QUESTIONS \& SOLUTIONS OF AIPMT-2010 (SCREENING) TEST PAPER

Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose.

IMPORTANT INSTRUCTIONS

1. The Test Booklet consists of one paper containing 200 objective type questions (four options with single correct answer) from Physics, Chemistry and Biology (Botany \& Zoology).
2. There are three parts in the question paper (Physics, Chemistry and Biology (Botany \& Zoology)). The distribution of marks subjectwise in each part is as under for each correct response.
3. Scoring and Negative Marking : Each question carries 4 marks. For each incorrect response one mark will be deducted from the total score. No deduction from the total score will, however, be made if no response is indicated for a question in the Answer Sheet. The candidates are advised not to attempt such question in the Answer Sheet, if they are not sure of the correct response. More than one answer indicated against a question will be deemed as incorrect response and will be negatively marked.

Part A — PHYSICS (200 marks) - 50 Questions

Part B — CHEMISTRY (200 marks) - 50 Questions

Part C - BIOLOGY (400 marks) - 100 Questions

PART- A (PHYSICS)

1. A block of mass m is in contact with the cart C as shown in the figure.

The coefficient of static friction between the block and the cart is μ. The acceleration α of the cart that will prevent the block from falling satisfies
(1) $\alpha>\frac{m g}{\mu}$
(2) $\alpha>\frac{g}{\mu m}$
(3) $\alpha \geq \frac{g}{\mu}$
(4) $\alpha<\frac{g}{\mu}$

Ans. (3)

Sol.

Pseudo force or fictitious force, $\mathrm{F}_{\text {fic }}=\mathrm{m} \alpha$
Force of friction, $f=\mu \mathrm{N}=\mu \mathrm{m} \alpha$,
The block of mass m will not fall as long as
$\mathrm{f} \geq \mathrm{mg}$
$\mu \mathrm{m} \alpha \geq \mathrm{mg}$
$\alpha \geq \frac{g}{\mu}$
2. The mass of a ${ }_{3}^{7} \mathrm{Li}$ nucleus is 0.042 u less than the sum of the masses of all its nucleons. The binding energy per nucleon of ${ }_{3}^{7} \mathrm{Li}$ nucleus is nearly
(1) 46 MeV
(2) 5.6 MeV
(3) 3.9 MeV
(4) 23 MeV

Ans. (2)
Sol. For ${ }_{3}^{7} \mathrm{Li}$ nucleus,
Mass defect, $\Delta \mathrm{M}=0.042 \mathrm{u}$

$$
\begin{array}{ll}
\therefore & 1 \mathrm{u}=931.5 \mathrm{MeV} / \mathrm{c}^{2} \\
\therefore & \Delta \mathrm{M}=0.042 \times 931.5 \mathrm{MeV} / \mathrm{c}^{2} \\
& =39.1 \mathrm{MeV} / \mathrm{c}^{2}
\end{array}
$$

Binding energy, $\mathrm{E}_{\mathrm{b}}=\Delta \mathrm{Mc}^{2}$

$$
=\left(39.1 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}\right) \mathrm{c}^{2}
$$

AIPMT (SCREENING)-2010

$=39.1 \mathrm{MeV}$
Binding energy per nucleon, $E_{b n}=\frac{E_{b}}{A}=\frac{39.1 \mathrm{MeV}}{7}$

$$
=5.6 \mathrm{MeV}
$$

3. A circular disk of moment of inertia I_{t} is rotating in a horizontal plane, about its symmetry axis, with a constant angular speed ω_{r}. Another disk of moment of inertia I_{b} is dropped coaxially onto the rotating disk. Initially the second disk has zero angular speed. Eventually both the disks rotate with a constant angular speed ω_{r}. The energy lost by the initially rotating disc to friction is
(1) $\frac{1}{2} \frac{\mathrm{I}_{\mathrm{b}}^{2}}{\left(\mathrm{I}_{\mathrm{t}}+\mathrm{I}_{\mathrm{b}}\right)} \omega_{\mathrm{i}}^{2}$
(2) $\frac{1}{2} \frac{\mathrm{I}_{\mathrm{t}}^{2}}{\left(\mathrm{I}_{\mathrm{t}}+\mathrm{I}_{\mathrm{b}}\right)} \omega_{\mathrm{t}}^{2}$
(3) $\frac{\mathrm{I}_{\mathrm{b}}-\mathrm{I}_{\mathrm{t}}}{\left(\mathrm{I}_{\mathrm{t}}+\mathrm{I}_{\mathrm{b}}\right)} \omega_{\mathrm{i}}^{2}$
(4) $\frac{1}{2} \frac{I_{b} I_{t}}{\left(I_{t}+I_{b}\right)} \omega_{i}^{2}$

Ans. (4)
Sol. As no external torque is applied to the system, the angular momentum of the system remains conserved.
$\therefore \quad \mathrm{L}_{\mathrm{i}}=\mathrm{L}_{\mathrm{f}}$
According to given problem,

$$
\begin{align*}
& \mathrm{I}_{\mathrm{t}} \omega_{\mathrm{i}}=\left(\mathrm{I}_{\mathrm{t}}+\mathrm{I}_{\mathrm{b}}\right) \omega_{\mathrm{f}} \\
\text { or } & \omega_{\mathrm{f}}=\frac{\mathrm{I}_{\mathrm{t}} \omega_{\mathrm{i}}}{\left(\mathrm{I}_{\mathrm{t}}+\mathrm{I}_{\mathrm{b}}\right)} \tag{i}
\end{align*}
$$

Initial energy, $E_{i}=\frac{1}{2} I_{t} \omega_{i}^{2}$
Final energy, $\mathrm{E}_{\mathrm{f}}=\frac{1}{2}\left(\mathrm{I}_{\mathrm{t}}+\mathrm{I}_{\mathrm{b}}\right) \omega_{\mathrm{f}}^{2}$
Substituting the value of ω_{f} from equation (i) in equation (iii) we get
Final energy, $E_{f}=\frac{1}{2}\left(I_{t}+I_{b}\right)\left(\frac{I_{t} \omega_{i}}{I_{t}+I_{b}}\right)^{2}$

$$
\begin{equation*}
=\frac{1}{2} \frac{I_{\mathrm{t}}^{2} \omega_{\mathrm{i}}^{2}}{\left(\mathrm{I}_{\mathrm{t}}+\mathrm{I}_{\mathrm{b}}\right)} \tag{iv}
\end{equation*}
$$

Loss of energy, $\Delta \mathrm{E}=\mathrm{E}_{\mathrm{i}}-\mathrm{E}_{\mathrm{f}}$
$=\frac{1}{2} \mathrm{I}_{\mathrm{t}} \omega_{\mathrm{i}}^{2}-\frac{1}{2} \frac{\mathrm{I}_{\mathrm{t}}^{2} \omega_{\mathrm{i}}^{2}}{\left(\mathrm{I}_{\mathrm{t}}+\mathrm{I}_{\mathrm{b}}\right)}$ (Using (ii) and (iv))
$=\frac{\omega_{i}^{2}}{2}\left(\mathrm{I}_{\mathrm{t}}-\frac{\mathrm{I}_{\mathrm{t}}^{2}}{\left(\mathrm{I}_{\mathrm{t}}+\mathrm{I}_{\mathrm{b}}\right)}\right)=\frac{\omega_{\mathrm{i}}^{2}}{2}\left(\frac{\mathrm{I}_{\mathrm{t}}^{2}+\mathrm{I}_{\mathrm{b}} \mathrm{I}_{\mathrm{t}}-\mathrm{I}_{\mathrm{t}}^{2}}{\left(\mathrm{I}_{\mathrm{t}}+\mathrm{I}_{\mathrm{b}}\right)}\right)$
$=\frac{1}{2} \frac{\mathrm{I}_{\mathrm{b}} \mathrm{I}_{\mathrm{t}}}{\left(\mathrm{I}_{\mathrm{t}}+\mathrm{I}_{\mathrm{b}}\right)} \omega_{\mathrm{i}}^{2}$

AIPMT (SCREENING)-2010

4. Which one of the following statement is false?
(1) Pure Si doped with trivalent impurities gives a p-type semiconductor.
(2) Majority carriers in a n-type semiconductor are holes.
(3) Minority carriers in a p-type semiconductor are electrons.
(4) The resistance of intrinisic semiconductor decreases with increase of temperature.

