
57. Which of the following cations will sol?	. Il have minimum flocculation value for arsenic sulphide
$(1) Na^+$	$(2) Mg^{2+}$
(3) Ca^{2+}	(2) Mg^{2+} (4) Al^{3+}
58. The value of entropy of solar system	The state of the s
(1) increasing	
(3) constant	(2) decreasing(4) zero
59. In face centred cubic lattice, a unit ce	ell is shared equally by how many unit cells?
(1) 6	Z A .
(3) 2	(2) 4 (4) 8
60. The number of disulphide linkages pro	esent in Ingulia
(1) 4	(2) 3
(3) 2	(4) 1
Space	For Rough Work

A-1

SUBJECT : BIOLOGY	DAY-1
SESSION: MORNING	TIME: 10.30 A.M. TO 11.50 A.M.

MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING
60	80 MINUTES	70 MINUTES

MENTION YOUR	QUESTION BOOKLET DETAILS			
CET NUMBER	VERSION CODE SERIAL NUMBER			
	A - 1	148977		

DOs:

- 1. Check whether the CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- 2. This Question Booklet is issued to you by the invigilator after the 2nd Bell i.e., after 10.30 a.m.
- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet.
- 4. The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 5. Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'TS:

- 1. THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED/MUTILATED/SPOILED.
- 2. The 3rd Bell rings at 10.40 a.m., till then;
 - Do not remove the paper seal present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

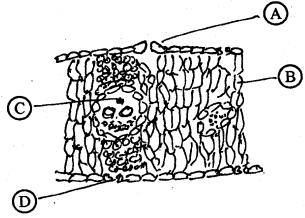
IMPORTANT INSTRUCTIONS TO CANDIDATES

- 1. This question booklet contains 60 questions and each question will have one statement and four distracters. (Four different options / choices.)
- 2. After the 3rd Bell is rung at 10.40 a.m., remove the paper seal on the right hand side of this question booklet and check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced by a complete test booklet. Read each item and start answering on the OMR answer sheet.
- 3. During the subsequent 70 minutes:
 - · Read each question carefully.
 - Choose the correct answer from out of the four available distracters (options / choices) given under each question / statement.
 - Completely darken / shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN
 against the question number on the OMR answer sheet.

Correct Method of shading the circle on the OMR answer sheet is as shown below:

- 4. Please note that even a minute unintended ink dot on the OMR answer sheet will also be recognised and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- 5. Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
- 6. After the last bell is rung at 11.50 a.m., stop writing on the OMR answer sheet and affix your LEFT HAND THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- 7. Hand over the **OMR ANSWER SHEET** to the room invigilator as it is.
- 8. After separating the top sheet (Our Copy), the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of ONE year.

[Turn Over


	(1)	Messenger RNA	(2)	Soluble RN	A	
	(3)	Ribosomal RNA	(4)	Heterogeneo	ous nuclear RNA	٠.
2.	Choose th	ne right one which denot	es genetic d	liversity.	•	
	(1)	Chromosomes – nucle	_	•	als – populations	
	(2)	Populations – individu			·	
	(3)	Genes – nucleotides –			· .	
	(4)	Nucleotides – genes –	•			
					ais populations	
3.	The portion	on of an Eukaryotic gene	which is to	ranscribed but	not translated is	
	(1)	Exon	(2)	Intron		
	(3)	Cistron	(4)	Codon		·
4.	The appea	arance of chancre, rashes	all over th	e body are the	symptoms of	·
	(1)	Gonorrhoea	(2)	Aids		
	(3)	Syphilis	(4)	Fever		
5.	Read the	statements (A) and (B).	Thoose the	right one		
٠.		nesis of mRNA takes pla		•		
		ing of mRNA is always		•	•	. ,
	(1)	Both the statements are				
	(2)	Statement (A) is wrong	_	rect.		
	(3)	Statement (B) is wrong			•	
	(4)	Both the statements (A		•		
		Sn	ace For Ro	ngh Work		
		•				•

