CAREER POINT MOCK TEST PAPER for JEE Main (AIEEE)

 Physics, Chemistry \& Mathematics

 Physics, Chemistry \& Mathematics}

Solutions

PHYSICS

Ques.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
Ans.	4	4	2	3	3	1	4	4	1	3	1	2	1	2	3
Ques.	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 0}$
Ans.	1	3	3	4	4	1	2	4	4	1	1	2	2	2	2

Ques.	$\mathbf{3 1}$	$\mathbf{3 2}$	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{3 5}$	$\mathbf{3 6}$	$\mathbf{3 7}$	$\mathbf{3 8}$	$\mathbf{3 9}$	$\mathbf{4 0}$	$\mathbf{4 1}$	$\mathbf{4 2}$	$\mathbf{4 3}$	$\mathbf{4 4}$	$\mathbf{4 5}$
Ans.	3	1	3	2	2	4	1	2	4	2	3	1	3	2	1
Ques.	$\mathbf{4 6}$	$\mathbf{4 7}$	$\mathbf{4 8}$	$\mathbf{4 9}$	$\mathbf{5 0}$	$\mathbf{5 1}$	$\mathbf{5 2}$	$\mathbf{5 3}$	$\mathbf{5 4}$	$\mathbf{5 5}$	$\mathbf{5 6}$	$\mathbf{5 7}$	$\mathbf{5 8}$	$\mathbf{5 9}$	$\mathbf{6 0}$
Ans	2	2	1	1	2	2	1	1	4	3	3	4	3	3	3

MATHEMATICS

Ques.	$\mathbf{6 1}$	$\mathbf{6 2}$	$\mathbf{6 3}$	$\mathbf{6 4}$	$\mathbf{6 5}$	$\mathbf{6 6}$	$\mathbf{6 7}$	$\mathbf{6 8}$	$\mathbf{6 9}$	$\mathbf{7 0}$	$\mathbf{7 1}$	$\mathbf{7 2}$	$\mathbf{7 3}$	$\mathbf{7 4}$	$\mathbf{7 5}$
Ans.	3	3	2	3	2	3	1	3	2	2	3	4	3	1	3
Ques.	$\mathbf{7 6}$	$\mathbf{7 7}$	$\mathbf{7 8}$	$\mathbf{7 9}$	$\mathbf{8 0}$	$\mathbf{8 1}$	$\mathbf{8 2}$	$\mathbf{8 3}$	$\mathbf{8 4}$	$\mathbf{8 5}$	$\mathbf{8 6}$	$\mathbf{8 7}$	$\mathbf{8 8}$	$\mathbf{8 9}$	$\mathbf{9 0}$
Ans.	3	2	3	1	1	2	1	2	3	2	2	3	2	2	2

PHYSICS

$$
\therefore \mathrm{GH}=\left(\frac{\mathrm{AH}}{\mathrm{AE}}\right) \mathrm{EC}
$$

1.[4] $\mathrm{F}=\frac{\mu_{0}}{2 \pi} \frac{\mathrm{i}_{1} \mathrm{i}_{2}}{\mathrm{r}}$

$$
F^{\prime}=\frac{\mu_{0}}{2 \pi} \frac{\left(\frac{i_{1}}{3}\right)\left(\frac{i_{2}}{3}\right)}{3 r}=\frac{F}{27}
$$

2.[4] Along the wire $\overrightarrow{\mathrm{d} \ell} \times \overrightarrow{\mathrm{r}}=0$
$\therefore \mathrm{dB}=0$
3.[2] Let 2 a be the side of the triangle and b the length

AE.
$\frac{\mathrm{AH}}{\mathrm{AE}}=\frac{\mathrm{GH}}{\mathrm{EC}}$

Induced e.m.f., $e=\operatorname{Bv}(F G)=2 B v\left(a-\frac{a}{b} v t\right)$
\therefore Induced current, $I=\frac{e}{R}=\frac{2 B v}{R}\left[a-\frac{a}{b} v t\right]$

$$
\text { or } \mathrm{I}=\mathrm{k}_{1}-\mathrm{k}_{2} \mathrm{t}
$$

Thus, I - t graph is a straight line with negative slope and positive intercept.
4. [3] $I=\frac{d q}{d t}=q_{0}(\omega \cos \omega t)$
$\mathrm{I}=\omega \mathrm{q}_{0} \cos \mathrm{wt}$

5. [3]

Gaussian surface
$\oint \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{dS}}=\frac{\mathrm{q}_{\text {in }}}{\epsilon_{0}}$
$\mathrm{E} \cdot 4 \pi \mathrm{x}^{2}=\frac{\mathrm{q} \times \frac{4}{3} \pi\left(\mathrm{x}^{3}-\mathrm{r}_{1}^{3}\right)}{\frac{4}{3} \pi\left(\mathrm{r}_{2}^{3}-\mathrm{r}_{1}^{3}\right) \in_{0}}$
$E=\frac{q}{4 \pi \epsilon_{0} x^{2}}\left(\frac{x^{3}-r_{1}^{3}}{r_{2}^{3}-r_{1}^{3}}\right)$
6. [1]