Ans. (2)
Sol. In a n-type semiconductors, electrons are majority carriers and holes are minority carriers.
5. The displacement of a particle along the x axis is given by $x=a \sin ^{2} \omega t$. The motion of the particle corresponds to
(1) simple harmonic motion of frequency ω / π
(2) simple harmonic motion of frequency $3 \omega / 2 \pi$
(3) non simple harmonic motion
(4) simple harmonic motion of frequency $\omega / 2 \pi$

Ans. (1)
Sol. $\quad x=a \sin ^{2} \omega t$
$=\mathrm{a}\left(\frac{1-\cos 2 \omega \mathrm{t}}{2}\right) \quad\left(\because \cos 2 \theta=1-2 \sin ^{2} \theta\right)$
$=\frac{a}{2}-\frac{a \cos 2 \omega t}{2}$
$\therefore \quad$ Velocity, $u=\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{2 \omega a \sin 2 \omega \mathrm{t}}{2}$
$=\omega \mathrm{asin} 2 \omega \mathrm{t}$
Acceleration, $\mathrm{a}=\frac{\mathrm{du}}{\mathrm{dt}}=2 \omega^{2} \mathrm{a} \cos 2 \omega \mathrm{t}$

For the given displacement $x=\frac{a}{2}-\frac{a \cos 2 \omega t}{2}$
$\mathrm{a} \propto-\mathrm{x}$ is satisfied.
Hence, the motion of the particle is simple harmonic motion.
Note : The given motion is a simple harmonic motion with a time period $\mathrm{T}=\frac{2 \pi}{2 \omega}=\frac{\pi}{\omega}$
6. The radii of circular orbits of two satellites A and B of the earth, are $4 R$ and R, respectively. If the speed of satellite A is 3 V , then the speed of satellite B will be
(1) $\frac{3 V}{4}$
(2) 6 V
(3) 12 V
(4) $\frac{3 V}{2}$

Ans. (2)
Sol. Orbit speed of the satellite around the earth is

$$
u=\sqrt{\frac{G M}{r}}
$$

where,
$\mathrm{G}=$ Universal gravitational constant
$M=$ Mass of earth

AIPMT (SCREENING)-2010

$r=$ Radius of the orbit of the satellite
For satellite A
$r_{A}=4 R, u_{A}=3 V \quad u_{A}=\sqrt{\frac{G M}{r_{A}}}$
For satellite B
$r_{B}=R, u_{B}=? \quad u_{B}=\sqrt{\frac{G M}{r_{B}}}$
Dividing equation (ii) by equation (i), we get
$\therefore \quad \frac{u_{B}}{u_{A}}=\sqrt{\frac{r_{A}}{r_{B}}} \quad u_{B}=u_{A} \sqrt{\frac{r_{A}}{r_{B}}}$
Substituting the given values, we get
$u_{B}=3 V \sqrt{\frac{4 R}{R}} \quad u_{B}=6 V$
7. A beam of cathode rays is subjected to crossed electric (E) and magnetic fields (B). The fields are adjusted such that the beam is not deflected. The specific charge of the cathode rays is given by
(1) $\frac{B^{2}}{2 V E^{2}}$
(2) $\frac{2 \mathrm{VB}^{2}}{\mathrm{E}^{2}}$
(3) $\frac{2 V E^{2}}{B^{2}}$
(4) $\frac{E^{2}}{2 V B^{2}}$
(Where V is the potential difference between cathode and anode)
Ans. (4)
Sol. When a beam of cathode rays (or electrons) are subjected to crossed electric (E) and magnetic (B) fields, the beam is not deflected, if
Force on electron due to magnetic field = Force on electron due to electric field
Beu $=\mathrm{eE} \quad$ or $\quad u=\frac{E}{B}$
If V is the potential difference between the anode and the cathode, then

$$
\begin{equation*}
\therefore \quad \frac{1}{2} m u^{2}=e V \quad \frac{e}{m}=\frac{u^{2}}{2 V} \tag{ii}
\end{equation*}
$$

Substituting the value of u from equation (i) in equation (ii), we get

$$
\frac{e}{m}=\frac{E^{2}}{2 V B^{2}}
$$

Specific charge of the cathode rays $\frac{e}{m}=\frac{E^{2}}{2 V B^{2}}$

AIPMT (SCREENING)-2010

8. A ball is dropped from a high platform at $t=0$ starting from rest. After 6 seconds another ball is thrown downwards from the same platform with a speed v. The two balls meet at $t=18 \mathrm{~s}$. What is the value of v ? (Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
(1) $75 \mathrm{~m} / \mathrm{s}$
(2) $55 \mathrm{~m} / \mathrm{s}$
(3) $40 \mathrm{~m} / \mathrm{s}$
(4) $60 \mathrm{~m} / \mathrm{s}$

Ans. (1)
Sol. Let the two balls meet after t s at distance x from the platform.
For the first ball
$u=0, t=18 \mathrm{~s}, \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}$
Using $h=u t+\frac{1}{2} g t^{2}$
$\therefore \quad \mathrm{x}=\frac{1}{2} \mathrm{gt}^{2}$
$u \times 12+\frac{1}{2} \times 10 \times(12)^{2}$
For the second ball
$\mathrm{u}=\mathrm{u}, \mathrm{t}=12 \mathrm{~s}, \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}$
Using $h=u t+\frac{1}{2} \times 10 \times 10^{2}$
From equations (i) and (ii), we get
$\frac{1}{2} \times 10 \times 18^{2}=12 u+\frac{1}{2} \times 10 \times(12)^{2}$
or $\quad 12 \mathrm{u}=\frac{1}{2} \times 10 \times\left[(18)^{2}-(12)^{2}\right]$

$$
=\frac{1}{2} \times 10 \times[(18+12)(18-12)]
$$

$$
12 u=\frac{1}{2} \times 10 \times 30 \times 6
$$

or $\quad u=\frac{1 \times 10 \times 30 \times 6}{2 \times 12}=75 \mathrm{~m} / \mathrm{s}$
9. A ray of light travelling in a transparent medium of refractive index μ, falls on a surface separating the medium from air at an angle of incidence of 45°. For which of the following value of μ the ray can undergo total internal reflection?
(1) $\mu=1.33$
(2) $\mu=1.40$
(3) $\mu=1.50$
(4) $\mu=1.25$

Ans. (3)
Sol. For total internal reflection,
sini $>\sin C$
where,
$\mathrm{i}=$ angle of incidence
C = critical angle

AIPMT (SCREENING)-2010

But, $\sin \mathrm{C}=\frac{1}{\mu}$
$\therefore \quad \sin i>\frac{1}{\mu} \quad$ or $\quad \mu>\frac{1}{\sin i}$
$\mu>\frac{1}{\sin 45^{\circ}} \quad\left(\mathrm{i}=45^{\circ}\right.$ (Given) $)$
$\mu>\sqrt{2}$
Hence, option (c) is correct
10. The period of oscillation of a mass m suspended from a spring of negligible mass is T. If along with it another mass M is also suspended the period of oscillation will now be
(1) T
(2) $\frac{T}{\sqrt{2}}$
(3) 2 T
(4) $\sqrt{2} \mathrm{~T}$

Ans. (4)
Sol. A mass M is suspended from a massless spring of spring constant k as shown in figure (a). Then,
Time period of oscillation is $T=2 \pi \sqrt{\frac{M}{k}}$

When a another mass M is also suspended with it as shown in figure (b). Then,
Time period of oscillation is $T^{\prime}=2 \pi \sqrt{\frac{M+M}{k}}=2 \pi \sqrt{\frac{2 M}{k}}$
$=\sqrt{2}\left(2 \pi \sqrt{\frac{M}{k}}\right)=\sqrt{2} T$
11. A cylindrical metallic rod in thermal contact with two reservoirs of heat at its two ends conducts an amount of heat Q in time t . The metallic rod is melted and the material is formed into a rod of half the radius of the original rod. What is the amount of heat conducted by the new rod, when placed in thermal contact with the two reservoirs in time t?
(1) $\frac{Q}{4}$
(2) $\frac{Q}{16}$
(3) 2 Q
(4) $\frac{Q}{2}$

Ans. (2)

AIPMT (SCREENING)-2010

Sol. The amount of heat flows in time through a cylindrical metallic rod of length L and uniform area of crosssection $A\left(=\pi R^{2}\right)$ with its ends maintained at temperatures T_{1} and $T_{2}\left(T_{1}>T_{2}\right)$ is given by
$Q=\frac{K A\left(T_{1}-T_{2}\right)}{L} t$
where K is the thermal conductivity of the material of the rod.
Area of cross-section of new rod $A^{\prime}=\pi\left(\frac{R}{2}\right)^{2}=\frac{\pi R^{2}}{4}=\frac{A}{4}$
As the volume of the rod remains unchanged
$\therefore \quad A L=A^{\prime} L^{\prime}$
where L^{\prime} is the length the new rod
or $\quad L^{\prime}=L \frac{A}{A^{\prime}}$
$=4 \mathrm{~L} \quad$ (Using (ii))
Now, the amount of heat flows in same time t in the new rod with its ends maintained at the same temperatures T_{1} and T_{2} is given by

$$
\begin{equation*}
Q^{\prime}=\frac{K A^{\prime}\left(T_{1}-T_{2}\right) t}{L^{\prime}} \tag{iv}
\end{equation*}
$$

Substituting the values of A^{\prime} and L^{\prime} from equations (ii) and (iii) in the above equation, we get

$$
\begin{aligned}
& Q^{\prime}=\frac{K(A / 4)\left(T_{1}-T_{2}\right) t}{4 L}=\frac{1}{16} \frac{K A\left(T_{1}-T_{2}\right) t}{L} \\
& =\frac{1}{16} Q(\text { Using (i)) }
\end{aligned}
$$

12. A ball moving with velocity $2 \mathrm{~m} / \mathrm{s}$ collides head on with another stationary ball of double the mass. If the coefficient of restitution is 0.5 , then their velocities (in m / s) after collision will be
(1) 0,1
(2) 1,1
(3) $1,0.5$
(4) 0,2