The most unstable RNA is

6.	Assimilato	ry power is		
	(1)	NADPH ₂	(2)	ATP
	(3)	ATP and NADPH ₂	(4)	FADH ₂
٠.				
7.	ECORI cle	eaves the DNA strands to	produce	
	(1)	Blunt ends	(2)	Sticky ends
	(3)	Satellite ends	(4)	Ori replication end
8.	Ctataman	+ (A) · Women are at th	e peak of	the correct choice from those given: conception on the 14 th day of ovulation. d normally employed to avoid conception in
	(1)	Statement (A) is wrong	g, (B) is ri	ght.
	(2)	Statement (A) is right,		
	(3)			
	(4)		e wrong.	
.9.	The seque	nence of nitrogenous bas nentary DNA strand shou	es in one ld have	strand of DNA are 3' TAC GCG ACG 5'. The
	(1)	«GG TOC 1	(2	
	(3)	5' UAC GCG ACG 3'	(4) 5' ATG CGC TGC 3'
10		one of the following state	ment is co	orrect regarding spinal cord? atter and inner white matter.
	(1) It is composed of out	er grey m	natter and inner grey matter.
	(2) It is composed of out	er winte i	atter and inner colourless matter.
	(3			atter and inner colourless matter.
	(4			
			Space For	Rough Work

Column – I (A) Restriction endonucleases (P) Kohler and Milstein (B) Polymerase chain reaction (Q) Alec Jeffreys (C) DNA fingerprinting (R) Arber (D) Monoclonal antibodies (S) Karry Mullis (A) (B) (C) (D) (1) (R) (S) (Q) (P) (2) (R) (Q) (S) (P) (3) (Q) (R) (S) (P) (4) (Q) (S) (R) (Q) 12. Which taxonomic term may be suggested for any rank in the classification? (1) Class (2) Order (3) Species (4) Taxon		se the correct answer.	olumn II and choos	ose of	ı I with	olumi	es in C	e entrie	ch th	. Mat	11.
 (B) Polymerase chain reaction (Q) Alec Jeffreys (C) DNA fingerprinting (R) Arber (D) Monoclonal antibodies (S) Karry Mullis (A) (B) (C) (D) (1) (R) (S) (Q) (P) (2) (R) (Q) (S) (P) (3) (Q) (R) (S) (P) (4) (Q) (S) (R) (Q) 12. Which taxonomic term may be suggested for any rank in the classification? (1) Class (2) Order (3) Species (4) Taxon 13. In one of the techniques of recombinant insulin production the genes for α an β polypeptides were inserted into the plasmid by the side of 		de la constant de la									
 (C) DNA fingerprinting (R) Arber (D) Monoclonal antibodies (S) Karry Mullis (A) (B) (C) (D) (1) (R) (S) (Q) (P) (2) (R) (Q) (S) (P) (3) (Q) (R) (S) (P) (4) (Q) (S) (R) (Q) 12. Which taxonomic term may be suggested for any rank in the classification? (1) Class (2) Order (3) Species (4) Taxon 13. In one of the techniques of recombinant insulin production the genes for α an β polypeptides were inserted into the plasmid by the side of 			hler and Milstein	(P)	ases	(A) Restriction endonucleases					
 (D) Monoclonal antibodies (S) Karry Mullis (A) (B) (C) (D) (1) (R) (S) (Q) (P) (2) (R) (Q) (S) (P) (3) (Q) (R) (S) (P) (4) (Q) (S) (R) (Q) 12. Which taxonomic term may be suggested for any rank in the classification? (1) Class (2) Order (3) Species (4) Taxon 13. In one of the techniques of recombinant insulin production the genes for α an β polypeptides were inserted into the plasmid by the side of 			ec Jeffreys	(Q)	tion	(B) Polymerase chain reaction					
 (A) (B) (C) (D) (1) (R) (S) (Q) (P) (2) (R) (Q) (S) (P) (3) (Q) (R) (S) (P) (4) (Q) (S) (R) (Q) 12. Which taxonomic term may be suggested for any rank in the classification? (1) Class (2) Order (3) Species (4) Taxon 13. In one of the techniques of recombinant insulin production the genes for α an β polypeptides were inserted into the plasmid by the side of 			ber	(R)		ting	erprin	IA fing	DN	(C)	
