AIPMT - 2001

AIPMT - 2001

- Q.1 The dimension of Planck constant equals to that of :
 - (1) Energy (2) Momentum
 - (3) Angular momentum (4) Power
- Q.2 Following truth table represent which logic gate –

	А	В	С
	1	1	0
	0	1	1
	1	0	1
	0	0	1
(1) XOR		(2) NOT

- (3) NAND (4) AND
- Q.3 Which rays contain (+ Ve) charged particle : -

(1) α -rays	(2) β-rays
(3) γ-rays	(4) X-rays

Q.4 An electron having mass 'm' and kinetic energy E enter in uniform magnetic field B perpendicularly, then its frequency will be : -

(1)
$$\frac{eE}{qVB}$$
 (2) $\frac{2\pi m}{eB}$
(3) $\frac{eB}{2\pi m}$ (4) $\frac{2m}{eBE}$

Q.5 A particle is thrown vertically upward. Its velocity at half of the height is 10 m/s. Then the maximum height attained by it : -

 $(g = 10 \text{ m/s}^2)$

- (1) 8 m (2) 20 m (3) 10 m (4) 16 m
- **Q.6** A particle is projected making angle 45° with horizontal having kinetic energy K. The kinetic energy at highest point will be : -

(1)
$$\frac{K}{\sqrt{2}}$$
 (2) $\frac{K}{2}$ (3) 2K (4) K

Q.7 A black body has wavelength λ_m corresponding to maximum energy at 2000 K. Its wavelength corresponding to maximum energy at 3000 K will be : -

(1)
$$\frac{3}{2}\lambda_{\rm m}$$
 (2) $\frac{2}{3}\lambda_{\rm m}$
(3) $\frac{16}{81}\lambda_{\rm m}$ (4) $\frac{81}{16}\lambda_{\rm m}$

Q.8 Two particles having mass 'M' and 'm' are moving in a circular path having radius R & r respectively. If their time period are same then the ratio of angular velocity will be : -

(1)
$$\frac{r}{R}$$
 (2) $\frac{R}{r}$ (3) 1 (4) $\sqrt{\frac{R}{r}}$

Q.9 A child is sitting on a swing. Its minimum and maximum heights from the ground is 0.75 m and 2 m respectively, its maximum speed will be

Q.10 The current (I) in the circuit will be : -

(1)
$$\frac{5}{40}$$
A (2) $\frac{5}{50}$ A (3) $\frac{5}{10}$ A (4) $\frac{5}{20}$ A

Q.11 Biological importance of Ozone layer is : -

- (1) It stops ultraviolet rays
- (2) Ozone layer reduces green house effect
- (3) Ozone layer reflects radio waves
- (4) Ozone layer controls O₂/H₂ ratio in atmosphere
- **Q.12** Two springs A and B having spring constant K_A and K_B . ($K_A = 2K_B$) are stretched by applying force of equal magnitude. If energy stored in spring A is E then energy stored in B will be : -

(1) 2E (2)
$$\frac{E}{4}$$
 (3) $\frac{E}{2}$ (4) 4E

Q.13 A charge Q μc is placed at the centre of cube, the flux coming out from any surfaces will be : -

(1)
$$\frac{Q}{6\varepsilon_0} \times 10^{-6}$$
 (2) $\frac{Q}{6\varepsilon_0} \times 10^{-3}$
(3) $\frac{Q}{2\varepsilon_0}$ (4) $\frac{Q}{8\varepsilon_0}$

Q.14 X(n,
$$\alpha$$
) ${}^{7}_{3}$ Li, then X will be : -
(1) ${}^{10}_{5}$ B (2) ${}^{9}_{5}$ B (3) ${}^{11}_{4}$ Be (4) ${}^{4}_{2}$ He

Q.15 Half life of radioactive element is 12.5 Hour and its quantity is 256 gm. After how much time its quantity will remain 1 gm : -

(3) 150	Hrs	(4)	200 Hrs
< / /		~ /	

- Q.16 A scientist says that the efficiency of his heat engine which work at source temperature 127°C and sink temperature 27° C to 26%, then
 - (1) It is impossible
 - (2) It is possible but less probable
 - (3) It is quite probable
 - (4) Data are incomplete
- **Q.17** A cricketer catches a ball of mass 150 gm. in 0.1 second moving with speed 20 ms⁻¹. Then he experiences force of : -

 $(1) \ 300 \ N \ (2) \ 30 \ N \ (3) \ 3 \ N \ (4) \ 0.3 \ N$

Q.18 If the tension and diameter of a sonometer wire of fundamental frequency n is doubled and density is halved then its fundamental frequency will become

(1)
$$\frac{n}{4}$$
 (2) $\sqrt{2} n$ (3) n (4) $\frac{n}{\sqrt{2}}$

Q.19 The total energy of particle performing SHM depend on : -

(1) K, a, m	(2) K, a
(3) K, a, x	(4) K, x

Q.20 With what velocity should a particle be projected so that its height becomes equal to radius of earth -

(1)
$$\left(\frac{\mathrm{GM}}{\mathrm{R}}\right)^{1/2}$$
 (2) $\left(\frac{\mathrm{8GM}}{\mathrm{R}}\right)^{1/2}$
(3) $\left(\frac{\mathrm{2GM}}{\mathrm{R}}\right)^{1/2}$ (4) $\left(\frac{\mathrm{4GM}}{\mathrm{R}}\right)^{1/2}$

- Q.21 A disc is placed on a surface of pond which has refractive index $\frac{5}{3}$. A source of light is placed 4 m below the surface of liquid. The minimum radius of disc will be so light is not coming out (1) ∞ (2) 3m (3) 6m (4) 4m
- $\label{eq:Q.22} \textbf{A ray of light travelling in air haves wavelength } \lambda, frequency n, velocity v and intensity I. If this ray enters into water then these parameter are <math>\lambda'$, n', v' and I' respectively. Which relation is correct

(1)
$$\lambda = \lambda'$$
 (2) $n = n'$ (3) $v = v'$ (4) $l = l'$

AIPMT - 2001

- Q.23 A cylindrical rod having temperature T_1 and T_2 at its end. The rate of flow of heat Q₁ cal/sec. If all the linear dimension are doubled keeping temperature remain const. then rate of flow of heat Q_2 will be : - $(1) 4Q_1$ $(2) 2Q_1$ (3) $\frac{Q_1}{4}$ (4) $\frac{Q_1}{2}$ If $\left| \vec{A} + \vec{B} \right| = \left| \vec{A} \right| = \left| \vec{B} \right|$ then angle between Q.24 A and B will be : -(1) 90° (2) 120° $(3) 0^{\circ}$ $(4) 60^{\circ}$ Q.25 Optical fibre are based on : -(1) Total internal relfection (2) Less scattering (3) Refraction (4) Less absorbtion coefficient Q.26 Which one among shows particle nature of light. (1) P.E.E. (2) Interference
 - (3) Refraction (4) Polirazation
- Q.27 Two waves having equation

$$x_1 = a \sin(\omega t + \phi_1)$$

 $x_2 = a \sin(\omega t + \phi_2)$

If in the resultant wave the frequency and amplitude remains equals to amplitude of superimposing waves. Then phase diff. between them : -