Ans. (1)
Sol. Here, $m_{1}=m, m_{2}=2 m$

$$
u_{1}=2 \mathrm{~m} / \mathrm{s}, \mathrm{u}_{2}=0
$$

coefficient of restitution, $e=0.5$
Let v_{1} and v_{2} be their respective velocities after collision.
Applying the law of conservation of linear momentum, we get

$$
m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1}+m_{2} v_{2}
$$

$\therefore \quad m \times 2+2 m \times 0=m \times v_{1}+2 m \times v_{2}$
or $\quad 2 m=m v_{1}+2 m v_{2}$
or $\quad 2=\left(v_{1}+2 v_{2}\right)$
By definition of coefficient of restitution,

$$
e=\frac{v_{2}-v_{1}}{u_{1}-u_{2}}
$$

or $\quad \begin{array}{r}e\left(u_{1}-u_{2}\right)=v_{2}-v_{1} \\ 0.5(2-0)=v_{2}-v_{1} \\ 1\end{array}=v_{2}-v_{1}, ~ \$$

AIPMT (SCREENING)-2010

Solving equations (i) and (ii), we get
$\mathrm{v}_{1}=0 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{2}=1 \mathrm{~m} / \mathrm{s}$
13. A transverse wave is represented by $y=A \sin (\omega t-k x)$. For what value of the wavelength is the wave velocity equal to the maximum particle velocity?
(1) $\pi \mathrm{A} / 2$
(2) $\pi \mathrm{A}$
(3) $2 \pi \mathrm{~A}$
(4) A

Ans. (3)
Sol. The given wave euqation is

$$
\begin{equation*}
y=A \sin (\omega t-k x) \tag{i}
\end{equation*}
$$

Wave velocity, $\mathrm{v}=\frac{\omega}{\mathrm{k}}$
Particle velocity, $v_{p}=\frac{d y}{d t}=A \omega \cos (\omega t-k x)$
Maximum particle velocity, $\left(\mathrm{v}_{\mathrm{p}}\right)_{\text {max }}=\mathrm{A} \omega$
According to the given question
$\mathrm{v}=\left(\mathrm{v}_{\mathrm{p}}\right)_{\text {max }}$
$\frac{\omega}{\mathrm{k}}=\mathrm{A} \omega \quad$ (Using (i) and (ii)
$\frac{1}{\mathrm{k}}=\mathrm{A} \quad$ or $\quad \frac{\lambda}{2 \pi}=\mathrm{A} \quad\left(\because \mathrm{k}=\frac{2 \pi}{\lambda}\right)$
$\lambda=2 \pi \mathrm{~A}$
14. A particle has initial velocity $(3 \hat{i}+4 \hat{j})$ and has acceleration $(0.4 \hat{i}+0.3 \hat{j})$. It speed after 10 s is
(1) 7 units
(2) $7 \sqrt{2}$ units
(3) 8.5 units
(4) 10 units

Ans. (2)
Sol. Here,
Initial velocity, $\overrightarrow{\mathrm{u}}=3 \hat{\mathbf{i}}+4 \hat{\mathrm{j}}$
Acceleration, $\vec{a}=0.4 \hat{i}+0.3 \hat{j}$
Time, $\mathrm{t}=10 \mathrm{~s}$
Let \vec{v} be velocity of a particle after 10 s .
Using, $\vec{v}=\vec{u}++a \vec{t}$

$$
\begin{aligned}
\therefore \quad \vec{v} & =(3 \hat{i}+4 \hat{j})+(0.4 \hat{i}+0.3 \hat{j})(10) \\
& =3 \hat{i}+4 \hat{j}+4 \hat{i}+3 \hat{j}=7 \hat{i}+7 \hat{j}
\end{aligned}
$$

Speed of the particle after $10 s=|\vec{v}|=\sqrt{(7)^{2}+(7)^{2}}$

$$
=7 \sqrt{2} \text { units }
$$

AIPMT (SCREENING)-2010

15. An engine pumps water through a hose pipe. Water passes through the pipe and leaves it with a velocity of $2 \mathrm{~m} / \mathrm{s}$. The mass per unit length of water in the pipe is $100 \mathrm{~kg} / \mathrm{m}$. What is the power of the engine?
(1) 400 W
(2) 200 W
(3) 100 W
(4) 800 W

Ans. (4)
Sol. Here,
Mass per unit length of water, $\mu=100 \mathrm{~kg} / \mathrm{m}$
Velocity of water, $v=2 \mathrm{~m} / \mathrm{s}$
Power of engine, $\mathrm{P}=\mu \mathrm{v}^{3}$

$$
\begin{aligned}
& =(100 \mathrm{~kg} / \mathrm{m})(2 \mathrm{~m} / \mathrm{s})^{3} \\
& =800 \mathrm{~W}
\end{aligned}
$$

16. A thin ring of radius R meter has charge q coulomb uniformly spread on it. The ring rotates about its axis with a constant frequency of f revolutions $/ \mathrm{s}$. The value of magnetic induction in $\mathrm{Wb} / \mathrm{m}^{2}$ at the centre of the ring is
Ans. (4)
(1) $\frac{\mu_{0} q f}{2 \pi R}$
(2) $\frac{\mu_{0} q}{2 \pi f R}$
(3) $\frac{\mu_{0} q}{2 f R}$
(4) $\frac{\mu_{0} q f}{2 R}$

Sol. Current produced due to circular motion of charge q is

$$
\mathrm{I}=\mathrm{qf}
$$

Magnetic field induction at the centre of the ring of radius R is

$$
\begin{equation*}
B=\frac{\mu_{0} 2 \pi I}{4 \pi R}=\frac{\mu_{0} I}{2 R}=\frac{\mu_{0} q f}{2 R} \tag{i}
\end{equation*}
$$

17. Which one of the following bonds produces a solid that reflects light in the visible region and whose electrical conductivity decreases with temperature and has high melting point?
(1) metallic bonding
(2) van der Wall's bonding
(3) ionic bonding
(4) covalent bonding

Ans. (1)

18. A particle moves a distance x in time t according to equation $x=(t+5)^{-1}$. The acceleration of particle is proportional to
(1) (velocity) ${ }^{3 / 2}$
(2) (velocity) ${ }^{2}$
(3) (velocity) ${ }^{-2}$
(4) (velocity) ${ }^{2 / 3}$

Ans. (1)
Sol. Distance, $x=(t+5)^{-1}$
Velocity, $v=\frac{d x}{d t}=\frac{d}{d t}(t+5)^{-1}$

$$
\begin{equation*}
=-(t+5)^{-2} \tag{ii}
\end{equation*}
$$

$$
\text { Acceleration, } \quad \begin{align*}
a & =\frac{d v}{d t}=\frac{d}{d t}\left[-(t+5)^{-2}\right] \\
& =2(t+5)^{-3} \tag{iii}
\end{align*}
$$

From equation (ii), we get

$$
\begin{equation*}
v^{3 / 2}=-(t+5)^{-3} \tag{iv}
\end{equation*}
$$

Substituting this in equation (iii) we get
Acceleration, $\quad a=-2 v^{3 / 2}$
or $\quad a \propto$ (velocity $)^{3 / 2}$

AIPMT (SCREENING)-2010

From equation (i), we get

$$
x^{3}=(t+5)^{-3}
$$

Substituting this in equation (iii), we get
Acceleration,

$$
a=2 x^{3}
$$

or $\quad a \propto(\text { distance })^{3}$
Hence option (a) is correct
19. A conducting circular loop is placed in a uniform magnetic field, $\mathrm{B}=0.025 \mathrm{~T}$ with its plane perpendicular to the loop. The radius of the loop is made to shrink at a constant rate of $1 \mathrm{~mm} \mathrm{~s}^{-1}$. The induced emf when the radius is 2 cm , is
(1) $2 \pi \mu \mathrm{~V}$
(2) $\pi \mu \mathrm{V}$
(3) $\frac{\pi}{2} \mu \mathrm{~V}$
(4) $2 \mu \mathrm{~V}$

Ans. (2)
Sol. Here,
Magnetic field $B=0.025 \mathrm{~T}$
Radius of the loop, $r=2 \mathrm{~cm}=2 \times 10^{-2} \mathrm{~m}$
Constant rate at which radius of the loop shrinks
$\frac{\mathrm{dr}}{\mathrm{dt}}=1 \times 10^{-3} \mathrm{~ms}^{-1}$
Magnetic flux linked with the loop is
$\phi=\mathrm{BA} \cos \theta=\mathrm{B}\left(\pi \mathrm{r}^{2}\right) \cos 0^{\circ}=\mathrm{B} \pi \mathrm{r}^{2}$
The magnitude of the induced emf is

$$
\begin{aligned}
|\varepsilon| & =\frac{\mathrm{d} \phi}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{~B} \pi \mathrm{r}^{2}\right)=\mathrm{B} \pi 2 \mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}} \\
& =0.025 \times \pi \times 2 \times 2 \times 10^{-2} \times 1 \times 10^{-3} \\
& =\pi \times 10^{-6} \mathrm{~V}=\pi \mu \mathrm{V}
\end{aligned}
$$

20. The activity of a radioactive sample is measured as N_{0} counts per minute at $t=0$ and N_{0} / e counts per minute at $t=5$ minutes. The time (in minutes) at which the activity reduces to half its value is
(1) $\log _{e} \frac{2}{5}$
(2) $\frac{5}{\log _{e} 2}$
(3) $5 \log _{10} 2$
(4) $5 \log _{e} 2$

Ans. (4)
Sol. According to activity law
$\mathrm{R}=\mathrm{R}_{0} \mathrm{e}^{-\lambda \mathrm{t}}$
where,
$R_{0}=$ initial activity at $t=0$
$R=$ activity at time t
$\lambda=$ decay constant
According to given problem,
$R_{0}=N_{0}$ counts per minute
$R=\frac{N_{0}}{e}$ counts per minute
$\mathrm{t}=5$ minutes

AIPMT (SCREENING)-2010

Substituting these values in equation (i), we get
$\frac{N_{0}}{e}=N_{0} e^{-5 \lambda}$
$e^{-1}=e^{-5 \lambda}$
$5 \lambda=1$ or $\lambda=\frac{1}{5}$ per minute

At $t=T_{1 / 2}$, theactivity R reduces to $\frac{R_{0}}{2}$.
where $T_{1 / 2}=$ half life of a radioactive sample
From equation (i), we get

$$
\begin{aligned}
\frac{R_{0}}{2} & =R_{0} e^{-\lambda T_{1 / 2}} \\
e^{\lambda T_{1 / 2}} & =2
\end{aligned}
$$

Taking natural logarithms of both sides of above equation, we get

$$
\lambda T_{1 / 2}=\log _{\mathrm{e}} 2
$$

or $\quad T_{1 / 2}=\frac{\log _{\mathrm{e}} 2}{\lambda}=\frac{\log _{\mathrm{e}} 2}{\left(\frac{1}{5}\right)}=5 \log _{\mathrm{e}} 2$ minutes
21. Two particles which are initially at rest, move towards each other under the action of their internal attraction.