$\mathrm{V}_{\mathrm{C}}=\frac{\sigma r}{\epsilon_{0}}+\frac{\sigma \mathrm{R}}{\epsilon_{0}}$
7. [4]

$\mathrm{i}_{1}=\frac{9}{3+6}=1 \mathrm{~A}, \mathrm{i}_{2}=\frac{9}{2+7}=1 \mathrm{~A}$
Pd at $1 \mu \mathrm{~F}=\mathrm{P} . \mathrm{d}$ of 3Ω
$=\mathrm{i}_{1} \times 3=1 \times 3=3 \mathrm{~V}$
$\therefore \quad$ Charge at $1 \mu \mathrm{~F}=\mathrm{CV}=1 \mu \mathrm{~F} \times 3=3 \mu \mathrm{C}$
P.d. at $3 \mu \mathrm{~F}=\mathrm{p}$.d at $7 \Omega=\mathrm{i}_{2} \times 7=1 \times 7=7 \mathrm{~V}$

Charge at $3 \mu \mathrm{~F}=\mathrm{CV}=3 \mu \mathrm{~F} \times 7 \mathrm{~V}=21 \mu \mathrm{C}$
8. [4] Resistance of an ideal ammeter $=0$
$\therefore \quad \mathrm{V}=\mathrm{i} \times 0=0$
9. [1]

10. [3] When an object is released from moving frame it will have same velocity as that of frame so packet will have same orbital velocity as that of satellite so it will never reach the earth.
11. [1]

$\mathrm{g}_{\text {eff }}=\frac{\mathrm{mg} \cos \alpha}{\mathrm{m}}$
$\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~L}}{\mathrm{~g}_{\text {eff }}}}$
$\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~L}}{\mathrm{~g} \cos \alpha}}$
12. [2]

$V_{\text {in }} \rho g=V_{0} \rho_{0} g$
$\frac{V_{\text {in }}}{V_{0}}=\frac{\rho_{0}}{\rho}$
$\frac{V_{\text {out }}}{V_{0}}=1-\frac{V_{\text {in }}}{V_{0}}=1-\frac{\rho_{0}}{\rho}$
13. [1] By conservation of momentum

$$
\begin{gathered}
\overrightarrow{\mathrm{P}}_{\mathrm{i}}=\overrightarrow{\mathrm{P}}_{\mathrm{f}} \\
\mathrm{~m}_{1} \sqrt{(2 \mathrm{gd})}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{v}
\end{gathered}
$$

$$
\frac{1}{2}\left(m_{1}+m_{2}\right) u^{2}=\left(m_{1}+m_{2}\right) g h
$$

$$
\mathrm{h}=\mathrm{d}\left\{\frac{\mathrm{~m}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right\}^{2}
$$

14.[2]

15.[3] Line $=\mathrm{n}-1=3$
16.[1] $\xrightarrow[\substack{\text { constant } \\ \text { rate }}]{\mathrm{X}}(\underset{\mathrm{N}}{(\mathrm{A})} \xrightarrow{\lambda}$

No. of nuclei of A will be maximum when the radio active equilibrium is established.
Rate of formation of A = Rate of decay of A
$\mathrm{X}=\lambda \mathrm{N}\left(\lambda=\frac{\ell \mathrm{n} 2}{\mathrm{~T}_{\mathrm{H}}}=\frac{\ell \mathrm{n} 2}{\mathrm{Y}}\right)$
$\mathrm{X}=\frac{\ell \mathrm{ln} 2}{\mathrm{Y}} \mathrm{N}$
$\mathrm{N}=\frac{\mathrm{X} Y}{\ell \mathrm{n} 2}$
17.[3] $\mathrm{E}=\frac{\mathrm{hc}}{\lambda}-\phi_{0}$
$2 \mathrm{E}=\frac{\mathrm{hc}}{\lambda^{\prime}}-\phi_{0}$
on solving $\lambda^{\prime}=\frac{\mathrm{hc} \lambda}{\mathrm{E} \lambda+\mathrm{hc}}$
18. [3] Transverse elastic waves can propagates in solid and on the water surface.
19. [4] $y=4 \sin 2 \pi\left(\frac{t}{0.02}-\frac{x}{100}\right)$
compare it with the standard eq ${ }^{\text {n }}$
$y=A \sin 2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)$
So $\mathrm{T}=0.02 \mathrm{sec}$
$\mathrm{n}=\frac{1}{\mathrm{~T}}=\frac{1}{0.02}=50 \mathrm{~Hz}$
$\lambda=100 \mathrm{~cm}=1 \mathrm{~m}$
Wave velocity $\mathrm{v}=\mathrm{n} \lambda=50 \mathrm{~m} / \mathrm{sec}$
Maximum particle velocity $\mathrm{V}_{\text {max }}=\mathrm{A} \omega$
$=4(2 \pi \times 50)=400 \pi \mathrm{~cm} / \mathrm{sec}$
$=4 \pi \mathrm{~m} / \mathrm{sec}$
21. [1] $d=\sqrt{2 R h}$
$\mathrm{N}=\pi \mathrm{d}^{2} \sigma=2 \pi \mathrm{Rh} \sigma$
$=2 \times 3.14 \times 6400 \times 0.1 \times 1000$
$=2 \times 3.14 \times 6.4 \times 10^{5}$
$=39.5 \times 10^{5}$
22. [2] $\frac{\Delta \mathrm{X}}{\mathrm{X}} \times 100=\left[3 \frac{\Delta \mathrm{a}}{\mathrm{a}}+2 \frac{\Delta \mathrm{~b}}{\mathrm{~b}}+\frac{\Delta \mathrm{d}}{\mathrm{d}}+\frac{1}{2} \frac{\Delta \mathrm{c}}{\mathrm{c}}\right] \times 100$