(1)
$$\frac{\pi}{6}$$
 (2) $\frac{2\pi}{3}$

(3)
$$\frac{\pi}{4}$$
 (4) $\frac{\pi}{3}$

Q.28 In Thomson mass spectrograph $\vec{E} \perp \vec{B}$ then the velocity of underflected electron beam will be :

(1)
$$\frac{|\vec{\mathbf{E}}|}{|\vec{\mathbf{B}}|}$$
 (2) $\vec{\mathbf{E}} \times \vec{\mathbf{B}}$ (3) $\frac{|\vec{\mathbf{B}}|}{|\vec{\mathbf{E}}|}$ (4) $\frac{\mathbf{E}^2}{\mathbf{B}^2}$

Q.29 Energy per unit volume for a capacitor having area A and separation d kept at potential diffeence V is given by : -

(1)
$$\frac{1}{2} \varepsilon_0 \frac{V^2}{d^2}$$
 (2) $\frac{1}{2\varepsilon_0} \frac{V^2}{d^2}$
(3) $\frac{1}{2} CV^2$ (4) $\frac{Q^2}{2C}$

- **Q.30** On the horizontal surface of a truck a block of mass 1 kg is placed ($\mu = 0.6$) and truck is moving with acceleration 5 m/s² then the frictional force on block will be : -
 - (1) 5N (2) 6N
 - (3) 5.88N (4) 8N
- Q.31 Tangent galvanometer is used to measure : (1) Potential difference
 - (2) Current
 - (3) Resistance
 - (4) In measuring charge
- Q.32 A capacitor of capacity C and reactance X if capacitance and frequency become double then reactance will be : -

(1) 4X (2)
$$\frac{X}{2}$$

(3) $\frac{X}{4}$ (4) 2X

- Q.33 A disc is rolling the velocity of its centre of mass is V_{cm} then which one will be correct : -
 - (1) The velocity of highest point is $2V_{cm}$ and point of contact is zero
 - (2) The velocity of highest point is V_{cm} and point of contact is V_{cm}
 - (3) The velocity of highest point is $2V_{cm}$ and point of contact is V_{cm}
 - (4) The velocity of highest point is 2 V_{cm} and point of contact of contact is $2V_{cm}$
- **Q.34** If specific resistance of a potentiometer wire is $10^{-7}\Omega m$ and current flow through it is 0.1 A, cross-sectional area of wire is $10^{-6} m^2$ then potential gradient will be : -
 - (1) 10^{-2} V/m (2) 10^{-4} V/m (3) 10^{-6} V/m (4) 10^{-8} V/m
- **Q.35** For a coil having L = 2 mh, current flow through it is $I = t^2 e^{-t}$ then the time at which emf become zero : -

(1) 2 s	(2) 1 s
(3) 4 s	(4) 3 s

Q.36 For a common emmiter circuit if $\frac{I_C}{I_E} = 0.98$ then current gain for common emitter circuit will be :-(1) 49 (2) 98 (3) 4.9 (4) 25.5 Q.37 A dipole of moment \vec{p} is placed in uniform electric field \vec{E} then torque acting on it is given by : -

(1)
$$\vec{\tau} = \vec{p} \cdot \vec{E}$$
 (2) $\vec{\tau} = \vec{p} \times \vec{E}$

(3) $\vec{\tau} = \vec{p} + \vec{E}$ (4) $\vec{\tau} = \vec{p} - \vec{E}$

Q.38 If number of turn, area and current through it is given by n, A and i respectively then its magnetic moment will be : -

(1) nIA (2) n²IA
(3) nIA² (4)
$$\frac{ni}{\sqrt{A}}$$

Q.39 The equation of a wave is represented by : -

$$y = 10^{-4} \sin\left(100t - \frac{x}{10}\right) m$$
, then the velocity of

wave will be : -

- (1) 100 m/s (2) 4 m/s (3) 1000 m/s (4) 0.00 m/s
- **Q.40** The interplaner distance in a crystal is 2.8×10^{-8} m. The value of maximum wavelength which can be diffracted : -

(1)
$$2.8 \times 10^{-8}$$
 m (2) 5.6×10^{-8} m
(3) 1.4×10^{-8} m (4) 7.6×10^{-8} m

- Q.41 The energy of hydrogen atom in n^{th} orbit is E_n then the energy in n^{th} orbit of singly ionised helium atom will be : -
 - (1) $4 E_n$ (2) $E_n/4$ (3) $2E_n$ (4) $E_n/2$
- Q.42 Among which the magnetic susceptibility does not depend on the temperature : -
 - (1) Dia-magnetis (2) Paramagnetis
 - (3) Ferro-magnetism (4) Ferrite
- Q.43 The resistance of each arm of the wheat stone bridge is 10 ohm. A resistance of 10 ohm is connected in series with galvanometer then the equivalent resistance across the battery will be :
 - (1) 10 ohm (2) 15 ohm
 - (3) 20 ohm (4) 40 ohm
- Q.44 Copper and silicon is cooled from 300 K to 60 K, the specific resistance : -
 - (1) Decrease in copper but increase in silicon
 - (2) Increase in copper but decrease in silicon
 - (3) Increase in both
 - (4) Decrease in both

CAREER POINT: CP Tower, IPIA, Road No.1, Kota (Raj.), Ph: 0744-3040000

AIPMT - 2001

Q.45 In BCC, the distance between two nearest atoms will be : -

(1)
$$\sqrt{3} a$$
 (2) $\frac{\sqrt{3}}{2} a$ (3) $\frac{\sqrt{3}}{4} a$ (4) $\frac{a}{2}$

Q.46 250 N force is required to raise 75 kg mass from a pulley. If rope is pulled 12 m then the load is lifted to 3m, the efficiency of pulley system will be : -

(1) 25% (2)	33.3%
-------------	-------

- (3) 75% (4) 90%
- Q.47 A photo-cell is illuminated by a source of light, which is placed at a distance d from the cell. If the distance become d/2, then number of electrons emited per second will be : -
 - (1) Remain same (2) Four times
 - (3) Two times (4) One-fourth
- $\textbf{Q.48} \qquad M_n \text{ and } M_p \text{ represet the mass of neutron and} \\ \text{proton respectively. An element having mass} \\ \text{M has N neutron and Z-protons, then the correct} \\ \text{relation will be : -} \end{cases}$

(1) $M < \{N.M_n + Z.M_p\}$ (2) $M > \{N.M_n + Z.M_p\}$

(3) $M = \{N.M_n + Z.M_p\}$ (4) $M = N\{M_n + M_p\}$

Q.49 A 1 kg stationary bomb is exploded in three parts having mass 1 : 1 : 3 respectively. Parts having same mass move in perpendicular direction with velocity 30 ms⁻¹, then the velocity of bigger part will be : -

(1)
$$10 \sqrt{2} \text{ ms}^{-1}$$
 (2) $\frac{10}{\sqrt{2}} \text{ms}^{-1}$
(3) $15\sqrt{2} \text{ ms}^{-1}$ (4) $\frac{15}{\sqrt{2}} \text{ ms}^{-1}$

- Q.50 Energy is released in nuclear fission is due to
 - (1) Few mass is converted into energy
 - (2) Total binding energy of fragements is more than the B.E. of parantel element
 - (3) Total B.E. of fragements is less than the B.E. of parantel element
 - (4) Total B.E. of fragements is equals to the B.E. of parantal element is
- Q.51 The correct acidic order of following is : -