If their speeds are v and $2 v$ at any instant, then the speed of centre of mass of the system will be
(1) 2 v
(2) zero
(3) 1.5 v
(4) v

Ans. (2)
Sol. As no external force is acting on the system, the centre of mass must be at rest i.e. $\mathrm{v}_{\mathrm{CM}}=0$.
22. A particle of mass M is situated at the center of a spherical shell of same mass and radius a. The gravitational potential at a point situated at $\frac{a}{2}$ distance from the centre, will be
(1) $-\frac{3 G M}{a}$
(2) $-\frac{2 G M}{a}$
(3) $-\frac{G M}{a}$
(4) $-\frac{4 G M}{a}$

Ans. (1)
Sol. Here, Mass of the particle $=M$
Mass of the spherical shell $=\mathrm{M}$
Radius of the spherical shell $=\mathrm{a}$
Point P is at a distance $\frac{a}{2}$ from the centre of the shell as shown in figure

AIPMT (SCREENING)-2010

Gravitational potential at point P due to particle at O is

$$
V_{1}=-\frac{G M}{(a / 2)}
$$

Gravitational potential at point P due to spherical shell is

$$
V_{2}=-\frac{G M}{a}
$$

Hence, total gravitational potential at the point P is

$$
V=V_{1}+V_{2}
$$

$=-\frac{G M}{(a / 2)}+\left(-\frac{G M}{a}\right)=-\frac{2 G M}{a}-\frac{G M}{a}=-\frac{3 G M}{a}$
23. The device that act as a complete electronic circuit is
(1) junction diode
(2) integrated circuit
(3) junction transistor
(4) zener diode

Ans. (2)

Sol. The device that can act as a complete circuit is integrated circuit (1C).
24. A potentiometer circuit is set up as shown. The potential gradient, across the potentiometer wire, is $\mathrm{k} \mathrm{volt} / \mathrm{cm}$ and the ammeter, present in the circuit reads 1.0 A when two way key is switched off. The balance points, when the key between the terminals (i) 1 and 2 (ii) 1 and 3 , is plugged in, are found to be at length $I_{1} \mathrm{~cm}$ and $\mathrm{I}_{2} \mathrm{~cm}$ respectively. The magnitudes, of the resistors R and X , in ohms, are then, equal, respectively, to

(1) $k\left(I_{2}-I_{1}\right)$ and kl_{2}
(2) kl , and $\mathrm{k}\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)$
(3) $k\left(l_{2}-l_{1}\right)$ and $k l_{1}$
(4) kl_{1} and kl_{2}

Ans. (2)

Sol.

When the two way key is switched off, then
The current flowing in the resistors R and X is $\mathrm{I}=1 \mathrm{~A}$
When the key between the terminals 1 and 2 is plugged in, then
Potential difference across $\mathrm{R}=\mathrm{IR}=\mathrm{k} \ell_{1}$
where k is the potneital gradient across the potentiometer wire When the key between the terminals 1 and 3 is plugged in, then
Potential difference across $(R+X)=I(R+X)=k \ell_{2}$
From equation (ii), we get

$$
R=\frac{k \ell_{1}}{I}=\frac{k \ell_{1}}{1}=k \ell_{1} \Omega
$$

From equation (iii), we get

$$
\begin{align*}
& \mathrm{R}+\mathrm{X}=\frac{\mathrm{k} \ell_{2}}{\mathrm{I}}=\frac{\mathrm{k} \ell_{2}}{1}=\mathrm{k} \ell_{1} \quad \text { (Using (i)) } \tag{i}\\
& \mathrm{X}=\mathrm{k} \ell_{2}-\mathrm{R} \\
& =\mathrm{k} \ell_{2}-\mathrm{k} \ell_{1} \\
& =\mathrm{k}\left(\ell_{2}-\ell_{1}\right) \Omega
\end{align*} \quad \text { (Using (ii)) }
$$

25. A tuning fork of frequency 512 Hz makes 4 beats per second with the vibrating string of a piano. The beat frequency decreases to 2 beats per sec when the tension in the piano string is slightly increased. The frequency of the piano string before increasing the tension was
(1) 510 Hz
(2) 514 Hz
(3) 516 Hz
(4) 508 Hz

Ans. (4)
Sol. Let the frequencies of tuning fork and piano string be v_{1} and v_{2} respectively.

$$
\begin{aligned}
\therefore v_{2} & =v_{1} \pm 4=512 \mathrm{~Hz} \pm 4 \\
& =516 \mathrm{~Hz} \text { or } 508 \mathrm{~Hz}
\end{aligned}
$$

(U_{2})

AIPMT (SCREENING)-2010

Increase in the tension of a piano string increases its frequecy.
If $v_{2}=516 \mathrm{~Hz}$, further increase in v_{2}, resulted in an increase in the beat frequency. But this is not given in the question.
If $v_{2}=508 \mathrm{~Hz}$, further increase in v_{2} resulted in decrease in the beat frequency. This is given in the question. when the beat frequency decreases to 2 beats per second.
Therefore, the frequency of the piano string before increasing the tension was 508 Hz .
26. Six vectors, \vec{a} through \vec{f} have the magnitudes and directions indicated in the figure. Which of the following statements is true?

(1) $\vec{b}+\vec{c}=\vec{f}$
(2) $\vec{d}+\vec{c}=\vec{f}$
(3) $\vec{d}+\vec{e}=\vec{f}$
(4) $\vec{b}+\vec{e}=\vec{f}$

Ans. (3)

Sol.

From figure, $\vec{d}+\vec{e}=\vec{f}$
27. A galvanometer has a coil of resistance 100 ohm and gives a full scale deflection for 30 mA current. If it is to work as a voltmeter of 30 volt range, the resistance required to be added will be
(1) 900Ω
(2) 1800Ω
(3) 500Ω
(4) 1000Ω

Ans. (1)
Sol. Here,
Resistance of galvanometer, $G=100 \Omega$
Current for full scale deflection, $\mathrm{I}_{\mathrm{g}}=30 \mathrm{~mA}$

$$
=30 \times 10^{-3} \mathrm{~A}
$$

Range of voltmeter, $\mathrm{V}=30 \mathrm{~V}$
To convert the galvanometer into an voltmeter of a given range, a resistance R is connected in series with it as shown in the figure.
28. A gramophone record is revolving with an angular velocity ω. A coin is placed at a distance r from the centre of the record. The static coefficient of friction is μ. The coin will revolve with the record if
(1) $r=\mu g \omega^{2}$
(2) $r=\frac{\omega^{2}}{\mu g}$
(3) $r \leq \frac{\mu g}{\omega^{2}}$
(4) $r \geq \frac{\mu g}{\omega^{2}}$

Ans. (3)

AIPMT (SCREENING)-2010

Sol. The coin will revolve with the record, if Force of friction $\square \geq$ Centrifugal force
$\mu \mathrm{mg} \geq \mathrm{mr} \omega^{2}$
or $\quad r \geq \frac{\mu g}{\omega^{2}}$
29. Which of the following statement is false for the properties of electromagnetic waves?
(1) Both electric and magnetic field vectors attain the maxima and minima at the same place and same time.
(2) The energy in electromagnetic wave is divided equally between electric and magnetic vectors.
(3) Both electric and magnetic field vectors are parallel to each other perpendicular to the direction of propagation of wave.
(4) These waves do not require any material medium for propagation.