$$
\begin{aligned}
& =3 \times 1+2 \times 3+4+\frac{1}{2} \times 2 \\
& =3+6+4+1=14 \%
\end{aligned}
$$

23. [4] If t is the time of flight, then

$$
\begin{aligned}
0 & =\mathrm{vt}-\frac{1}{2} \mathrm{~g} \cos \theta \mathrm{t}^{2} \\
\mathrm{t} & =\frac{2 \mathrm{v}}{\mathrm{~g} \cos \theta} \\
\Rightarrow \mathrm{R} & =0+\frac{1}{2} \mathrm{~g} \sin \theta \mathrm{t}^{2} \\
\mathrm{R} & =\frac{1}{2} \mathrm{~g} \sin \theta \times\left(\frac{2 \mathrm{v}}{\mathrm{~g} \cos \theta}\right)^{2} \\
\mathrm{R} & =\frac{2 \mathrm{v}^{2}}{\mathrm{~g}} \tan \theta \sec \theta
\end{aligned}
$$

24. [4] Angular magnification $=-\frac{f_{0}}{f_{e}}=\frac{16 \mathrm{~m}}{2 \mathrm{~cm}}=-800$

Length of tube $L=f_{0}+f_{e}=16.02 \mathrm{~m}$ - ve sign represents inverted image.
25. [1] Angular separation of two adjacent maxima is $\Delta \theta=\frac{\lambda}{\mathrm{d}}$
Let angular separation be 10% greater for wavelength λ^{\prime}
their $\frac{1.1 \lambda}{\mathrm{~d}}=\frac{\lambda^{\prime}}{\mathrm{d}}$
$\lambda^{\prime}=1.10 \lambda=648 \mathrm{~mm}$
26. [1] Least count of V.C. $=\frac{1}{10}=0.1 \mathrm{~mm}$

Side of cube $=10 \mathrm{~mm}+1 \times 0.1 \mathrm{~mm}=1.01 \mathrm{~cm}$ density $=\frac{\text { mass }}{\text { volume }}=\frac{2.736 \mathrm{~g}}{(1.01)^{3} \mathrm{~cm}^{3}}=2.66 \mathrm{~g} / \mathrm{cm}^{3}$
27. [2] $\mathrm{P}=\mathrm{P}_{0}-\mathrm{aV}^{2}$

From ideal gas equation
$\mathrm{PV}=\mathrm{nRT}$
$\left(P_{0}-\mathrm{aV}^{2}\right) V=n R T$
$\mathrm{T}=\frac{\mathrm{P}_{0} \mathrm{~V}}{\mathrm{nR}}-\frac{\mathrm{aV}^{3}}{\mathrm{nR}}$

$$
\frac{\mathrm{dT}}{\mathrm{dV}}=\frac{\mathrm{P}_{0}}{\mathrm{nR}}-\frac{-3 \mathrm{aV}^{2}}{\mathrm{nR}}=0
$$