 (1) (R) (S) (Q) (P) (2) (R) (Q) (S) (P) (3) (Q) (R) (S) (P) (4) (Q) (S) (R) (Q) 12. Which taxonomic term may be suggested for any rank in the classification? (1) Class (2) Order (3) Species (4) Taxon 13. In one of the techniques of recombinant insulin production the genes for α an β polypeptides were inserted into the plasmid by the side of 			rry Mullis	(S) 1	3	bodies	al anti	noclon	Mo	(D)	
 (2) (R) (Q) (S) (P) (3) (Q) (R) (S) (P) (4) (Q) (S) (R) (Q) 12. Which taxonomic term may be suggested for any rank in the classification? (1) Class (2) Order (3) Species (4) Taxon 13. In one of the techniques of recombinant insulin production the genes for α an β polypeptides were inserted into the plasmid by the side of 					(D)	(C)	(B)	(A)			
 (3) (Q) (R) (S) (P) (4) (Q) (S) (R) (Q) 12. Which taxonomic term may be suggested for any rank in the classification? (1) Class (2) Order (3) Species (4) Taxon 13. In one of the techniques of recombinant insulin production the genes for α an β polypeptides were inserted into the plasmid by the side of 					(P)	(Q)	(S)	(R)	(1)		
 (3) (Q) (R) (S) (P) (4) (Q) (S) (R) (Q) 12. Which taxonomic term may be suggested for any rank in the classification? (1) Class (2) Order (3) Species (4) Taxon 13. In one of the techniques of recombinant insulin production the genes for α an β polypeptides were inserted into the plasmid by the side of 					(P)	(S)	(Q)	(R)	(2)		
 (4) (Q) (S) (R) (Q) 12. Which taxonomic term may be suggested for any rank in the classification? (1) Class (2) Order (3) Species (4) Taxon 13. In one of the techniques of recombinant insulin production the genes for α an β polypeptides were inserted into the plasmid by the side of 			•			(S)	(R)	(Q)	(3)		
 12. Which taxonomic term may be suggested for any rank in the classification? Class Order Species Taxon 13. In one of the techniques of recombinant insulin production the genes for α an β polypeptides were inserted into the plasmid by the side of 									(4)		
 (1) Class (2) Order (3) Species (4) Taxon 13. In one of the techniques of recombinant insulin production the genes for α an β polypeptides were inserted into the plasmid by the side of 				÷	(4)	(11)	(0)				
13. In one of the techniques of recombinant insulin production the genes for α an β polypeptides were inserted into the plasmid by the side of		sification?	•		oe sugge	may l		Class	(1)	Whic	12.
p polypeptides were inserted into the plasmid by the side of			Taxon	(4)			es	Specie	(3)		
(1) Antibiotic resistance gene	ınd	the genes for α a	nsulin production y the side of	binant lasmid	into the	serted	ere ins	uaes w	ypepi	h hor	13.
and the control of th					_						
(2) Lac z promoter gene						_					
(3) β galactosidase gene					ne	ase ge	ctosid	β gala	(3)	(
(4) Ori								Ori	(4)		
				**							
4. Which one does not belong to monera?					monera	ong to	ot bel	does n	one	Which	4.
(1) Slime moulds (2) Mycoplasma	*	•	lycoplasma	(2)		s	mould	Slime	(1)	(
(3) Eubacteria (4) Archaebacteria		•	rchaebacteria	(4)			eria	Eubact	(3)	. (
Space For Rough Work			Work	r Rou	Space 1						
				4							