Ans. (3)

Sol. In an electromagnetic wave both electric and magnetic vectors are perpendicular to each other as well as perpendicular to the direction of propagation of wave.
30. The energy of a hydrogen atom in the ground state is -13.6 eV . The energy of a He^{+}ion in the first excited state will be
(1) - 13.6 eV
(2) -27.2 eV
(3) -54.4 eV
(4) $-6.8 e \mathrm{eV}$

Ans. (1)

Sol. Energy of an hydrogen like atom like He^{+}in an $\mathrm{n}^{\text {th }}$ orbit is given by
$E_{n}=-\frac{13.6 Z^{2}}{n^{2}} \mathrm{eV}$
For hydrogen atom, $Z=1$
$\therefore \quad E_{n}=-\frac{13.6}{n^{2}} \mathrm{eV}$
For ground state, $\mathrm{n}=1$
$\therefore \quad E_{1}=-\frac{13.6}{1^{2}} \mathrm{eV}=-13.6 \mathrm{eV}$
For He^{+}ion, $\mathrm{Z}=2$

$$
E_{n}=-\frac{4(13.6)}{(2)^{2}} \mathrm{eV}=-13.6 \mathrm{eV}
$$

For first excited state, $\mathrm{n}=2$
$\therefore \quad E_{2}=-\frac{4(13.6)}{(2)^{2}} \mathrm{eV}=-13.6 \mathrm{eV}$
Hence, the energy in He^{+}ion in first excited state is same that of energy of the hydrogen atom in ground state i.e., - 13.6 eV
31. The dimension of $\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2}$, where ε_{0} is permittivity of free space and E is electric field, is
(1) $\mathrm{ML}^{2} \mathrm{~T}^{-2}$
(2) $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
(3) $\mathrm{ML}^{2} \mathrm{~T}^{-1}$
(4) MLT^{-1}

Ans. (2)

AIPMT (SCREENING)-2010

Sol. Energy density of an electric field E is
$\mathrm{u}_{\mathrm{E}}=\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2}$
where ε_{0} permittivity of free space
$\frac{\text { Energy }}{\text { Volume }}=\frac{\mathrm{ML}^{2} \mathrm{~T}^{-2}}{\mathrm{~L}^{3}}$
$=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
Hence, the dimension of $\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2}$ is $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
32. In producing chlorine by electrolysis 100 kW power at 125 V is being consumed. How much chlorine per minute is liberated (E.C.E. of chlorine is $0.367 \times 10^{-6} \mathrm{~kg} / \mathrm{C}$)
(1) $1.76 \times 10^{-3} \mathrm{~kg}$
(2) $9.67 \times 10^{-3} \mathrm{~kg}$
(3) $17.61 \times 10^{-3} \mathrm{~kg}$
(4) $3.67 \times 10^{-3} \mathrm{~kg}$

Ans. (3)
Sol. Current, $I=\frac{P}{V}=\frac{100 \times 10^{3} \mathrm{~W}}{125 \mathrm{~V}}=800 \mathrm{~A}$

According to the Faraday's first law of electrolysis Mass of chlorine liberated, $\mathrm{m}=\mathrm{zlt}$ $\mathrm{m}=\left(0.367 \times 10^{-6} \mathrm{~kg} / \mathrm{C}\right)(800 \mathrm{~A})(60 \mathrm{~s})$
$=\left(0.367 \times 10^{-6} \frac{\mathrm{~kg}}{\mathrm{C}}\right)\left(800 \frac{\mathrm{C}}{\mathrm{s}}\right)(60 \mathrm{~s})$
$=17.6 \times 10^{-3} \mathrm{~kg}$
33. A man of 50 kg mass is standing in a gravity free space at a height of 10 m above the floor. He throws a stone of 0.5 kg mass downwards with a speed $2 \mathrm{~m} / \mathrm{s}$. When the stone reaches the floor, the distance of the man above the floor will be
(1) 9.9 m
(2) 10.1 m
(3) 10 m
(4) 20 m

Ans. (2)

Sol. Since the man is in gravity free space, force on man + stone system is zero
Therefore centre of mass of the system remains at rest. Let the man goes x m above when the stone reaches the floor, then
$M_{\text {man }} \times x=M_{\text {stone }} \times 10$

$$
\begin{aligned}
& x=\frac{0.5}{50} \times 10 \\
& x=0.1 \mathrm{~m}
\end{aligned}
$$

Therefore final height of man above

$$
\begin{aligned}
& \text { floor }=10+x \\
& =10+0.1=10.1 \mathrm{~m}
\end{aligned}
$$

AIPMT (SCREENING)-2010

34. An alpha nucleus of energy $\frac{1}{2} m u^{2}$ bombards a heavy nuclear target of charge Ze . Then the distance of closest approach for the alpha nucleus will be proportional to
(1) $\frac{1}{\mathrm{Ze}}$
(2) u^{2}
(3) $\frac{1}{m}$
(4) $\frac{1}{u^{4}}$

Ans. (3)
Sol. At the distance of closest approach d, Kinetic energy = Potential energy

$$
\frac{1}{2} m v^{2}=\frac{1}{4 \pi \varepsilon_{0}} \frac{(2 e)(Z e)}{r_{0}}
$$

where,
$\mathrm{Ze}=$ charge of target nucleus
$2 e=$ charge of alpha nucleus
$\frac{1}{2} m v^{2}=$ kinetic energy of alpha nucleus of mass m moving with velocity v
or $\quad d=\frac{2 Z e^{2}}{4 \pi \varepsilon_{0}\left(\frac{1}{2} m v^{2}\right)} \quad \therefore \quad d \propto \frac{1}{m}$
35. Alens having focal length f and aperture of diameter d forms an image of intensity I. Aperture of diameter $\frac{d}{2}$ in central region of lens is covered by a block paper. Focal length of lens and intensity of image now will be respectively
(1) fand $\frac{I}{4}$
(2) $\frac{3 f}{4}$ and $\frac{I}{2}$
(3) fand $\frac{3 I}{4}$
(4) $\frac{f}{2}$ and $\frac{I}{2}$

Ans. (3)
Sol. Focal length of the lens remains same. Intensity of image formed by lens is proportional to area exposed to incident light from object.
i.e., intensity $\square \propto$ area
i.e., $\frac{I_{2}}{I_{1}}=\frac{A_{2}}{A_{1}}$

Initial area, $\quad A_{1}=\left(\frac{d}{2}\right)^{2}=\frac{\pi d^{2}}{4}$
After blocking, exposed area,

$$
\begin{aligned}
\mathrm{A}_{2} & =\frac{\pi \mathrm{d}^{2}}{4}-\frac{\pi(\mathrm{d} / 2)^{2}}{4} \\
& =\frac{\pi \mathrm{d}^{2}}{4}-\frac{\pi \mathrm{d}^{2}}{16}=\frac{3 \pi \mathrm{~d}^{2}}{16} \\
\therefore \quad \frac{\mathrm{I}_{2}}{\mathrm{I}_{1}} & =\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}}=\frac{\frac{3 \pi \mathrm{~d}^{2}}{16}}{\frac{\pi \mathrm{~d}^{2}}{16}}=\frac{3}{4} \quad \text { or } \quad \mathrm{I}_{2}=\frac{3}{4} \mathrm{I}_{1}=\frac{3}{4} \mathrm{I} \quad\left(\because \mathrm{I}_{2}=\mathrm{I}\right)
\end{aligned}
$$

Hence focal length of a lens $=f_{1}$ intensity of the image $=\frac{3 I}{4}$

AIPMT (SCREENING)-2010

36. If $\Delta \mathrm{U}$ and $\Delta \mathrm{W}$ represent the increase in internal energy and work done by the system respectively in a thermodynamical process, which of the following is true?
(1) $\Delta U=-\Delta W$, in a adiabatic process
(2) $\Delta U=\Delta W$, in a isothermal process
(3) $\Delta \mathrm{U}=\Delta \mathrm{W}$, in a adiabatic process
(4) $\Delta \mathrm{U}=-\Delta \mathrm{W}$, in a isothermal process

Ans. (1)
Sol. According to first law of thermodynamics $\Delta \mathrm{Q}=\Delta \mathrm{U}+\Delta \mathrm{W}$
where,
$\Delta \mathrm{Q}=$ Heat supplied to the system
$\Delta u=$ Increase in internal energy of the system
$\Delta \mathrm{W}=\mathrm{Work}$ done by the system
For an adiabatic process
$\Delta \mathrm{Q}=0$
From equation (i), we get
$\Delta u=-\Delta W$
For an isothermal process
$\Delta u=0$
Hence, option (a) is true,
37. The total radiant energy per unit area, normal to the direction of incidence, received at a distance R from the centre of a star of radius r, whose outer surface radiates as a black body at a temperature TK is given by (where σ is Stefan's constant)
(1) $\frac{\sigma r^{2} T^{4}}{R^{2}}$
(2) $\frac{\sigma r^{2} T^{4}}{4 \pi r^{2}}$
(3) $\frac{\sigma r^{4} T^{4}}{r^{4}}$
(4) $\frac{4 \pi \sigma r^{2} T^{4}}{R^{2}}$

Ans. (1)
Sol. According to the stefan Boltzmann law, the power radiated by the star whose outer surface radiates as a black body at temperature T K is given by
$\mathrm{P}=4 \pi \mathrm{r}^{2} \mathrm{\sigma}^{4}$
where,

$$
\begin{aligned}
& r=\text { radius of the star } \\
& s=\text { Stefan's constant }
\end{aligned}
$$

The radiant power per unit area received at a distance R from the centre of a star is

$$
\mathrm{S}=\frac{\mathrm{P}}{4 \pi \mathrm{R}^{2}}=\frac{4 \pi r^{2} \sigma T^{4}}{4 \pi R^{2}}=\frac{\sigma r^{2} \mathrm{~T}^{4}}{\mathrm{R}^{2}}
$$

38. In the given circuit the reading of voltmeter V_{1} and V_{2} are 300 volts each. The reading of the voltmeter V_{3} and ammeter A are respectively

(1) $150 \mathrm{~V}, 2.2 \mathrm{~A}$
(2) $220 \mathrm{~V}, 2.2 \mathrm{~A}$
(3) $220 \mathrm{~V}, 2.0 \mathrm{~A}$
(4) $100 \mathrm{~V}, 2.0 \mathrm{~A}$

Ans. (2)

Sol.