$\mathrm{P}_{0}=3 \mathrm{aV}^{2} \Rightarrow \mathrm{~V}=\sqrt{\frac{\mathrm{P}_{0}}{3 \mathrm{a}}}$
$\mathrm{P}=\mathrm{P}_{0}-\mathrm{a}\left(\frac{\mathrm{P}_{0}}{3 \mathrm{a}}\right)$
$\mathrm{P}=\frac{2 \mathrm{P}_{0}}{3}$
$\left(\frac{2 \mathrm{P}_{0}}{3}\right) \sqrt{\frac{\mathrm{P}_{0}}{3 \mathrm{a}}}=\mathrm{nRT}_{\max }$
$\mathrm{T}_{\max }=\left(\frac{2 \mathrm{P}_{0}}{3 \mathrm{nR}}\right)\left(\frac{\mathrm{P}_{0}}{3 \mathrm{a}}\right)^{1 / 2}$
28. [2]

$$
\mathrm{H}_{\mathrm{AB}}=0
$$

$$
\mathrm{H}_{\mathrm{DB}}=\mathrm{H}_{\mathrm{BC}}
$$

$$
\text { [means } \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{B}}=20 \text {] }
$$

$$
\frac{\mathrm{KA}(90-20)}{\ell_{\mathrm{BD}}}=\frac{\mathrm{KA}(20-0)}{\ell_{\mathrm{BC}}}
$$

$$
=\frac{\ell_{\mathrm{BD}}}{\ell_{\mathrm{BC}}}=\frac{7}{2}
$$

29. [2] Reading $=2 T$

$$
\begin{aligned}
& =\frac{4 m_{1} m_{2}(\mathrm{~g}+\mathrm{a})}{\mathrm{m}_{1}+\mathrm{m}_{2}} \\
& =8 \mathrm{~g}
\end{aligned}
$$

30. [2]

$$
\begin{aligned}
& 200 \mathrm{~N} \\
& 200-160=16 \mathrm{a} \\
& 40=16 \mathrm{a} \\
& \mathrm{a}=\frac{10}{4}=\frac{5}{2} \\
& \mathrm{a}=2.5 \mathrm{~m} / \mathrm{s}^{2} \\
& 200-70-\mathrm{T}=7 \times \mathrm{a} \\
& 130-\mathrm{T}=7 \times 2.5 \\
& 130-\mathrm{T}=17.5 \\
& \mathrm{~T}=130-17.5 \\
& \mathrm{~T}=112.5 \mathrm{~N}
\end{aligned}
$$

CHEMISTRY

31.[3]

 3° (more stable)
32.[1]

[More stable]
33.[3] De carboxylation due to steric hindrence

[Melonic Acid]

34.[2]

(A)

35.[2] $\mathrm{Zn} \rightarrow \mathrm{ZnS}$
$\mathrm{Cu} \rightarrow \mathrm{CuFeS}_{2}$
$\mathrm{Pb} \rightarrow \mathrm{PbS}$
36.[4] Compound No. of unpaired e^{-}
$\begin{array}{ll}{\left[\mathrm{MnCl}_{4}\right]^{-2}} & 5 \\ {\left[\mathrm{CoCl}_{4}\right]^{-2}} & 3 \\ {\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{-4}} & 0\end{array}$
37.[1] Compound No. of ions per molecule
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{3} \quad 4$
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{4} \quad 5$
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{4}\right] \quad 0$
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}_{2} \quad 3$
38.[2] $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\Delta} \mathrm{~N}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O}$
39.[4] 'I' can not form 4 bonds
40.[2] $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \xrightarrow{\Delta} \mathrm{ZnO}+\mathrm{NO}_{2}+\mathrm{O}_{2}$
41.[3] Ionic compounds are solid due to presence of strong electrostatics force of attraction.
42.[1] Down the group solubility of alkali metal hydroxide is increases.
So correct order
$\mathrm{LiOH}<\mathrm{NaOH}<\mathrm{KOH}<\mathrm{RbOH}<\mathrm{CsOH}$
43.[3] $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$

$$
\begin{aligned}
& \Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S}<0 \\
& -38.3 \times 10^{3}-\mathrm{T}(-113)<0 \\
& \left.\mathrm{~T}<338.93 \mathrm{~K} \text { (i.e. } 66^{\circ} \mathrm{C}\right)
\end{aligned}
$$

44.[2] According to third law of thermodynamics.
45.[1] $\mathrm{NH}_{4} \mathrm{COO} \mathrm{NH}_{2}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$

$$
\begin{array}{cc}
2 \mathrm{P} & \mathrm{P} \\
=2 & =1 \\
& 3 \mathrm{P}=3 \\
& \mathrm{P}=1
\end{array}
$$

$$
\begin{aligned}
\mathrm{K}_{\mathrm{P}} & =\mathrm{P}_{\mathrm{NH}_{3}}^{2} \cdot \mathrm{P}_{\mathrm{CO}_{2}} \\
& =2^{2} \times 1=4 .
\end{aligned}
$$