AIPMT - 2001 (2) III > I > II(1) I > II > III (3) II > III > I (4) I > III > IIQ.52 CH₃-CH₂-CH-CH₃ obtained by chlorination of Ċl n-butane, will be : -(1) Meso form (2) Racemic mixture (3) d-form (4) ℓ -form Q.53 Which alkeneon ozonolysis gives CH₃CH₂CHO and CH₃CCH₃: -0 (1) CH₃CH₂CH = C $\begin{pmatrix} CH_3 \\ CH_2 \end{pmatrix}$ (2) $CH_3CH_2CH = CHCH_2CH_3$ $(3) CH_3CH_2CH = CHCH_3$ $(4) CH_3 - C = CHCH_3$ ĊH₃ 0.54

- **Q.54** Intermediates formed during reaction of RCNH_2 with Br_2 and KOH are : -
 - (1) RCONHBr and RNCO
 - (2) RNHCOBr and RNCO
 - (3) RNH-Br and RCONHBr
 - (4) RCONBr₂
- **Q.55** An organic compound A(C₄H₉Cl) on reaction with Na/diethyl ether gives a hydrocarbon which on monochlorination gives only one chloro derivative then, A is : -
 - (1) t-butyl chloride
 - (2) sec. butyl chloride
 - (3) Iso butyl chloride
 - (4) n-butyl chloride
- Q.56 Which of the following is incorrect : -
 - (1) FeCl₃ is used in detection of phenol
 - (2) Fehling solution is used in detection of glucose
 - (3) Tollen reagent is used in detection of unsaturation
 - (4) NaHSO₃ is used in detection of carbonyl compound
- **Q.57** Which of following give positive Fehling solution test
 - (1) Sucrose(2) Glucose(3) Fats(4) Protein

Ø			AIPMT - 2001
Q.58	Which of the following is not correctly matched	Q.63	Which of the following is correxct about H-
	Г		bonding in nucleotide : -
	(1) Neoprene $-CH_2 - C = CH - CH_2 -$		(1) $A-T$ G-C (2) $A-G$ T-C
			(3) G–T A–C (4) A–A T–T
	(2) Nylon-66	Q.64	Which is correct statement : -
	Г П Л		(1) Starch is polymer of α -glucose
	$-NH-(CH_2)_6 - NH - CO - (CH_2)_4 - C - O -$		(2) Amylose is a component of cellulose
			(3) Proteins are composed of only one type of amino acid
	$(3) \text{ Tervlene} - \text{OCH}_2 - \text{CH}_2 - CH$		(4) In cyclic structure of fructose, there are four carbons and one oxygen atom
	(5) relying $\begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix}_n$		Q
		Q.65	∥ – C – ŇH – (peptide bond)
	(4) PMMA $\begin{bmatrix} -CH_2 - C - \\ COOCH_3 \end{bmatrix}_n$		which statement is incorrect about peptide bond : -
Q.59	Which of the following is correct : -		(1) C-N bond length in protiens is longer than
	(1) Cyclo heptane is an aromatic compound		usual bond length of N-bond
	(2) Diastase is an enzyme		(2) Spectroscopic analysis show planar structure
	(3) Acetophenone is an ether		of – C –NH – group
	(4) All the above		0
Q.60	The incorrect IUPAC name is : -		(3) C–N bond length in proteins is smaller than u_{super} bond length of C. N bond
	(1) CH_3 -C-CH-CH ₃ 2-methyl-3-butanone		(4) None of above
	Ö ĊH ₃	0.66	In steam distillation of toluene, the pressure of
	(2) CH_3 -CH-CH-CH ₃ 2, 3-dimethyl pentane	2.00	toluene in vapour is : -
	CH ₃ CH ₂ –CH ₃		(1) Equal pressure of barometer
	(3) CH ₃ –C=CCH(CH ₃) ₂ 4-methyl-2-pentyne		(2) Less than pressure of barometer
	(4) CH ₃ –CH–CH–CH ₃ 2-bromo-3-chloro butane		(3) Equal to vapour pressure to toluene in simple distillation
Q.61	In preparation of alkene from alcohol using Al_2O_3 which is effective factor : -		(4) More than vapour pressure of toluene in simple distillation
	(1) Porousity of Al ₂ O ₃	Q.67	A compound of molecular formula is C_7H_{16}
	(2) Temperature		shows optical isomerism, compound will be
	(3) Concentration		(1) 2, 3-dimethyl pentane
	(4) Surface area of Al_2O_3		(2) 2, 2-dimethyl butane
Q.62	Which of following is correct : -		(3) 2-methyl hexane
	(1) Any aldehyde gives secondary alcohol on		(4) None of the above
	reduction	Q.68	Change in enthalpy for reaction
	(2) Reaction of vegetable oil with H_2SO_4 give		$2\mathrm{H}_2\mathrm{O}_2(\ell) \to 2\mathrm{H}_2\mathrm{O}(\ell) + \mathrm{O}_2(g)$
	giycerin		If heat of formation of $H_2O_2(\ell)$ and $H_2O(\ell)$ are
	(3) C_2H_5OH , loaine with NaOH gives iodoform		– 188 & – 286 KJ/mol respectively : -
	(4) Sucrose on reaction with NaCl give invert		(1) - 196 KJ/mol $(2) + 196 KJ/mol$
	sugai		(3) + 948 KJ/mol $(4) - 948 KJ/mol$

- Q.69 When 1 mol gas is heated at constant volume temp. is raised from 298 to 308 K. Heat supplied to the gas is 500 J. Then which statement is correct : -
 - (1) $q = w = 500 \text{ J}, \Delta U = 0$ (2) $q = \Delta U = 500 \text{ J}, w = 0$ (3) $q = w = 500 \text{ J}, \Delta U = 0$
 - (4) $\Delta U = 0$, q = w = -500 J
- **Q.70** Enthalpy of $CH_4 + \frac{1}{2}O_2 \rightarrow CH_3OH$ is negative.

If enthalpy of combustion of CH_4 and CH_3OH and x and y respectively. Then which relation is correct : -

(1)
$$x > y$$
 (2) $x < y$ (3) $x = y$ (4) $x \ge y$

(1) 1.732 (2) 3

- (3) 1.02×10^{-4} (4) 3.4×10^{5}
- Q.72 A human body required the 0.01 Curie activity of radioactive susbtance after 24 hours. Half life of radioactive is 6 hours. Then max. activity of radioactive sustance that can be injected will be : -

 $(1) \ 0.08 \qquad (2) \ 0.04 \qquad (3) \ 0.16 \qquad (4) \ 0.32$

Q.73 When a bio chemical reaction is carried out in laboratory out side the human body in the absence of enzyme, then the rate of reaction obtained is 10^{-6} times, than activation energy of reaction in the presence of enzyme is : -

(1) $\frac{6}{RT}$

- (2) P is required
- (3) Different from, E_a obtained in laboratery
- (4) Can't say any things
- Q.74 Molarity of liquid HCl if density of liq. HCl is 1.17 gm/cc : -