As $\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{C}}=300 \mathrm{~V}$, therefore the givne series LCR circuit is in resonance.
$\therefore \quad \mathrm{V}_{\mathrm{R}}=\mathrm{V}=220 \mathrm{~V}$
$Z^{\mathrm{R}}=\mathrm{R}=100 \Omega$
Current, $\mathrm{I}=\frac{\mathrm{V}}{\mathrm{Z}}=\frac{220 \mathrm{~V}}{100 \Omega}=2.2 \mathrm{~A}$
Hence, the reading of the voltmeter V_{3} is 220 V and the reading of ammeter A is 2.2 A .
39. A 220 volt input is supplied to a transformer. The output circuit draws a current of 2.0 ampere at 440 volts. If the efficiency of the transformer is 80% the current drawn by the primary windings of the transformer is
(1) 3.6 ampere
(2) 2.8 ampere
(3) 2.5 ampere
(4) 5.0 ampere

Ans. (4)
Sol. Here,
Input voltage, $\mathrm{V}_{\mathrm{p}}=220 \mathrm{~V}$
Output voltage, $\mathrm{V}_{\mathrm{s}}=440 \mathrm{~V}$
Input current, $\mathrm{I}_{\mathrm{p}}=$?
Output voltage, $\mathrm{I}_{\mathrm{s}}=2 \mathrm{~A}$
Efficiency of the transformer, $\eta=80 \%$
Efficiency of the transformer, $\eta=\frac{\text { Output power }}{\text { Input power }}$

$$
\eta=\frac{V_{\mathrm{s}} \mathrm{I}_{\mathrm{s}}}{\mathrm{~V}_{\mathrm{p}} \mathrm{I}_{\mathrm{p}}}
$$

or $\quad \mathrm{I}_{\mathrm{p}}=\frac{\mathrm{V}_{\mathrm{s}} \mathrm{I}_{\mathrm{s}}}{\eta \mathrm{V}_{\mathrm{p}}}=\frac{(440 \mathrm{~V})(2 \mathrm{~A})}{\left(\frac{80}{100}\right)(220 \mathrm{~V})}=\frac{(440 \mathrm{~V})(2 \mathrm{~A})(100)}{(80)(220 \mathrm{~V})}=5 \mathrm{~A}$
40. A source S_{1} is producing 10^{15} photons per second of wavelength $5000 \AA$. Another sorce S_{2} is producing 1.02 $\times 10^{15}$ photons per second of wavelength $5100 \AA$. Then (power of $\left.S_{2}\right) /\left(\right.$ power of S_{1}) is equal to
(1) 1.00
(2) 1.02
(3) 1.04
(4) 0.98

Ans. (1)
Sol. For a source S_{1},
Wavelength, $\lambda_{1}=5000 \AA$
Number of photons emitted per second, $\mathrm{N}_{1=10}{ }^{15}$
Energy of each photon, $E_{1}=\frac{h c}{\lambda_{1}}$
Power of source $\mathrm{S}_{1}, \mathrm{P}_{1}=\mathrm{E}_{1} \mathrm{~N}_{1}=\frac{\mathrm{N}_{1} \mathrm{hc}}{\lambda_{1}}$

AIPMT (SCREENING)-2010

For a source S_{2},
Wavelength, $\lambda_{2}=5100 \AA$
Number of photons emitted per second, $\mathrm{N}_{2}=1.02 \times 10^{15}$
Energy of each photon, $E_{2}=\frac{h c}{\lambda_{2}}$
Power of source $\mathrm{S}_{2}, \mathrm{P}_{2}=\mathrm{N}_{2} \mathrm{E}_{2}=\frac{\mathrm{N}_{2} \mathrm{hc}}{\lambda_{2}}$

$$
\begin{aligned}
\therefore \quad & \frac{\text { Power of } S_{2}}{\text { Power of } \mathrm{S}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\frac{\frac{\mathrm{N}_{2} \mathrm{hc}}{\lambda_{2}}}{\frac{\mathrm{~N}_{2} \mathrm{hC}}{\lambda_{2}}}=\frac{\mathrm{N}_{2} \lambda_{1}}{\mathrm{~N}_{2} \lambda_{2}} \\
& \frac{\left(1.02 \times 10^{15} \text { photons } / \mathrm{s}\right) \times(5000 \AA)}{\left(10^{15} \text { photons } / \mathrm{s}\right) \times(5100 \AA)}=\frac{51}{51}=1
\end{aligned}
$$

41. A common emitter amplifier has a voltage gain of 50 , an input impedance of 100Ω and an output impedance of 200Ω. The power gain of the amplifier is
(1) 500
(2) 1000
(3) 1250
(4) 50

Ans. (3)
Sol. Here,
Voltage gain $=50$
Input resistance, $\mathrm{R}_{\mathrm{i}}=100 \Omega$
Output resistance, $\mathrm{R}_{0}=200 \Omega$
Resistance gain $=\frac{\mathrm{R}_{0}}{\mathrm{R}_{\mathrm{i}}}=\frac{200 \Omega}{100 \Omega}=2$

Power gain $=\frac{(\text { Voltage gain })^{2}}{\text { Resistance gain }}=\frac{50 \times 50}{2}=1250$
42. A vibration magnetometer placed in magnetic meridian has a small bar magnet. The magnet executes oscillations with a time period of 2 sec in earth's horizontal magnetic field of 24 microtesla. When a horizontal field of 18 microtesla is produced opposite to the earth's field by placing a current carrying wire, the new time period of magnet will be
(1) 1 s
(2) 2 s
(3) 3 s
(4) 4 s

Ans. (4)
Sol. The time period T of oscillation of a magnet is given by

$$
\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{MB}}}
$$

where,
I = Moment of inertia of magnet about the axis of rotation
$\mathrm{M}=$ Magnetic moment of the magnet

AIPMT (SCREENING)-2010

$\mathrm{B}=$ Uniform magnetic field
As the I, B remains the same
$\therefore \quad \mathrm{T} \propto \frac{1}{\sqrt{B}}$ or $\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\sqrt{\frac{\mathrm{B}_{1}}{\mathrm{~B}_{2}}}$
According to given problem,
$\mathrm{B}_{1}=24 \mu \mathrm{~T}$
$\mathrm{B}_{2}=24 \mu \mathrm{~T}-18 \mu \mathrm{~T}=6 \mu \mathrm{~T}$
$\mathrm{T}_{1}=2 \mathrm{~s}$
$\therefore \quad \mathrm{T}_{2}=(2 \mathrm{~s}) \sqrt{\frac{(24 \mu \mathrm{~T})}{(6 \mu \mathrm{~T})}}=4 \mathrm{~s}$
43. Two positive ions, each carrying a charge q , are separated by a distance d . If F is the force of repulsion between the ions, the number of electrons missing from each ion will be (e being the charge on an electron)
(1) $\frac{4 \pi \varepsilon_{0} \mathrm{Fd}^{2}}{\mathrm{e}^{2}}$
(2) $\sqrt{\frac{4 \pi \varepsilon_{0} \mathrm{Fe}^{2}}{\mathrm{~d}^{2}}}$
(3) $\sqrt{\frac{4 \pi \varepsilon_{0} \mathrm{Fd}^{2}}{\mathrm{e}^{2}}}$
(4) $\frac{4 \pi \varepsilon_{0} F d^{2}}{q^{2}}$

Ans. (3)
Sol. According to Coulomb's law, the force of repulsion between the two positive ions each of charge q , separated by a distance d is given by

$$
\begin{align*}
& \mathrm{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{(\mathrm{q})(\mathrm{q})}{\mathrm{d}^{2}} \\
& \mathrm{~F}=\frac{\mathrm{q}^{2}}{4 \pi \varepsilon_{0} \mathrm{~d}^{2}} \\
& \mathrm{q}^{2}=4 \pi \varepsilon_{0} \mathrm{Fd}^{2} \\
& \mathrm{q}=\sqrt{4 \pi \varepsilon_{0} \mathrm{Fd}^{2}} \tag{i}
\end{align*}
$$

Since, $q=n e$
where,
$n=$ number of electrons missing from each ion
$e=$ magnitude of charge on electron
$\therefore \quad n=\frac{q}{e}$
$\mathrm{n}=\frac{\sqrt{4 \pi \varepsilon_{0} \mathrm{Fd}^{2}}}{\mathrm{e}} \quad$ (using (i))
$=\sqrt{\frac{4 \pi \varepsilon_{0} \mathrm{Fd}^{2}}{\mathrm{e}^{2}}}$
44. The potential difference that must be applied to stop the fastest photoelectrons emitted by a nickel surface, having work function 5.01 eV , when ultraviolet light of 200 nm falls on it, must be
(1) 2.4 V
(2) -1.2 V
(3) -2.4 V
(4) 1.2 V

Ans. (4)
Sol. Here,
Incident wavelength, $\lambda=200 \mathrm{~nm}$
Work function, $\phi_{0}=5.01 \mathrm{eV}$

AIPMT (SCREENING)-2010

According to Einstein's photoelectric equation

$$
\begin{aligned}
& \mathrm{eV}_{\mathrm{s}}=\mathrm{hv}-\phi_{0} \\
& \mathrm{eV}_{\mathrm{s}}=\frac{\mathrm{hc}}{\lambda}-\phi_{0}
\end{aligned}
$$

where V_{s} is the stopping potential

$$
\begin{aligned}
\mathrm{eV}_{\mathrm{s}} & =\frac{(1240 \mathrm{eV} \mathrm{~nm})}{(200 \mathrm{~nm})}-5.01 \mathrm{eV} \\
& =6.2 \mathrm{eV}-5.01 \mathrm{eV}=1.2 \mathrm{eV}
\end{aligned}
$$