46.[2]
and
$\Delta \mathrm{H}_{\text {mixixng }}=-\mathrm{ve}$
$\Delta \mathrm{V}_{\text {mixng }}=-\mathrm{ve}$
47.[2] $\mathrm{a}=2\left(\mathrm{r}^{+}+\mathrm{r}^{-}\right)$
$400=2\left(80+r_{a}\right)$
$\therefore \mathrm{r}_{\mathrm{a}}=120$
48.[1] $\quad \mathrm{E}^{\mathrm{o}}=\frac{0.0591}{2} \log \mathrm{~K}_{\mathrm{eq}}$.
$\log \mathrm{K}_{\text {eq. }}=\frac{2 \times 0.22}{0.0591}=7.44$
$K_{\text {eq }}=2.8 \times 10^{7}$
49.[1] According to arrhenius equation, $K=A \cdot e^{-E a / R T}$
50.[2] $\mathrm{K}=\frac{2.303}{\mathrm{t}} \log \left[\frac{\mathrm{C}_{\mathrm{A}_{0}}}{\mathrm{C}_{\mathrm{A}}}\right]$
$2.303 \times 1=2.303 \log \left[\frac{C_{A_{0}}}{C_{A}}\right]$
$\frac{\mathrm{C}_{\mathrm{A}_{0}}}{\mathrm{C}_{\mathrm{A}}}=10$
$\therefore \mathrm{C}_{\mathrm{A}}=\frac{1}{10}=0.1$
\therefore rate after $1 \mathrm{~min}, \mathrm{r}_{1}=\mathrm{KC}_{\mathrm{A}}$
$=2.303 \times 0.1=0.2303 \mathrm{M} \cdot \mathrm{min}^{-1}$
51.[2] Phenelzine is use as a antidepressant.
52.[1] Both the structure of starch (Amylose and amylopectine) are formed by $\alpha-\mathrm{D}$ glucose.
53.[1]

(Bakelite)
54.[4]

55.[3]

56.[3]

Both O.I. \& G.I. possible.
57.[4]

(\pm) Trans-1,2-dimethylcyclopropane.
58.[3] $\lambda=\frac{h}{m v}$ and $v \propto \sqrt{T}$
$\frac{\lambda_{1}}{\lambda_{2}}=\sqrt{\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}}$
$=\frac{\lambda_{1}}{\lambda_{2}}=\sqrt{\frac{1200}{300}}$
$\lambda_{2}=\frac{\lambda}{2}$
60.[3] Let the mass of mixture $=100 \mathrm{gm}$

Mass of $\mathrm{CO}_{2}=66 \mathrm{gm}$
Mass of $\mathrm{H}_{2}=34 \mathrm{gm}$
no. of moles of $\mathrm{CO}_{2}=\frac{66}{44}=1.5$
no. of moles of $\mathrm{H}_{2}=\frac{34}{2}=17$
total no. of moles $=\frac{\text { mass of mixture }}{\text { Mav }}$
$\operatorname{Mav}=\frac{100}{18.5}=5.4$
V.D. $=\frac{\mathrm{M}}{2}=\frac{5.4}{2}$
$=2.7$

MATHEMATICS

61.[3] The tangent of slope m must be of the form $\mathrm{y}=\mathrm{m}(\mathrm{x}+2)+\frac{\mathrm{a}}{\mathrm{m}}$

So, $2 \mathrm{~m}+\frac{2}{\mathrm{~m}}=\mathrm{c} \Rightarrow \mathrm{c}=2\left(\mathrm{~m}+\frac{1}{\mathrm{~m}}\right) \geq 2 \times 2$. So
$\mathrm{c}_{\text {min }}=4$
62.[3] $\vec{a}+\vec{b}=\vec{p}$
$\Rightarrow|\vec{a}+\vec{b}|^{2}=|\vec{p}|^{2}$
$\Rightarrow(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=|\vec{p}|^{2}$
$=|\vec{a}|^{2}+|\vec{b}|^{2}+2 \cdot \vec{a} \cdot \vec{b}=|\vec{p}|^{2}$
Also, $\vec{a}-\vec{b}=\vec{q}$
$\Rightarrow|\vec{a}-\vec{b}|^{2}=|\overrightarrow{\mathrm{q}}|^{2}$
$\Rightarrow(\vec{a}-\vec{b}) \cdot(\vec{a}-\vec{b})=|\vec{q}|^{2}$
$=|\vec{a}|^{2}+|\vec{b}|^{2}-2 \cdot \vec{a} \cdot \vec{b}=|\vec{q}|^{2}$
Thus $2\left(|\vec{a}|^{2}+|\vec{b}|^{2}\right)=|\overrightarrow{\mathrm{p}}|^{2}+|\overrightarrow{\mathrm{q}}|^{2}$
63.[2] Equation of the required plane is
$(x+y+z-6)+\lambda(2 x+3 y+z+5)=0$
i.e. $(1+2 \lambda) x+(1+3 \lambda) y+(1+\lambda) z+(-6+5 \lambda)=0$