(1) 36.5 (2) 18.25 (3) 32.05 (4) 42.10

- Q.75 Percentage of Se in peroxidase anhydrous enzyme is 0.5% by weight (at. wt = 78.4) then minimum molecular weight of peroxidase anhydrous enzymes is : -
 - (1) 1.568×10^4 (2) 1.568×10^3 (3) 15.68 (4) 2.136×10^4
- **AIPMT 2001** Sp. vol. of cylinderical virus particle is Q.76 6.02×10^{-2} cc/gm. Whose radius and length are 7 Å & 10Å respectively. If $N_A = 6.02 \times 10^{23}$. Find mol. wt. of virus : -(1) 1.54 kg/mol. (2) 1.54×10^4 kg/mol. (3) 3.08×10^4 kg/mol. (4) 3.08×10^3 kg/mol. 0.77 Pure water can be obtain from sea water by (1) Centrifugation (2) Plasmolysis (3) Reverse osmosis (4) Sedimentation Q.78 Stand electrode potential are Fe⁺²/Fe $E^{o} = -0.44$ Fe^{+3}/Fe^{+2} $E^{o} = 0.77$ If Fe^{+2} , Fe^{+3} and Fe block re kept together, then :-(1) Fe^{+3} increases (2) Fe^{+3} decreases (3) $\frac{Fe^{+2}}{Fe^{+3}}$ reamins unchanged (4) Fe^{+2} decreases Q.79 Which is not correct regarding the adsorption of a gas on surface of solid: -(1) On increasing temp. adsorption increase continuously (2) Enthalpy & entropy change is - Ve (3) Adsorption is more for some specific substance (4) Reversible $PbO_2 \rightarrow PbO$ Q.80 $\Delta G_{298} < 0$ $SnO_2 \rightarrow SnO$ $\Delta G_{298} > 0$ Most probable oxidation state of Pb & Sn will be : (1) Pb^{+4} , Sn^{+2} (2) Pb^{+4} , Sn^{+2} $(3) Pb^{+2}, Sn^{+2}$ (4) Pb^{+2} , Sn^{+4} Which of the following two species in the pair Q.81 are isostructural : -(1) XeF₂, IF_{2}^{-} (2) NH₃, BF₃ (3) CO_3^{-2} , SO_3^{-2} (4) PCl₅, ICl₅
 - Q.82 In which of the following bond angle is maximum :
 - (1) NH_3 (2) NH_4^+ (3) PCl_3 (4) SCl_2

CAREER POINT: CP Tower, IPIA, Road No.1, Kota (Raj.), Ph: 0744-3040000

Ø	CAREER POINT			AIPMT - 2001
Q.83	Which of the following	ing statement is not correct	Q.90	Main axis of a diatomic molecule is z,
	(1) La(OH) ₃ is less b	basic than Lu(OH) ₃		molecular orbital p_x and p_y overlaps to form,
	(2) In Lanthanide set	ries ionic radius of Ln ⁺³ ions		which of the following orbital : -
	decreases			(1) π molecular orbital
	(3) La is actually an	element of transition series		(2) σ molecular orbital
	rather Lanthanic	le		(3) δ molecular orbtial
	(4) Aomic radius of	Zr and Hf are same because		(4) No bond will form
0.04	of Lanthanide co	ontraction	Q.91	Which of the following will exhibit maximum
Q.84	Correct order of I^{∞} I	P among following elements		ionic conductivity : -
	Be, B, C, N, O IS : -	< N		(1) $K_4[Fe(CN)_6]$ (2) $[Co(NH_3)_6]Cl_3$
	$(1) \mathbf{B} < \mathbf{Be} < \mathbf{C} < \mathbf{O} < \mathbf{O}$	< 0		(3) $[Cu(NH_3)_4]Cl_2$ (4) $[Ni(CO)_4]$
	$(2) \mathbf{B} < \mathbf{B} < \mathbf{C} < \mathbf{N} <$	< 0	Q.92	The following quantum no's are possible for
	(3) Be < B < C < N < (4) Pa < P < C < O < (5)	< N		how many orbital $n = 3$, $\ell = 2$, $m = +2$
0.85	(4) $Be < B < C < O$	< 19		(1) 1 (2) 2 (3) 3 (4) 4
Q.03	number of isomers .	-	Q.93	In HS ⁻ , I ⁻ , R–NH ₂ , NH ₃ order of proton
	(1) $[C_0(NH_2)_4Cl_2]$			excepting tendency will be :-
	(2) $[Ni(en)(NH_2)_4]^{+2}$			$(1) I -> NH_3 > R - NH_2 > HS$
	(2) $[Ni(C_2O_4)(en)_2]^{-2}$	2		$(2) \operatorname{NH}_3 > \operatorname{R-NH}_2 > \operatorname{HS} > 1$
	(4) $[Cr(SCN)_2(NH_2)]$	4]+		(3) $\text{RNH}_2 > \text{NH}_3 > \text{HS} > 1$
0.86	Coordination number	r of Ni in $[(C_2 O_4)_2]^{-4}$ is	0.04	$(4) HS > RNH_2 > NH_3 > 1$
2.00	(1) 3	(2) 6	Q.94	The Beans are cooked earlier in pressure
	(1) 3 (3) 4	(2) (4) (2)		(1) D.D. increases with increasing prossure
0.87	Which of following	organometallic compound is		(1) B.P. increase with increasing pressure
Q .07	σ and π bonded : -	organomeanie compound is		(2) Extra pressure of pressure cooker softens
	(1) $[Fe(n^5 - C_5H_5)_2]$			(5) Exita pressure of pressure cooker, softens
	(2) K[PtCl ₂ ($n^2 - C_2$)	[4)]		(4) Internal energy is not lost while cooking is
	(2) $\Pi[1 \text{ CO}_{3}(1) \text{ C}_{2}(1) \text{ C}_{$	-4/]		pressure cooker
	$(4) \text{ Fe}(CH_2)_2$		Q.95	The most convenient method to protect the
0.88	Which statement is i	ncorrect · -	-	bottom of ship made of iron is : -
2.00	(1) Ni(CO) ₄ – Tetrah	neoncer:		(1) Coating it with Red lead oxide
	(1) $Ni(CN)^{-2}$ Same			(2) White tin plating
	(2) $\operatorname{NI}(\operatorname{CN})_4$ - Squa	re planar, diamagnetic		(3) Connecting it with Mg block
	(3) Ni(CO) ₄ - Tetral	nedral, diamagnetic		(4) Connecting it with Pb block
	(4) $[Ni(Cl)_4]^{-2}$ – Tetr	ahedral, paramagnetic	Q.96	Zn convert it's melted state to its solid state, it
Q.89	In X- H Y, X ar	nd Y both are electronegative		has HCP structure, then find out nearest no. of
	elements : -	V 11		nearest atom : -
	(1) Electro density (on X will increase and on H		(1) 6 (2) 8 (3) 12 (4) 4
()	(2) In both electron	(2) In both electron density will increase		Nitrogen form N_2 , but phosphorous form P_2 , it's
	(2) In both electron	lensity will decrease		at a time convert in P ₄ , reason is : -
	(4) On X electron d	lensity will decrease and on		(1) The conditional present between phosphorous atom (2) $p_{\pi} - p_{\pi}$ bonding is weak
	H increases	ionsity will decrease and oll		(3) $p_{\pi} - p_{\pi}$ bonding is strong
				(4) Multiple bond form easily