Stopping potential, $\mathrm{V}_{\mathrm{s}}=1.2 \mathrm{~V}$
The potential difference that must be applied to stop photoelectrons $=-\mathrm{V}_{\mathrm{s}}=-1.2 \mathrm{~V}$
45. A square surface of side L meter in the plane of the paper is placed in a uniform electric field E (volt/m) acting along the same plane at an angle θ with the horizontal side of the square as shown in figure. The electric flux linked to the surface in units of volt \times meter is

(1) $E L^{2}$
(2) $E L^{2} \cos \theta$
(3) $E L^{2} \sin \theta$
(4) zero

Ans. (4)
Sol. Flux passing through area A
$\phi=E . A \cos \theta$
$\phi=\vec{E} \cdot \vec{A}=0$
lines are parallel to the surfaces
46. A series combination of n_{1} capacitors, each of value C_{1} is charged by a source of potential difference $4 V$. When another parallel combination of n_{2} capacitors, each of value C_{2}, is charged by a source of potential difference V, it has the same (total) energy stored in it, as the first combination has. The value of C_{2}, in terms of C_{1}, is then
(1) $\frac{2 C_{1}}{n_{1} n_{2}}$
(2) $16 \frac{n_{2}}{n_{1}} C_{1}$
(3) $2 \frac{n_{2}}{n_{1}} C_{1}$
(4) $\frac{16 C_{1}}{n_{1} n_{2}}$

Ans. (4)

AIPMT (SCREENING)-2010

Sol. A series combination of n_{1} capacitors each of capacitance C_{1} are connected to $4 V$ source as shown in the figure.

Total capacitance of the series combination of the capacitors is
$\frac{1}{\mathrm{C}_{\mathrm{s}}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{1}}+\ldots \ldots .$. upto n_{1} terms $=\frac{\mathrm{n}_{1}}{\mathrm{C}_{1}}$
or $C_{s}=\frac{C_{1}}{n_{1}}$
Total energy stored in a series combination of the capacitors is
$u_{s}=\frac{1}{2} C_{s}(4 V)^{2}$

$$
\begin{equation*}
=\frac{1}{2}\left(\frac{\mathrm{C}_{1}}{\mathrm{n}_{1}}\right)(4 \mathrm{~V})^{2} \tag{i}
\end{equation*}
$$

A parallel combination of n_{2} capacitors each of capacitance C_{2} are connected to V source as shown in the figure.

Total capacitance of the parallel combination of capacitors is
or $\quad C_{p}^{p}=\mathrm{n}_{2} \mathrm{C}_{2}$
Total energy stored in a parallel combination of capacitors is

$$
\begin{aligned}
u_{p} & =\frac{1}{2} C_{p} V^{2} \\
& =\frac{1}{2}\left(n_{2} C_{2}\right)(V)^{2} \quad \text { (Using (iii)) } \ldots \text { (iv) }
\end{aligned}
$$

AIPMT (SCREENING)-2010

According to the given problem,

$$
U_{s}=U_{p}
$$

Substituting the values of u_{s} and u_{p} from equations (ii) and (iv), we get
$\frac{1}{2} \frac{C_{1}}{n_{1}}(4 \mathrm{~V})^{2}=\frac{1}{2}\left(\mathrm{n}_{2} \mathrm{C}_{2}\right)(\mathrm{V})^{2}$
or $\quad \frac{C_{1} 16}{n_{1}}=n_{2} C_{2} \quad$ or $\quad C_{2}=\frac{16 C_{1}}{n_{1} n_{2}}$
47. Electromagnets are made of soft iron because soft iron has
(1) low retentivity and high coercive force
(2) high retentivity and high coercive force
(3) low retentivity and low coercive force
(4) high retentivity and low coercive force

Ans. (3)

Sol. Electromagnetics are made of soft iron because soft iron has low retentivity and low coercive force or low coercivity. Soft iron is a soft magnetic material.
48. A square current carrying loop is suspended in a uniform magnetic field acting in the plane of the loop. If the force on one arm of the loop is \vec{F}, the net force on the remaining three arms of the loop is
(1) $3 \vec{F}$
(2) $-\vec{F}$
(3) $-3 \vec{F}$
(4) \vec{F}

Ans. (2)
Sol. When loop is placed in the magnetic field then magnetic moment of coil
$\tau=\mathrm{NiBA} \sin \theta$
$\tau_{\text {max }}=$ NiBA

Force \vec{F}_{1} and \vec{F}_{2}, which are acting on coil, are equal in magnitude but opposite in direction
Force \vec{F}_{3} and \vec{F}_{4} are equal in magnitude but opposite in direction, create magnetic moment. In this way force F acting on one side of loop and force -F acting on remaining side of loop.
49. Consider the following two statements.
(A) Kirchhoff's junction law follows from the conservation of charge
(B) Kirchhoff's loop law follows from the conservation of energy

Which of the following is correct?
(1) Both (A) and (B) are wrong
(2) (A) is correct and (B) is wrong
(3) (A) is wrong and (B) is correct
(4) Both (A) and (B) are correct

Ans. (4)

AIPMT (SCREENING)-2010

Sol. (d) : Kirchoff's junction law or Kirchhoff's first law is based on the conservation of charge. Kirchhoff's loop law or Kirchhoff's second law is based on the conservation of energy. Hence both statements (A) and (B) are correct
50. To get an output $Y=1$ from the circuit shown below the input must be

	A	B	C
(1)	0	1	0
(2)	0	0	1
(3)	1	0	1
(4)	1	0	0

Ans. (3)

Sol.

The Boolean expression of the given circuit is

$$
Y=(A+B) \cdot C
$$

The table truth of the given input signals as shown in the table

\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{A}+\mathbf{B}$	$\mathbf{Y}=(\mathbf{A}+\mathbf{B}) . \mathbf{C}$
0	1	0	1	0
0	0	1	0	0
1	0	1	1	1
1	0	0	1	0

From the table truth we conclude that output $Y=1$, for the inputs $A=1, B=0, C=1$ for the inputs $A=1, B=0, C=1$
Hence option (c) is correct

AIPMT (SCREENING)-2010

PART- B (CHEMISTRY)

51. For the reaction,

$$
\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})
$$

the value of rate of disappearance of $\mathrm{N}_{2} \mathrm{O}_{5}$ is given as $6.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$. The rate of formation of NO_{2} and O_{2} is given respectively as:
(1) $6.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ and $6.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
(2) $1.25 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ and $3.125 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
(3) $6.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ and $3.125 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
(4) $1.25 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ and $6.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$

Ans. (2)

Sol. Rate of disappearance of reactant = rate of appearance of product
or $\quad-\frac{1}{\text { stoichiometric coefficient of reac tant }} \frac{d \text { [reactant] }}{d t}$

$$
=+\frac{1}{\text { stoichiometric coefficient of product }} \frac{\mathrm{d} \text { [product] }}{\mathrm{dt}}
$$

For the reaction,

$$
\begin{aligned}
& \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \\
& \frac{-\mathrm{d}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}=+\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}} \\
& =+\frac{2 \mathrm{~d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}} \\
\therefore \quad & \frac{\mathrm{~d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}}=-\frac{2 \mathrm{~d}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}} \\
& =2 \times 6.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1} \\
& =12.5 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1} \\
& =1.25 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1} \\
& \frac{\mathrm{~d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}=-\frac{\mathrm{d}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}} \times \frac{1}{2} \\
= & \frac{6.25 \times 10^{-3} \mathrm{molL}^{-1} \mathrm{~s}^{-1}}{2}=3.125 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}
\end{aligned}
$$

52. Liquid hydrocarbons can be converted to a mixture of gaseous hydrocarbons by:
(1) Oxidation
(2) Cracking
(3) Distillation under reduced pressure
(4) Hydrolysis

Ans. (2)

Sol. Lower hydrocarbons exist in gaseous state while higher ones are in liquid state or solid state.
On cracking or pyrolysis, the hydrocarbon with higher molecular mass gives a mixture of hydrocarbons having lower molecular mass. Hence, we can say that by cracking a liquid hydrocarbon can be converted into a mixture of gaseous hydrocarbons.