This plane is perpendicular to xy plane whose equation is $z=0$
i.e. $0 \cdot x+0 \cdot y+z=0$
\therefore By condition of perpendicularity
$0 .(1+2 \lambda)+0 .(1+3 \lambda)+(1+\lambda) .1=0$
i.e. $\lambda=-1$
\therefore Equation of required plane is
$(1-2) x+(1-3) y+(1-1) z+(-6-5)=0$ or $\mathrm{x}+2 \mathrm{y}+11=0$.
64.[3] We have

$$
\begin{aligned}
& f(x)=\sin \left(\log \left(-x+\sqrt{1+x^{2}}\right)\right) \\
& f(-x)=\sin \log \left(x+\sqrt{1+x^{2}}\right) \\
& =\sin \log \left(\left(x+\sqrt{1+x^{2}}\right)\left(\frac{-x+\sqrt{1+x^{2}}}{-x+\sqrt{1+x^{2}}}\right)\right) \\
& =\sin \log \left(\frac{1}{-x+\sqrt{1+x^{2}}}\right)
\end{aligned}
$$

$=-\sin \log \left(-x+\sqrt{1+x^{2}}\right)$
$=-\mathrm{f}(\mathrm{x})$ odd function, hence zero (S-I) is true.
$\int_{-a}^{a} f(x)=0$ only when, $f(x)$ is odd function
Hence S-II is wrong.
65.[2]

Required shaded area
$=\int_{0}^{1}\left(\left(x^{2}+2\right)-(-x)\right) d x$
$=\int_{0}^{1}\left(x^{2}+x+2\right) d x=\left(\frac{x^{3}}{3}+\frac{x^{2}}{2}+2 x\right)_{0}^{1}$
$=\frac{1}{3}+\frac{1}{2}+2=\frac{17}{6}$
66.[3] We have
$y-x \frac{d y}{d x}=y^{2}+\frac{d y}{d x}$
$(x+1) \frac{d y}{d x}=y-y^{2}$
$\frac{d y}{y(1-y)}=\frac{d x}{x+1}$
$\left(\frac{1}{y}+\frac{1}{1-y}\right) d y=\frac{d x}{x+1}$
On integrating both side, we get
$\log y-\log (1-y)=\log (x+1)+\log c$
$\log \left(\frac{y}{y-1}\right)=\log (x+1) c$
$\frac{y}{y-1}=(x+1) c$
$c^{\prime} y=(x+1)(y-1)$
67.[1]

Circumcentre $\mathrm{O} \equiv(-1 / 3,2 / 3)$ and orthocenter $H \equiv(11 / 3,4 / 3)$.

Therefore, the coordinates of G are (1, 8/9). Now, the point A is $(1,10)$ as G is $(1,8 / 9)$. Hence,
$\mathrm{AD}: \mathrm{DG}=3: 1$
$\therefore \mathrm{D}_{\mathrm{x}}=\frac{3-1}{2}=1, \mathrm{D}_{\mathrm{y}}=\frac{\frac{8}{3}-10}{2}=-\frac{11}{3}$
Hence, the coordinates of the mid-point of BC are (1, -11/3).
68.[3]

The given inequality represents a rhombus with sides $2 x \pm 3 y=6$ and $2 x \pm 3 y=-6$
Area $=\frac{2 c^{2}}{d b}=\frac{2(6)^{2}}{(2)(3)}=12$
69.[2] $\mathrm{c}_{1}=(1,2), \mathrm{r}_{1}=\sqrt{1+4+95}=10$
$c_{2}=(3,4) ; r_{2}=\sqrt{9+16-16}=3$
$\mathrm{c}_{1} \mathrm{C}_{2}=\sqrt{(3-1)^{2}+(4-2)^{2}}=\sqrt{8}=2 \sqrt{2}$
$\therefore \mathrm{c}_{1} \mathrm{C}_{2}<\left|\mathrm{r}_{1}-\mathrm{r}_{2}\right|$ (one circle lies in side the other)
\therefore The statement-I is true and statement-II is also true and correct explanation of statement-I.
70.[2]

$\int \frac{d x}{x^{n+1}\left(1+x^{-n}\right)^{\frac{n-1}{n}}}$
Put $1+x^{-n}=t^{n}$
$\frac{d x}{x^{n+1}}=t^{n-1} d t$
71.[3] for point of intersection at exactly one point
$\lambda \mathrm{x}+3=(\lambda+1) \mathrm{x}^{2}+2$
$(\lambda+1) x^{2}-\lambda x-1=0$
$\Delta=0$
$\lambda^{2}+4(\lambda+1)=0$
$\lambda^{2}+4 \lambda+4=0$
$(\lambda+2)^{2}=0$
$\lambda=-2$
72.[4]

$\mathrm{V} \geq \mathrm{R}$
$5 \geq-2(1+h)+\log _{2}\left(b^{2}-2\right)$
solve for b then $b^{2}-2>0$
73.[3]