(1)
$$3.4 \times 10^{-4}$$
 (2) 3.4×10^{-3}
(3) 6.8×10^{-4} (4) 6.8×10^{-3}

Q.99 Solubility of a M_2S salt is 3.5×10^{-6} then find out solubility product : -

(1) 1.7×10^{-6} (2) 1.7×10^{-16}

- (3) 1.7×10^{-18} (4) 1.7×10^{-12}
- **Q.100** If a $^{b}_{a}X$ species emits firstly a positron, then two α and two β and at last one α is also after intially it fainally convets into stable $^{c}_{d}Y$ species so correct relation will be : -
 - (1) c = b 12, d = a 5
 - (2) a = c 8, d = b 1
 - $(3) a = c 6, \quad d = b 0$
 - $(4) a = c 4, \quad a = b 2$
- Q.101 Independent assortment of genes does not takes place when : -
 - (1) Genes are located on homologous chromosomes
 - (2) Genes are linked and located on same chromosome
 - (3) Genes are located on non-homologous chromosome
 - (4) All the above
- Q.102 What is true for monoclonal antibodies : -
 - (1) These antibodies obtained from one parent and for one antigen
 - (2) These obtained from different parents and for one antigen
 - (3) These obtained from one parent and for many antigens
 - (4) These obtained from many parents and for many antigen

Q.103 In Negative operon : -

- (1) Inducer binds with repressor
- (2) Co-repressor does not binds with repressor
- (3) Corepressor binds with inducer
- (4) CAMP have negative effect on lac operon

- AIPMT 2001
- Q.104 What is true for plasmid : -
 - (1) Plasmids are widely used in gene transfer
 - (2) These are found in virus
 - (3) Plasmid contain gene for vital activities
 - (4) These are main part of chromosome
- Q.105 Mendel obtained wrinkled seeds in pea due to deposition of sugars instead of starch. It was due to which enzyme : -
 - (1) Amylase
 - (2) Invertase
 - (3) Diastase
 - (4) Absence of starch branching enzyme
- Q.106 Before the European invader which vegetable was absent in India :-
 - (1) Potato and Tomato
 - (2) Simla mirch and Brinjal
 - (3) Maize and chichinda
 - (4) Bitter gourd
- Q.107 Which of the following is true pair of biofertilizers : -
 - (1) Azolla and BGA
 - (2) Nostoc and legume
 - (3) Rhizobium and grasses
 - (4) Salmonella & E. Coli
- Q.108 Ratio of complementry genes is : -
 - (1) 9:3:4 (2) 12:3:1
 - $(3) 9: 3: 3: 4 \qquad (4) 9: 7$
- Q.109 When dominant and recessive allels express itself together it is called : -
 - (1) Co-dominance
 - (2) Dominance
 - (3) Amphidominance
 - (4) Pseudo dominance
- Q.110 A and B genes are linked. What shall be genotype of progeny in a cross between AB/ab and ab/ab : -

(1) AAbb and aabb (2) AaBb and aabb

- (3) AABB and aabb (4) None
- Q.111 Which statement correct about centre of origin of plant : -
 - (1) More diversity in improved variety
 - (2) Frequency of dominant gene is more
 - (3) Climatic condition more favourable
 - (4) None

Ø	CAREER POINT			AIPMT - 2001
Q.112	Probability of four son to a couple is : -	Q.121	In which of the follow	wing haemocyanin pigment
	(1) $\frac{1}{2}$ (2) $\frac{1}{2}$ (2) $\frac{1}{2}$ (4) $\frac{1}{2}$		is found : -	
	(1) $\frac{1}{4}$ (2) $\frac{1}{8}$ (3) $\frac{1}{16}$ (4) $\frac{1}{32}$		(1) Annelida	(2) Echinodermata
Q.113	Two nonallelic genes produces the new		(3) Insecta	(4) Lower chrodata
	phenotype when present together but fail to do so	Q.122	Anemophilly type of	pollination is found in
	independently then it is called : -		(1) Salvia	(2) Bottle brush
	(1) Epistasis		(3) Vallisneria	(4) Coconut
	(2) Polygene	Q.123	What is the eye of po	tato : -
	(3) Non complimentry gene		(1) Axillary bud	(2) Accessory bud
	(4) Complimentry gene		(3) Adventitious bud	(4) Apical bud
Q.114	Which of the following cut the DNA from	Q.124	Due to discovery of	which of the following in
	specific places : -		1980, the evolution w	vas termed as RNA world :
	(1) Restriction endonuclease (EcoRI)		(1) m-RNA, t-RNA-	r-RNA synthesise proteins
	(2) Ligase		(2) In some virus RN	A is genetic material
	(3) Exonuclease		(3) RNA have enzym	atic property
	(4) Alkaline phosphate		(4) RNA is not found	in all cells
Q.115	Tetradynamous conditions occur in : -	Q.125	Which pair is wrong	:-
	(1) Cruciferae (2) Malvaceae		(1) C_3 – Maize	
	(3) Solanaceae (4) Liliaceae		(2) C_4 – Kranz anator	ny
Q.116	Which is correct pair for edible part : -		(3) Calvin cycle - PG	A
	(1) Tomato – Thalamus		(4) Hatch and Slake of	cycle – O.A.A.
	(2) Maize - Cotyledons	Q.126	Which breaks dorma	ncy of potato tuber : -
	(3) Guava - Mesocarp		(1) Gibberellin	(2) IAA
	(4) Date palm - Pericarp		(3) ABA	(4) Zeatin
Q.117	Bicarpellary gyanoecium and oblique ovary	Q.127	Hormone responsible	e for senescence : -
	occurs in : -		(1) ABA	(2) Auxin
	(1) Mustard (2) Banana		(3) GA	(4) Cytokinin
	(3) Pisum (4) Brinjal	Q.128	Which of the follow	wing prevents the fall of
Q.118	Edible part of Banana : -		fruits : -	
	(1) Epicarp		(1) GA ₃	(2) <i>NAA</i>
	(2) Mesocarp and less developed endocarp		(3) Eethylene	(4) Zeatin
	(3) Endocarp and less developed mesocarp	Q.129	Loading of phloem is	related to : -
	(4) Epicarp & mesocarp		(1) Increase of sugar	in phloem
Q.119	In <i>Hydra</i> , waste material of food digestion and		(2) Elongation of phl	oem cell
	nitrogenous waste material removed from : -		(3) Separation of phle	oem parenchyma
	(1) Mouth and mouth		(4) Strengthening of	phloem fiber
	(2) Body wall and body wall	Q.130	Which pigment system	m inactivated in red drop : -
	(3) Mouth and body wall		(1) PS-I and P.S-II	(2) PS – I
0.100	(4) Mouth and tentacles		(3) PS – II	(4) None
Q.120	in which of the following animal post anal tail is found	Q.131	Which plant is LDP :	-
	(1) Earthworm (2) Lower invertebrate		(1) Tobacco	(2) Glycine max
	(1) Earniworm (2) Lower Invertebrate (3) Scorpion (4) Spake		(3) Mirabilis jalapa	(4) Spinach
	(3) scorpton (4) snake			