15. The diagram given below represents the T.S. of dicot leaf. Identify the parts labelled as A, B, C and D, which denote their functions and choose the correct one given below:

- (1) A: Motor action
- B: Photosynthesis
- C: Conduction
- D: Transpiration
- (2) A: Motor action
- B: Conduction
- C: Photosynthesis
- D: Transpiration
- (3) A: Transpiration
- B: Photosynthesis
- C: Conduction
- D: Transpiration
- (4) A: Transpiration
- B: Conduction
- C: Photosynthesis
- D: Motor action
- 16. Which of the following tissue is not a component of a complex tissues?
 - (1) Parenchyma

- (2) Collenchyma
- (3) Sclerenchyma
- (4) Tracheids

- 17. Mosses and ferns are
 - (1) Thallophytes of plant kingdom
 - (2) Angiosperms of plant kingdom
 - (3) Gymnosperms of plant kingdom
 - (4) Amphibians of plant kingdom

		(1)	Sie	ve tub	es and	l Bast fi	bre			
		(2)	Tra	ichea a	and Ph	loem fil	bres			' .
	•	(3)	Ху	lem pa	arench	yma and	d xylem	fib	pres	
		(4)					nion cel			
10				i.						
19.	The				n angio	osperm	is made	up	of	
		(1)	8 c	ells			(2) (7 cells and 8 nuclei	
		(3)	8 n	uclei			(4	•)	8 cells and 7 nuclei	
20.	Co	rk Con	nhi	:				*.4		
20.	COI						nates fro			
		(1)							of cortex	
		(2)							s of cortex	
		(3)					dullary	ray		
		(4)	Pare	enchyr	na cell	s of per	icycle			•
.										
21.	Mat belo	ich the w:	word	ls of C	Column	1 I with	that of	Col	lumn II and choose the correct	answer given
		Colu	mn –]	I		Colu	ımn – II	,		•
	(A)	Alga	ae		(P)	Gym	nosperm	ıs		
	(B)	Rico	cia		(Q)		scum		•	
	(C)	Spir	ogyra		(R)		trophic			
	(D)	Gne	tum		(S)	Liver	-			
			(A)	(B)	(C)	(D)				
	•	(1)	(R)	(S)	(Q)	(P)				
	•	(2)	(P)	(S)	(Q)	(R)				
		(3)	(S)	(P)	(R)	(Q)				
		(4)	(R)	(Q)	(S)					
					(0)	(1)	<u> </u>		•	

Plasmodermata is usually observed between

18.

22.	The opening	ng and closing of stomat	a are contro	olled by the activity of
	(1)	Guard cells	(2)	Epidermal cells
	(3)	Mesophyll cells	(4)	Lenticels
23.	In which shows bil	of these following phy ateral symmetry?	la given as	the adult shows radial symmetry, the larva
	(1)	Annelids	(2)	Arthropods
	(3)	Molluscs	(4)	Echinodermata
24.	A thin fi	lm of water covering th	,	icles and held strongly by attractive forces is
	(1)	Run away	(2)	
	(3)	Gravitational	(4)	Capillary
25.	characte	ristic morphological feat Animals	ures ?	Morphological features
	3. 7	entipede, Prawn, Sea urc		Jointed appendages Automorio sogmentation
	` '	ockroach, Locust, Taenia		Metameric segmentationVentral solid nerve cord
		corpion, Spider, Cockroa		
	(4) Li	verfluke, Sea anemone,	Sea cucum	ber – Bilateral symmetry
26.	Statem	2) Both statements are	s maximun potential is correct and wrong.	n water potential. zero in pure water. (B) is not the reason for (A).
	(3	Both statements are	correct and	(B) is the reason for (A).
	· (4	4) Both statements are	correct.	
			Space For	Rough Work

				•						
27.	A bivale	nt of meiosis I consists	of							
	(1)	Four chromatids and	two cer	ntromeres						
	(2)									
	(3)									
	(4)				•					
28.	Electrons	from excited chloroph	yll mole	cules of photosyste	em II are accepted	i first by				
	(1)	Ferredoxin		(2) Pheophytin						
	(3)	Cytochrome b	•	(4) Cytochrome	f					
29.	Match the	e following list of anim	als with	their level of orga	nization and choo	ose the correct				
	sequence	•.								
		Column – I		olumn – II						
	_	gan level		Pheritima						
		lular aggregate level	•	Fasciola						
		sue level		Spongilla						
	(D) Org	an system level	` ' .	Obelia						
	(1)	(A) (B) (C) (D)								
	(1)	(S) (R) (P) (Q)		•						
	(2)	(S) (Q) (R) (P)		•						
	(3)	(Q) (S) (R) (P)								
	(4)	(Q) (R) (S) (P)				· · · · · ·				
30.	Ovidative	decarboxylation		41 6						
50.	(1)	decarboxylation occurs Citric acid and Succin		the formation of						
	(2)	Citric acid and Oxaloa		•						
	(3)			•						
	(4)	Acetyl CoA and Succi Oxaloacetic acid and (•							
	(')									
		C _m	OCO FC-	Donah Wast						

- 31. The edible part of the fruit of apple is
 - (1) Endocarp

(2) Thalamus

(3) Pericarp

- (4) Perianth
- 32. Given below is an electron acceptor. Mention its status, which is labelled as (A)

 $Cyt^{++} \xrightarrow{2e} Cyt^{+++} \bigcirc A$

(1) Oxidised

- (2) Reduced
- (3) Phosphorylation
- (4) Hydrated
- 33. The Floral formula $\oint_{C_{(5)}} A_5 G_2$ is that of
 - (1) Hibiscus

(2) Banana

(3) Tulip

- (4) Vinca
- 34. Interferons are the protein molecules produced from the
 - (1) Normal cells