Let side of square $=\mathrm{a}$
then $\mathrm{OA}=\mathrm{a} / \sqrt{2}$
As $\angle \mathrm{OPA}=45^{\circ}$
$\mathrm{OA}=\mathrm{OP}=\mathrm{a} / \sqrt{2}$
Clearly, AP = a = BP
As $A B=a$
So, $\triangle \mathrm{ABP}$ be equilateral Δ
Hence $\angle \mathrm{APB}=60^{\circ}$
74.[1] Put $\frac{1}{2} \cos ^{-1} \frac{\sqrt{5}}{3}=\theta$
$\Rightarrow \cos 2 \theta=\frac{\sqrt{5}}{3}$ and $0 \leq 2 \theta \leq \pi$
$\Rightarrow \frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\frac{\sqrt{5}}{3}$
$\Rightarrow \frac{1+\tan ^{2} \theta}{1-\tan ^{2} \theta}=\frac{3}{\sqrt{5}}$
$\Rightarrow \tan ^{2} \theta=\frac{3-\sqrt{5}}{3+\sqrt{5}}=\frac{(3-\sqrt{5})^{2}}{4}$
$\Rightarrow \tan \theta= \pm \frac{3-\sqrt{5}}{2}$
$\Rightarrow \tan \theta=\frac{3-\sqrt{5}}{2}$ As $0 \leq \theta \leq \pi / 2$
75.[3] Since $A \subseteq B, \quad \therefore \quad A \cup B=B$

So, $n(A \cup B)=n(B)=6$
76.[3] $\left(\log _{3} 512 \log _{4} 9-\log _{3} 8 \log _{4} 3\right)$
$\times\left(\log _{2} 3 \log _{3} 4-\log _{3} 4 \log _{8} 3\right)$
$=\left(\frac{\log 512}{\log 3} \frac{\log 9}{\log 4}-\frac{\log 8}{\log 3} \frac{\log 3}{\log 4}\right) \times$
$\left(\frac{\log 3}{\log 2} \frac{\log 4}{\log 3}-\frac{\log 4}{\log 3} \frac{\log 3}{\log 8}\right)$
$=\left(\frac{9 \log 2}{\log 3} \frac{2 \log 3}{2 \log 2}-\frac{3 \log 2}{\log 3} \frac{\log 3}{2 \log 2}\right) \times$
$\left(\frac{\log 3}{\log 2} \frac{2 \log 2}{\log 3}-\frac{2 \log 2}{\log 3} \frac{\log 3}{3 \log 2}\right)$
$=\left(9-\frac{3}{2}\right)\left(2-\frac{2}{3}\right)=10$
77.[2] $\frac{\alpha}{10}=\left(\mathrm{A}^{-1}\right)_{23}=\frac{\mathrm{C}_{32}}{|\mathrm{~A}|}=\frac{-\left|\begin{array}{cc}1 & 1 \\ 2 & -3\end{array}\right|}{10}=\frac{5}{10} \Rightarrow \alpha=5$
78.[3] mean $(\mu)=\frac{\sum \mathrm{f}_{i} \mathrm{y}_{i}}{\sum \mathrm{f}_{i}}$
$\sum \mathrm{f}_{i}\left(\mathrm{y}_{i}-\mu\right)=\sum \mathrm{f}_{i} \mathrm{y}_{i}-\mu \sum \mathrm{f}_{i}=0$
Statement-I is true.
Again the mean of the square of the first n

$$
\text { natural numbers }=\frac{\sum \mathrm{n}^{2}}{\mathrm{n}}
$$

$=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6 \mathrm{n}}=\frac{(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}$
Statement-II is false .
79.[1] Clearly (a) is wrong as it is ' v ' operator
80.[1]

odd function
$\left(\operatorname{sgn}(x)^{\operatorname{sgn} x}\right)^{n}= \begin{cases}\left((1)^{1}\right)^{n} & ; x>0 \\ \left((-1)^{-1}\right)^{n} & ; x<0\end{cases}$
$=\left\{\begin{array}{r}1 ; x>0 \\ -1 ; x<0\end{array}\right.$
81.[2] Do your self
82.[1] Given fog = I
\Rightarrow fog $(x)=x$ for all x
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{g}(\mathrm{x})) \mathrm{g}^{\prime}(\mathrm{x})=1$ for all x
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{g}(\mathrm{a}))=\frac{1}{\mathrm{~g}^{\prime}(\mathrm{a})}=\frac{1}{2}$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{b})=\frac{1}{2}$
83.[2] After solving the determinant
$a^{3}+b^{3}+c^{3}-3 a b c=0$
$(a+b+c) \cdot\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)=0$
$\frac{1}{2}(a+b+c)\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]=0$
$\because(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=0$
$\because a=b=c \quad\left[\because a+b+c \neq 0 \because z_{1} \neq 0\right.$ because $\left|\mathrm{z}_{1}\right|=\mathrm{a} \neq 0$ etc]