Ø				AIPMT - 2001
Q.132	What is true for photolithotrops : -	Q.141	L.S.D. is : -	
	(1) Obtain energy from radiations and hydrogen		(1) Hallucinogenic	(2) Sedative
	from organic compounds		(3) Stimulant	(4) Tranquiliser
	(2) Obtain energy from radiations and hydrogen	Q.142	Which set is similar	:-
	from inorganic compounds		(1) Corpus luteum –	graffian follicles
	(3) Obtain energy from organic compounds		(2) Sebum-sweat	
	(4) Obtain energy from inorganic compounds		(3) Bundle of his – P	ace macker
Q.133	In which of the following plant sunken stomata		(4) Vita B ₇ - Niacin	
	are found : -	Q.143	Salmonella is related	with : -
	(1) Nerium (2) Hydrilla		(1) Typhoid	(2) Polio
	(3) Mango (4) Guava		(3) T.B.	(4) Tetanus
Q.134	What is the best pH of the soil for cultivation of	Q.144	Difference in gram	\oplus and gram \ominus bacteria is
	$p_{\text{fants}} = -$		due to -	
	$(1) 5.4 - 5.4 \qquad (2) 6.5 - 7.5 \\ (2) 4.5 - 9.5 \qquad (4) 5.5 - (5)$		(1) Cell wall	(2) Cell membrane
0 125	(3) 4.5 - 8.5 (4) 5.5 - 6.5		(3) Ribosome	(4) Cytoplasm
Q.135	which fish selectively feed on farva of	Q.145	What is sarcomere : -	
	(1) Combusia (2) Pohu		(1) Part between two	H-line
	(1) Gambusia (2) Konu (3) Clarias (4) Exceptus		(2) Part between two	A-line
0 136	(3) Clarinas (4) Exocoetus		(3) Part between two	I-band
Q.130	(1) Peserpine Tranquilliser		(4) Part between two	Z-line
	(1) Rescipine – Hanquinisci	Q.146	Which statement	is correct for muscle
	(2) Morphine – Unllucinogenie		contraction : -	
	(4) Phang Analgesia		(1) Length of H-zone	e become decrease
0 127	(4) Bhang – Anargesic		(2) Length of A-banc	l remains constant
Q.137	(1) The amount of Ω utilized by organisms in		(3) Length of I-band	become increase
	(1) The amount of O ₂ utilised by organishis in water		(4) Length of two Z-	line become increase
	(2) The amount of Ω_2 utilized by micro	Q.147	Characteristics chara	cter of human cornea
	organisms for decomposition		(1) Secreted by conju	ctiva and glandular
	(3) The total amount of O_2 present in water		(2) It has lacrimal gla	and which secrete tears
	(4) All of the above		(3) Blood circulation	is absent in cornea
0.138	In grasses what happens in micro spore mother		(4) If old age it beed deposite on it wl	nich causes the cataract
-	cell for the formation of mature pollen grains : -	Q.148	Which of the most in	fectious disease is : -
	(1) One meiotic and two mitotic divisions		(1) Hepatitis -B	(2) AIDS
	(2) One meiotic & one mitotic divisions	0.440	(3) Cough and cold	(4) Malaria
	(3) One meiotic division	Q.149	Interferons are synth	esized in response to
	(4) One mitotic division		(1) Wrycopiasina (3) Viruses	(2) Bacteria (4) Fungi
Q.139	What is the intensity of sound in normal	Q.150	Cauliflower mosaic v	virus contains : -
	conversation : -	-	(1) ss RNA	(2) ds RNA
	(1) $10 - 20$ decibal (2) $30 - 60$ decibal		(3) ds DNA	(4) ss DNA
	(3) $70 - 90$ decibal (4) $120 - 150$ decibal	Q.151	Reason of lung cance	er : -
Q.140	Adventive embryony in citrus is due to : -		(1) Coal mining	(2) Calcium fluoride
	(1) Nucellus (2) Integuments		(3) Cement factory	(4) Bauxite mining
	(3) Zygotic embryo (4) Fertilized egg		2	-

	CAREER POINT		AIPMT - 2001
Q.152	When water moves through a semipermeable	Q.162	Male XX and female XY sometime occur due to
	membrane then which of the following pressure		(1) Deletion
	develops : -		(2) Transfer of segments in X and Y
	(1) O.P. (2) S.P. (3) T.P. (4) W.P.		chromosomes
Q.153	Proteinaceous pigment which control the		(3) Aneuploidy
	activities concerned with light : -		(4) Hormonal imbalance
	(1) Phytochrome (2) Chlorophyll	Q.163	No. of Bar Body in XXXX female : -
0.1.	(3) Anthocyanin (4) Carotenoids		(1) 1 (2) 2
Q.154	Glycolate induces opening of stomata in : -		(3) 3 (4) 4
	(1) Presence of oxygen (2) Low CO_2 conc.	Q.164	Types of RNA polymerase required in nucleus
	(3) High CO_2 (4) CO_2 absent		for RNA synthesis : -
Q.155	Enzyme first used for nitrogen fixation : -		(1) 1 (2) 2
	(1) Nitrogenase (2) Nitroreductase		(3) 3 (4) 4
0.1.	(3) Transferase (4) Transaminase	Q.165	What is true for Archaebacteria : -
Q.156	Maximum number of bases in plasmids		(1) All Halophiles (2) All photosynthetic
	$\begin{array}{c} \text{discovered so far : -} \\ (1) 50 \text{ bile base} \\ \end{array} $		(3) All fossils (4) Oldest living beings
	(1) 50 kilo base (2) 500 kilo base (2) 500 kilo base	Q.166	Extranuclear inheritence occurs in : -
0 157	(3) 5000 kilo base (4) 5 kilo base		(1) Killer paramaecium
Q.157	(1) Temperature		(2) Killer Amoeba
	(1) Temperature and matchelia inhibitor		(3) Euglena
	(2) Matabalia inhibitor		(4) Hydra
	(3) Metabolic initiation (4) Hyperidity	Q.167	Extranuclear chromosomes occur in : -
0 150	(4) Humidity Helf-life marin $d = f C^{14}$ is a		(1) Peroxisome, Ribosome
Q.158	Hall life period of C is : - (1) 500 success		(2) Chloroplast and Mitochondria
	(1) 500 years (2) 5000 years (2) 50 $($		(3) Mitochondria and Ribosome
0 150	(3) 50 years (4) $5 \times 10^{\circ}$ years		(4) Chloroplast and Lysosome
Q.159	(1) V/(E	Q.168	Spoilage of oil can be detected by which fatty
	(1) VII. E $-$ Tocolefole (2) Vit. D Bihaflavin		
	(2) Vit. D - Ribonavin		(1) Oleic acid (2) Linolenic acid
	(3) VII. B - Calciferole		(3) Linoleic acid (4) Erusic acid
0.1(0	(4) VII. A $-$ Inflamine	Q.169	When we migrate from dark to light, we fail to
Q.100	<i>E.</i> Con about to replicate was placed in a medium containing radio active thymidine for		becomes normal. It is example of
	five minutes. Then it was made to replicate in a		(1) Accomposition
	normal medium. Which of the following		(2) Adaptation
	observation shall be correct : -		(3) Mutation
	(1) Both the strands of DNA will be radio active		(4) Photoperiodism
	(2) One strand radio active	0 170	In plants inulin and pectin are
	(3) Each strand half radio active	Q.170	(1) Reserved material
	(4) None is radio active		(2) Wastes
Q.161	Most abundant organic compound on earth is		(3) Excretory material
	(1) Protein (2) Cellulose		(4) Insect attracting material
	(3) Lipids (4) Steroids		