- (2) Infected host cells
- (3) Macrophages

(4) B. Lymphocytes

- 35. Tikka is a
 - (1) Fungal disease
- (2) Viral disease
- (3) Bacterial disease
- (4) Protozoan disease
- 36. Which of the statement is correct?
 - (1) Each back cross is a test cross.
 - (2) Each test cross is a back cross.
 - (3) Crossing F_2 with F_1 is a test cross.
 - (4) Crossing F₂ with P₁ is called a test cross.

			or Rougl		
	(1)	removal of plants and trees.	* *	•	
		growing plants and trees in			
	(2)	growing plants and trees in	an area v	where the forest is removed.	
	(1)	growing plants and trees in	an area v	where there is no forest.	
74.	Deforestati				
42.	Deformate:				
	(3)	Adathoda vasica	(4)	Phyllantus emblica	
,	(1)	Ocimum sanctum	(2)	Gymnema sylvestre	
41.		which have antidiabetic pro	operties		
				Bitois would be colourbling	i.
	(4)	Half of their sons and half	of their	daughters would be colourbling	_
	(3)	None of the daughters wo		loughling	
	(2)	All their sons are colourbl	k	•	•
	(1)	All the children would co	- mon pr	geny	•
40.	A colouri	blind man marries the dau enotype for colour vision. Ir	ghter of	another colourblind man who	se wife had a
	(3)	oimology	(4)	Para zoology	
	(3)	Paleontology	(2)	Phylogeny	\mathbf{R}_{i}
	(1)	Para biology that deals wit		of fossil animals is known as	
39	. The bran	ch of biology that deals with	h et i	,	
*	(3)	Turner's syndrome	(4)	Cri-du-chat syndrome	
	(1)	- Street & Syndronic	(2)	Down's syndrome	
38	-y	mastica is the symptom of			
			` ,	- Control of the cont	
	(3)) Cross breed	(4)	Drought breed	
	(1) Dual purpose breed	(2)	Exotic breed	
3	7. Amrithi	mahal is a/an	* .		

44. I	(1) (3) Kokkareb (1) (3)	Golgi complex Endoplasmic reticulum ellur Bird Sanctuary is notice Mandya	(2) (4) ed in (2)	Mitochondria Leucoplasts	
44. I	Kokkareb	ellur Bird Sanctuary is notice Mandya	ed in	Leucoplasts	
44. K	Kokkareb	Mandya			
44. F	(1)	Mandya			
• • •	(1)	Mandya			
			` '	Mysore	·
	(-)	Chamarajnagar	(4)	Hassan	
•					
45.	one of th	e following is also called Se	wall W	right effect.	
45.	(1)	Isolation	(2)	Gene pool	Part of
	(3)	Genetic drift	(4)	Gene flow	
	(0)	. 			
46.	Oran is a				
40.	(1)	_	(2)	Sacred landscape	
	(3)		(4)	Endangered animal	
			· :	the correct order beginning W	ith the sensory
47.			arc in	the correct order beginning w	
	receptor (A) M	otor neuron			
	()	terneuron	•		
		ffector			
	(-)	ensory neuron			
	.	ensory receptor		•	
	(1	(=> (A> (C)			
	(2	2) (E) (D) (A) (B) (C)			
	1	3) (A) (B) (C) (D) (E)			
	(4	4) (A) (E) (D) (B) (C)		<u> </u>	

48.	The	trac	hea ten	minate	es into	•					• -					
		(1)	Bro	nchial	Tree	Espire.		(2)	Atri	um -						
		(3)	Bro	nchi				(4)	Alve	eoli						
	٠															
49.	Mat give	tch the	ie entri low :	es in	Colun	nn —]	I with	those	of Co	olumr	n II an	d choo	se th	e corre	ect answe	r
		Co	lumn -	- I				C	olumn	– II			•	. •		
	(A)	FS	H				(P)		mal gro							
	(B)	GH	[•	(Q)		lation							
	(C)	Pro	lactin				(R)	Parturition						•		
	(D)	Ox	ytocin				(S)	Wat	er diur	esis						
							(T)	Mill	secret	tion						
•			(A)	(B)	(C)	(D)										
		(1)	(Q)	(P)	(T)	(R)										
		(2)	(Q)	(P)	(T)	(S)										
	-	(3)	(P)	(T)	(R)	(Q)										
		(4)	(Q)	(T)	(S)	(R)										
50.	Form	natior	of act	ivatio	n caly	x in tl	he egg	z take	s place	r					•	
•		(1)			ilizatio				· ·			•				
	(2) After fertilization(3) At the time of Cleavage															
												-				
		(4)	At the	e time	of Ar	nphin	nixis									
					•											
51.	Whic	hof	the foll	owing	g part	of Co	ckroad	ch leg	is atta	ched	to tho	rax vei	ntrally	, ?		
		(1)	Troch					(2)	Claw					•		
		(3).	Femu	r				(4)	Coxa						÷	
						Spa	ace Fo	r Rou	gh Wo	rk			· · · · · · · · · · · · · · · · · · ·			_