Hence $\mathrm{OA}=\mathrm{OB}=\mathrm{OC}$
where O is the origin and A, B, C are the points representing $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$ respectively.
Therefore, O is circumcentre of $\triangle A B C$.
$\arg \left(\frac{\mathrm{z}_{3}}{\mathrm{z}_{2}}\right)=\angle \mathrm{BOC}=2 \angle \mathrm{BAC}$
$=2 \arg \left(\frac{\mathrm{z}_{3}-\mathrm{z}_{1}}{\mathrm{z}_{2}-\mathrm{z}_{1}}\right)=\arg \left(\frac{\mathrm{z}_{3}-\mathrm{z}_{1}}{\mathrm{z}_{2}-\mathrm{z}_{1}}\right)^{2}$
84.[3] let $a_{1}=1$
$\mathrm{a}_{2}=2$
$\mathrm{a}_{3}=4$
$\mathrm{a}_{4}=8$
So, $b_{1}=1$
$\mathrm{b}_{2}=1+2=3$
$\mathrm{b}_{3}=3+4=7$
$\mathrm{b}_{4}=7+8=15$

The numbers $b_{1}, b_{2}, b_{3}, b_{4}$ are not in G.P. and A.P.

Statement-I is correct but Statement-II wrong.
85.[2] If $(x+2)^{2}=\left(\omega-\omega^{2}\right)^{2}$
$x^{2}+4+4 x=\omega^{2}+\omega^{4}-2 \omega^{3}$
$\mathrm{x}^{2}+4+4 \mathrm{x}=\omega^{2}+\omega-2$
$\left(x^{2}+4 x+7\right)=0$
$x^{4}+3 x^{3}+2 x^{2}-11 x-6$
$=x^{2}\left(x^{2}+4 x+7\right)-x\left(x^{2}+4 x+7\right)-\left(x^{2}+4 x+7\right)+1$
$=x^{2}(0)-x(0)-0+1 \quad$ By (i)
$=1$
86.[2] $\quad \mathrm{T}_{\mathrm{r}+1}={ }^{1024} \mathrm{C}_{\mathrm{r}}\left(5^{1 / 2}\right)^{1024 \mathrm{r}}\left(7^{1 / 8}\right)^{\mathrm{r}}$

Now this term is an integer if $1024-r$ is an even integer, for which
$r=0,2,4,6, \ldots, 1022,1024$ of which $r=0,8,16$.
$2424, \ldots ., 1024$ are divisible by 8 which makes
r/8 an integer.
For A.P., r $=0,8,16,24, \ldots, 1024$

$$
1024=0+(n-1) 8 \Rightarrow n=129
$$

87.[3] Sum of coefficients in $\left(1-x \sin \theta+x^{2}\right)^{n}$ is
$(1-\sin \theta+1)^{\mathrm{n}}$ (putting $\mathrm{x}=1$)
This sum is greatest when $\sin \theta=-1$, then maximum sum is $3^{\text {n }}$.
88.[2] Suppose there ' n ' players in the beginning. The total number of games to be played was equal to ${ }^{\mathrm{n}} \mathrm{C}_{2}$ and each player would have played $\mathrm{n}-1$ games.

Let us assume that A and B fell ill. Now the total number of games of A and B is $(n-1)+(n-1)-1=2 n-3$. But they have played 3 games each. Then their remaining number of games is $2 n-3-6=2 n-9$. Given,
${ }^{\mathrm{n}} \mathrm{C}_{2}-(2 \mathrm{n}-9)=84$
$\Rightarrow \mathrm{n}^{2}-5 \mathrm{n}-150=0$
$\Rightarrow \mathrm{n}=15$

Alternative solutions :

The number of games excluding A and B is ${ }^{\mathrm{n}-2} \mathrm{C}_{2}$. But before leaving A and B played 3 games each. Then, ${ }^{n-2} C_{2}+6=84$
Solving this equation, we get $\mathrm{n}=15$.
89.[2] $P=\frac{\mid n-2 \times \nmid 2}{\lfloor n-1}=\frac{2}{n-1}=\frac{2}{2+n-3}$
odds against $=n-3: 2$
90.[2] $\quad \mathrm{P}(\mathrm{A})=\frac{1}{1+2}=\frac{1}{3}$
$P(A \cup B)=\frac{3}{3+1}=\frac{3}{4}$
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$\Rightarrow \mathrm{P}(\mathrm{B})=\frac{3}{4}-\frac{1}{3}+\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$\mathrm{P}(\mathrm{B})=\frac{5}{12}+\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \quad \Rightarrow \frac{5}{12} \leq \mathrm{P}(\mathrm{B}) \leq 3 / 4$