Ø	CAREER POINT				AIPMT - 2001					
Q.171	Gene and cistron	words are sometimes used	Microtubules absent in : -							
	synonymously beca	nuse : -		(1) Mitochondria	(2) Flagella					
	(1) One cistron con	tains many genes		(3) Spindle fibres	(4) Centriole					
	(2) One gene contai	ins many cistrons	Q.181	Which aquatic fern performs nitrogen fixation : -						
	(3) One gene contai	ins one cistron		(1) Azolla (2) Nostoc						
	(4) One gene contai	ins no cistron		(3) Salvia	(4) Salvinia					
Q.172	Element necessary	for the middle lamella	0.182	Roots of which plant contains a red pigment						
	(1) Ca	(2) Zn	-	which have affinity for oxygen : -						
	(3) K	(4) Cu		(1) Carrot	(2) Soyabean					
Q.173	Cycas have two co	otyledons but not included in		(3) Mustard	(4) Radish					
	angiosperms becua	se of : -	Q.183	Triticale is obtained by crossing wheat with						
	(1) Naked ovules			(1) Oat (2) Barley (3) Maize (4) Rye						
	(2) Seems like mon	ocot	Q.184	At the time of organogenesis genes regulate the						
	(3) Circinate ptyxis			process at different levels and at different time						
	(4) Compound leav	es		due to :						
Q.174	Plant Decomposers	are : -		(1) Promoter	(2) Regulator					
	(1) Monera and fun	gi		(3) Intron	(4) Exon					
	(2) Fungi and plant	S	Q.185	A mutant strain of T ₄ – Bacteriophage, R-II						
	(3) Protista and Ani	imalia		fails to lyse the <i>E</i> -Coli but when two strains R -						
	(4) Anibalia and M	ogna		If and R-II' are mixed then they lyse the						
Q.175	What is true for cya	ano bacteria : -		<i>E.Con.</i> what may be the possible reason : -						
	(1) Oxygenic with	nitrogenase		(1) Bacteriopnage transforms in wild						
	(2) Oxygenic witho	ut nitrogenase		(2) It is not mutated						
	(3) Non oxygenic w	vith nitrogenase		(3) Both strains have similar cistrons						
	(4) Non oxygenic w	vithout nitrogenase		(4) Both strains have different cistrons						
0.176	m-RNA is synthe	sised on DNA template in	Q.186	Reason of diversity in living being : -						
-	which direction : -	ľ		(1) Mutation						
	$(1) 5' \rightarrow 3'$	$(2) \ 3' \rightarrow 5'$		(2) Long term evolutionary change						
	(3) Both	(4) Any		(3) Gradual change						
Q.177	Cytochrome is : -		0.40	(4) Short term evolutionary change						
	(1) Metallo flavo pr	rotein	Q.187	Sickle cell anaemia is due to : -						
	(2) Fe containing p	orphyrin pigment		(1) Unange of Amino Acid in α -chain of Haemoglobin						
	(3) Glycoprotein			(2) Change of Amino Acid in B-chain of						
0.150	(4) Lipid			Haemoglobin						
Q.178	which of the follow	ving less general in characters		(3) Change of Ar	nino acid in both α and β					
	(1) Species	(2) Division		chain of Haemo	oglobin					
	(1) Species (3) Class	(4) Family		(4) Change of Am	ino acid either α or β chain					
0.179	Adhesive pad of fu	ngi penetrate the host with the	0 199	01 ratemogroun Similarities in organism with different geneture						
C C	help of : -	0 1	Q.100	indicates : -						
	(1) Mechanical pres	ssure and enzymes		(1) Microevolution						
	(2) Hooke and suck	ers		(2) Macroevolution						
	(3) Softening by en	zymes		(3) Convergent evolution						
	(4) Only by mechan	nical pressure		(4) Divergent evolution						

- Q.189 What is correct for Blood group 'O' : -
 - (1) No antegens but both a and b antibodies are present
 - (2) A antegen and b antibody
 - (3) Antigen and Antibody both absent
 - (4) A and B antigens and a, b, antibodies
- Q.190 Which of the following is closest relative of man : -
 - (1) Chimpanzee (2) Gorilla
 - (3) Orangutan (4) Gibbon
- Q.191 Which of the following is correct order of the evolutionary history of man : -
 - (1) Peking man, Homo sapiens, Neanderthel man, Cromagnon man
 - (2) Peking man, Neanderthal man, Homosapiens Cromagnon man
 - (3) Peking man, Hedalberg man, Neanderthal man, Cromagnon man
 - (4) Peking man, Neanderthal man, Homosapiens Hedalberg man
- Q.192 Which cells do not form layer and remains structurally seperate : -
 - (1) Epithelial cells (2) Muscle cells
 - (3) Nerve cells (4) Gland cells
- Q.193 During an injury Nasal septum gets damaged and for it's recovery which cartilage prefered : -
 - (1) Elastic cartilage (2) Hyaline cartilage
 - (3) Calcified cartilage (4) Fibrous cartilage
- Q.194 First life on earth was : -
 - (1) Cyanobacteria
 - (2) Chemohetrotrophs
 - (3) Autotrophs
 - (4) Photoautotrophs
- Q.195 Frequency of an allele in an isolated population may change due to : -
 - (1) Genetic drift (2) Gene flow
 - (3) Mutation (4) Natural selection
- Q.196 In lederberg's replica plating experiment what shall be used to obtain streptomycin resistant strain : -
 - (1) Minimal medium and streptomycine
 - (2) Complete medium and streptomycine
 - (3) Only minimal medium
 - (4) Only complete medium

- AIPMT 2001
- **Q.197** Forecomming generations are less adaptive than their parental generation due to : -
 - (1) Natural selection (2) Mutation
 - (3) Genetic drift (4) Adaptation
- Q.198 During regeneration, modification of an organ to other organ is known as : -
 - (1) Morphallogenesis
 - (2) Epimorphosis
 - (3) Morphallaxis
 - (4) Accretionary growth
- Q.199 Occurence of endemic species in south america and Australia due to : -

(1) These species has been extinct from other regions

- (2) Continental separation
- (3) These is no terrestrial route to these places
- (4) Retrogressive evolution
- **Q.200** Darwins theory of pangenesis shows similarity with theory of inheritance of acquired characters then what shall be correct according to it : -
 - Useful organs become strong and developed while useless organs become extinct. These organs help in struggle for survival
 - (2) Size of organs increase with aging
 - (3) Development of organs is due to will power
 - (4) There should be some physical basis of inheritance

ANSWER KEY (AIPMT-2001)

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans	3	3	1	3	3	2	2	3	2	2	1	1	1	1	2	1	2	3	2	1
Ques.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans	2	2	2	2	1	1	2	1	1	1	2	3	1	1	1	1	2	1	3	2
Ques.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans	1	1	1	1	2	3	2	1	1	2	2	2	1	1	1	3	2	3	2	1
Ques.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans	2	3	1	1	1	2	1	1	2	2	2	3	3	3	1	1	3	2	1	4
Ques.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans	1	2	1	1	4	2	3	1	1	1	1	1	3	1	3	3	2	4	2	1
Ques.	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans	2	2	1	1	4	1	1	4	1	2	2	3	4	1	1	4	4	3	3	4
Ques.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
Ans	1	4	1	3	1	1	1	2	1	3	4	2	1	4	1	1	2	1	2	1
Ques.	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
Ans	1	1	1	1	4	1,2	3	1	3	3	3	1	1	2	1	2	1	2	1	2
Ques.	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
Ans	2	2	3	3	4	1	2	4	2	1	3	1	1	1	1	1	2	1	1	1
Ques.	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
Ans	1	2	4	4	4	2	2	3	1	1	3	3	2	2	1	2	2	2	2	4

HINTS & SOLUTIONS

10.