		Colu					those of C		Column –				
	(A)	Cytok	inins				(P)	Stress	hormone		,		
	(B)	Auxir					(Q)	Ripen	ing of fru	its			. A
	(C)	Absc	isic ac	id			(R)	Apica	al domina	nce			
	(D)	Ethyl					(S)	Boltin	ng				
	()	·					(T)	Rich	mond Lan	g effect			
			(A)	(B)	(C)	(D)	•						
		(1)	(T)	(R)	(P)	(Q)						•	
		(2)	(T)	(R)	(T)	(S)							
		(3)	(R)	(S)	(Q)	(P)					7		
		(4)	(Q)	(Q)	(T)	(R)							
′•	Doi	(1)	Puln	nonary	y vein			(2) (4)		nary arter r venacav			
											٠		
4.	Th	e semi-	-diges	ted fo	od tha	t moves	down the			known as			
		(1)	Bol	us			(2)	Chy					
		(3)	Rug	gae			(4)	Prot	ein				
55	. Di	ıring tl	ne trar	sporta	ation g	gases, to	maintain	the io	nic balanc	e chloride	e ions sh	ifts fron	n
		(1)		C's to			(2)		sma to RE				
					blood		(4)	Pla	od to lung	10			

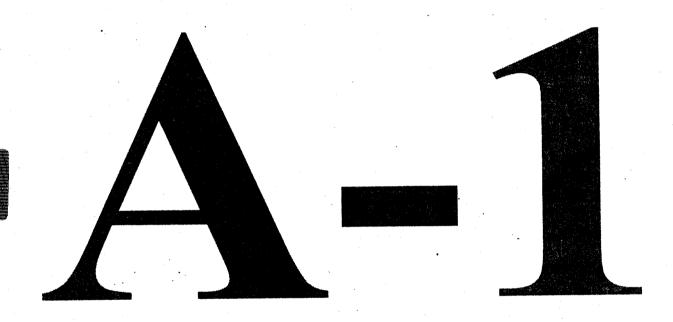
	Read the statements (A) and (B). Choose the right one:								
		Atherosclerosis is a disease characterised by the thickening of arterial walls.							
	Statement (B):	Deposition of cholesterol and triglycerides in the arterial walls causes							

(1) Statement (A) is correct, (B) is wrong.

atherosclerosis.

- (2) Both the statements are correct but not related to each other.
- (3) Both the statements are correct and (B) is the reason for (A).
- (4) Both the statements are wrong.
- 57. Juxtaglomerular cells secrete \xrightarrow{A} when there is a fall in \xrightarrow{B} ion concentration. Choose the correct pair labelled as A and B.
 - (1) A: Renin B: Chloride
 - (2) A: Carbonic unhydrase B: Sodium
 - (3) A: ATPase B: Potassium
 - (4) A: Renin B: Sodium
- 58. Ileocaecal valve is present in between
 - (1) Colon and large intestine
 - (2) Colon and small intestine
 - (3) Stomach and small intestine
 - (4) Cardiac stomach and fundus

59. The diagram given below denotes the various parts of a typical flower. Identify the labelled parts A, B, C and D and choose the correct option:



- (1) A = Petals, B = Sepals, C = Stamens, D = Pistil
- (2) A = Sepals, B = Pistil, C = Petals, D = Stamens
- (3) A = Sepals, B = Pistil, C = Stamens, D = Petals
- (4) A = Sepals, B = Petals, C = Pistil, D = Stamens
- 60. Read the statements A and B and identify the correct choice from those given below:

Statement (A): The egg of frog is moderately telolecithal.

Statement (B): Sooner (or) later the cleavage pattern becomes irregular.

- (1) Statement (A) is correct, (B) is wrong.
- (2) Statement (B) is correct, (A) is wrong.
- (3) Both the statements (A) and (B) are correct.
- (4) Statement (A) is the reason for statement (B).

A.1

16

В