9.

Apply COME between max^m and min point

$$mgh = Mgh_1 + \frac{1}{2} MV^2$$

$$I = \frac{5V}{(30+20)\Omega}$$

$$I = \frac{5}{50}A$$
12.
$$E = \frac{kx^2}{2} = \frac{k^2x^2}{2k} \Rightarrow E = 0$$

Equivalent ckt is

30Ω

$$\therefore \text{ Force is equal } \therefore \text{ E} \propto \frac{1}{k}$$

16. Carnot engine is an Ideal engine so its efficiency will be will be maximum

 \mathbf{f}^2

01

$$\therefore \eta_{max.} = \frac{400 - 300}{400} \times 100\% = 25\%$$

therefore 26% efficient engine is impossible

17. Impulse = change in momentum

$$F = \frac{\Delta P}{\Delta t} = \frac{150 \times 10^{-3} \times 20}{0.1} = 30 \text{ N}$$

CAREER POINT: CP Tower, IPIA, Road No.1, Kota (Raj.), Ph: 0744-3040000

AIPMT - 2001

18.
$$n = \frac{1}{2\ell} \sqrt{\frac{T}{\pi r^2 \rho}}$$

 $\rho_1 = \frac{\rho}{2}, T^1 = 2T \text{ and } D^1 = 2D \exists r_1 = 2r$
 $n^1 = \frac{1}{2\ell} \sqrt{\frac{2T}{\pi (2r)^2 \frac{\rho}{2}}} = \frac{1}{2\ell} \sqrt{\frac{T}{\pi r^2 \rho}} = n$

 \Rightarrow No change

20. Apply energy consevation
$$\frac{-GMm}{R} + \frac{1}{2}mv^2$$

$$= -\frac{GMm}{2R} \Rightarrow v = \sqrt{\frac{GM}{R}}$$

21.

$$\sin \theta c = \frac{1}{\mu} = \frac{1}{5/3}$$

$$\Rightarrow \frac{r}{\sqrt{4^2 + r^2}} = \frac{3}{5}$$

$$\Rightarrow r = 3$$

23. Heat flow rate = $\frac{KA(T_1 - T_2)}{L} = Q$

when linear dimensions are doubled $A_1 \propto r_1^2$, $L_1 = L$

$$A_2 \propto 4r_1^2$$
, $L_1 = 2L_1 \text{ so } Q_2 = 2Q_1$

24.
$$\left| \vec{A} + \vec{B} \right|^2 = A^2 + B^2 + 2AB \cos \theta$$

 $\Rightarrow A^2 = A^2 + A^2 + 2A^2 \cos \theta$
 $\Rightarrow \cos \theta = -\frac{1}{2} \Rightarrow \theta = 120^\circ$

29. Energy density
$$= \frac{1}{2} \in_0 \frac{v^2}{d^2}$$

30.

AIPMT - 2001

$$\frac{d\ell}{dt} = 2te^{-t} - t^2 e^{-t} = 0$$

$$\Rightarrow te^{-t} (t-2) = 0 \Rightarrow t = 2 \text{ sec}$$

36.
$$\frac{I_{\rm C}}{I_{\rm E}} = \alpha = 0.98$$
; $\frac{I_{\rm C}}{I_{\rm B}} = \beta = \frac{\alpha}{1 - \alpha} = 49$

40.
$$2d\sin\theta = n\lambda \because -1 \le \sin\theta \le 1$$

Therefore $\lambda_{max.} = 2d \Rightarrow \lambda_{max.} = 2 \times 2.8 \times 10^{-8} m$
$$\Rightarrow \lambda_{max.} = 5.6 \times 10^{-8} m$$

46.
$$\eta = \frac{\text{useful work}}{\text{total work}} = \frac{\text{mgh}}{\text{F} \times \text{d}} = \frac{(75\text{g}) \times 3}{250 \times 12} = 0.75$$

$$\Rightarrow 3mV = 30 \sqrt{2} m$$

$$\Rightarrow V = 10 \sqrt{2}$$

(m) 30
(m) 30
(m) 30
(m) 30

 52. CH₃--CH₂--CH₃-→ CH₃--CH₂CH--CH₃ intermediate Sp² hybrid planar shape ^{CI}→ recemic mix
 planr shape (समतलीय आकृति) पर reagent का आक्रमण दोनों तरफ से हो सकता है।

CAREER POINT: CP Tower, IPIA, Road No.1, Kota (Raj.), Ph: 0744-3040000

70. $CH_4 + \frac{1}{2}O_2 \rightarrow CH_3OH$ $\Delta H = x - y$ given $\Delta H = -ve$

Hence x - y < 0 x < y

71. $2N_2O_5 \rightarrow 4NO_2 + O_2$ this is a first order reaction

$$\therefore \text{ rate} = K[N_2O_5] [N_2O_5] = \frac{\text{rate}}{K}$$

72. At the end of 25 hrs. activity = 0.01 M half life = 6 hrs

In 24 hrs. there are
$$\frac{24}{6} = 4$$
 half life

Activity of subtance after n half life = $\frac{(A)}{2^n}$

$$\Rightarrow \frac{(A)}{2^4} = 0.01 \qquad (A) = 0.16$$

74. Density = 1.17 gm/cc. \Rightarrow 1cc. solu. contains 1.17 gm of HCl 1.17×1000

: molarity =
$$\frac{1.17 \times 1000}{36.5 \times 1}$$

75. In peroxidase anlydrous enzyme 0.55 Se is present means, 0.5gm. Se is present in 100gm of enzyme

In a molecule of enzyme one Se atom must be present hence 78.4 gm Se will be present in 100

$$\frac{100}{0.5} \times 78.4 = 1.568 \times 10^4$$

76. Sp. vol (vol. of 1gm) cylindrical virus particle $= 6.02 \times 10^{-2} \text{ cc/gm}$ radius of virus r = 7Å = 7 × 10⁻⁸ cm length of virus = $\pi r^2 \ell$ $= \frac{22}{7} \times (7 \times 10^{-8})^2 \times 10 \times 10^{-8} = 154 \times 10^{-23} \text{ cc}$ wt. of one virus particle = $\frac{\text{Vol.}}{\text{Sp.vol.}}$ $\Rightarrow \frac{154 \times 10^{-23}}{6.02 \times 10^{-2}} \text{ gm}$ \therefore mol. wt. of virus = wt. of N_A particles $= \frac{154 \times 10^{-23}}{6.02 \times 10^{-2}} \times 6.02 \times 10^{+23} \text{ gm/mol}$

= 15400 gm/mol = 15.4 kg/mol