AIPMT (SCREENING)-2010

53. In which of the following pairs of molecules/ions, the central atoms have sp^{2} hybridization?
(1) $\mathrm{NO}_{2}{ }^{-}$and NH_{3}
(2) BF_{3} and NO_{2}^{-}
(3) $\mathrm{NH}_{2}-$ and $\mathrm{H}_{2} \mathrm{O}$
(4) BF_{3} and NH_{2}^{-}

Ans. (2)
Sol. For sp^{2} hybridisation, there must be 3σ-bonds or 2σ-bonds along with a long pair of electrons.
(i) $\mathrm{NO}_{2}^{-} \Rightarrow 2 \sigma+1 \ell p=3$, i.e., sp^{2} hybridisation
(ii) $\mathrm{NH}_{3} \Rightarrow 3 \sigma+1 \ell p=4$, i.e., sp^{3} hybridisation
(iii) $\mathrm{BF}_{3} \Rightarrow 3 \sigma+0 \ell \mathrm{p}=3$, i.e., sp^{2} hybridisation
(iv) $\mathrm{NH}_{2}^{-} \Rightarrow 2 \sigma+2 \ell \mathrm{p}=4$, i.e., sp^{3} hybridisation
(v) $\mathrm{H}_{2} \mathrm{O} \Rightarrow 2 \sigma+2 \ell \mathrm{p}=4$, i.e., sp^{3} hybridisation

Thus, among the given pairs, only BF_{3} and NO_{2}^{-}have sp^{2} hybridisation.
54. Which one of the following does not exhibit the phenomenon of mutarotation?
(1) (+) Sucrose
(2) (+) Lactose
(3) (+) Maltose
(4) (-) Fructose

Ans. (1)
Sol. Reducing sugars that exist in hemiacetal and hemiketal forms, undergo mutarotation in aqueous solution. Among the given carbohydrates, only sucrose is a non-reducing sugar as in it the hemiacetal and hemiketal groups of glucose and fructose are linked together through O-atom and thus, not free. Due to the absence of free hemiacetal or hemiketal group, sucrose does not exhibit mutarotation.
55. Which one of the following species does not exist under normal conditions ?
(1) $\mathrm{Be}_{2}{ }^{+}$
(2) Be_{2}
(3) B_{2}
(4) Li_{2}

Ans. (2)
Sol. Molecules with zero bond order, do not exist.
(a) $\mathrm{Be}_{2}{ }^{+}(4+4-1=7)=\sigma 1 \mathrm{~s}^{2}, \sigma 1 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{1}$

$$
\mathrm{BO}=\frac{4-3}{2}=0.5
$$

(b) $\mathrm{Be}_{2}(4+4=8)=\sigma 1 \mathrm{~s}^{2}, \sigma 1 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2}$

$$
\mathrm{BO}=\frac{4-4}{2}=0
$$

(c) $\quad \mathrm{B}_{2}(5+5=10)=\sigma 1 \mathrm{~s}^{2}, \sigma 1 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2}, \pi 2 \mathrm{p}_{\mathrm{x}}{ }^{1} \approx \pi 2 \mathrm{p}_{\mathrm{y}}{ }^{1}$

$$
\mathrm{BO}=\frac{6-4}{2}=1
$$

(d) $\quad \mathrm{Li}_{2}(3+3=6)=\sigma 1 \mathrm{~s}^{2}, \sigma 1 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2}$

$$
\mathrm{BO}=\frac{4-2}{2}=1
$$

Thus, Be_{2} does not exist under normal conditions.
56. Which of the following complex ions is not expected to absorb visible light ?
(1) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{--}$
(2) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(3) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(4) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Ans. (1)

Sol. For the absorption of visible light, presence of unapried d-electrons is the necessity.
(1) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{-2}$, Ni is present as Ni^{2+}.

$$
\mathrm{Ni}^{2+}=[\mathrm{Ar}] 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{0}
$$

AIPMT (SCREENING)-2010

(Pairing occurs because CN^{-}is a strong field ligand).
Since, in $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{--}$, no unpaired electron is present in d-orbitals, it does not absorb visible lights.
(2) $\mathrm{In}\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$, Cr is present as Cr^{3+}.
$\mathrm{Cr}^{3+}=[\mathrm{Ar}] 3 \mathrm{~d}^{3} 4 \mathrm{~s}^{0} \quad$ (Three unpaired electrons)
(3) $\operatorname{In}\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$, Fe is present as Fe^{3+}.
$\mathrm{Fe}^{2+}=[\mathrm{Ar}] 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{0} \quad$ (Four unpaired electrons)
(4) $\operatorname{In}\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$, Ni is present as Ni^{2+}.
$\mathrm{Ni}^{2+}=[\mathrm{Ar}] 3 \mathrm{~d}^{3} 4 \mathrm{~s}^{0} \quad$ (Two unpaired electrons)
57. Given are cyclohexanol (I), acetic acid (II), 2, 4, 6-trinitrophenol (III) and phenol (IV). In these the order of decreasing acidic character will be:
(1) III $>$ II $>$ IV $>$ I
I (2) II > III > I > IV
(3) II $>$ III $>$ IV $>$ I
(4) III $>$ IV $>$ II $>$ I

Ans. (1)
Sol. Higher the tendency to give a proton, higher is the acidic character, and tendency to lose a proton depends upon the stability of intermediate, i.e., carbanion formed.
2, 4,6-trinitrophenol after the loss of a proton gives 2,4,6-trinitrophenoxide ion which is stabilised by resonance, -1 effect and -M effect, thus is most acidic among the given compounds.
Phenol after losing a proton form phenoxide ion which is also stabilised by resonance, - M and -I effects but is less stabilised as compared to 2, 4, 6-trinitrophenoxide ions. Thus, it is less acidic as compared to 2,4,6trinitrophenol. $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ after losing a proton gives acetate $\left(\mathrm{CH}_{3} \mathrm{C}_{\mathrm{O}^{-}}^{\mathrm{O}}\right.$) ion which is stabilised by only resonance. However, it is more resonance stabilised as compared to a phenoxide ion, thus more acidic as compared to phenol. 2,4,6-trinitrophenol, however, is more acidic than acetic acid due to the presence of three electron withdrawing $-\mathrm{NO}_{2}$ groups. Cyclohexanol gives an anion that is least stable among the given, thus, it is least acidic.
Hence, the correct order of acidic strength is $2,4,6$-trinitrophenol $>$ acetic acid $>$ phenol $>$ cyclohexanol.
58. If pH of a saturated solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ is 12 , the value of its K_{sp} is:
(1) $4.00 \times 10^{-6} \mathrm{M}^{3}$
(2) $4.00 \times 10^{-7} \mathrm{M}^{3}$
(3) $5.00 \times 10^{-6} \mathrm{M}^{3}$
(4) $5.00 \times 10^{-7} \mathrm{M}^{3}$

Ans. (4)
Sol. Given, pH of $\mathrm{Ba}(\mathrm{OH})_{2}=12$
$\therefore \quad\left[\mathrm{H}^{+}\right]=\left[1 \times 10^{-12}\right]$
and $\quad\left[\mathrm{OH}^{-}\right]=\frac{1 \times 10^{-14}}{1 \times 10^{-12}} \quad\left[\because \quad\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}\right]$ $=1 \times 10^{2} \mathrm{~mol} / \mathrm{L}$
$\mathrm{Ba}(\mathrm{OH})_{2} \longrightarrow \mathrm{Ba}^{2+}+2 \mathrm{OH}^{-}$
s 2 s
$\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$
$=[s][2 s]^{2}=\left[\frac{1 \times 10^{-2}}{2}\right]\left(1 \times 10^{-2}\right)^{2}=0.5 \times 10^{-6}=5.0 \times 10^{-7} \mathrm{M}^{3}$

AIPMT (SCREENING)-2010

59. The reaction of toluene with Cl_{2} in presence of FeCl_{3} gives ' X ' and reaction in presence of light gives ' Y '. Thus, ' X ' and ' Y ' are:
(1) $\mathrm{X}=$ Benzal chloride, $\mathrm{Y}=0$-chlorotoluene
(2) $X=m$-chlorotoluene, $Y=p$-chlorotoluene
(3) $X=0$-and p-chlorotoluene, $Y=$ Trichloromethyl benzene
(4) $X=$ Benzyl chloride, $Y=m$-chlorotoluene

Ans.
 (3)

Sol. In the presence of halogen carrier, electrophilic substitution occurs while in the presence of sunlight, substitution occurs at the dide chain.

($\because-\mathrm{CH}_{3}$ is an o/p directing group.)

60. Which one of the following compounds has the most acidic nature?
(1)

(2)

(3)

(4)

Ans. (2)

Sol. Presence of electron withdrawing substituent increases the acidity while electron relasing substituent, when present, decreases the acidity.
Phenyl is an electron withdrawing substituent while $-\mathrm{CH}_{3}$ is an electron releasing substituent. Moreover, phenoxide ion is more resonance stabilised as compared to benzyloxide ion, thus releases proton more easily. That's why is a strong acid among the given.

AIPMT (SCREENING)-2010

61. In a set of reactions, ethyl benzene yielded a product D.

'D' would be :
(1)

(2)

(3)

(4)

Ans. (4)
Sol. Alkaline KMnO_{4} converts complete carbon chain that is directly attached to benzene nucleus, to -COOH group. Br_{2} in the presence of halogen carrier causes bromination and ehtyl alcohol in acidic medium results in esterification.

 $=1.8 \times 10^{-5}$)
(1) 3.5×10^{-4}
(2) 1.1×10^{-5}
(3) 1.8×10^{-4}
(4) 9.0×10^{-6}

Ans. (4)
Sol. $\mathrm{CH}_{3} \mathrm{COOH}$ (weak acid) and $\mathrm{CH}_{3} \mathrm{COONa}$ (conjugated salt) form acidic buffer and for acidic buffer,

$$
\begin{aligned}
\mathrm{pH} & =\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { salt }]}{[\text { acid }]} \text { and }\left[\mathrm{H}^{+}\right]=- \text {antilog } \mathrm{pH} \\
\mathrm{pH} & =-\log \mathrm{K}_{\mathrm{a}}+\log \frac{[\text { salt] }]}{[\text { acid }]}\left[\because \mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}\right] \\
& =-\log \left(1.8 \times 10^{-5}\right)+\log \frac{(0.20)}{(0.10)}=4.74+\log 2=4.74+0.3010=5.041
\end{aligned}
$$

Now, $\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-5.045)=9.0 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$

AIPMT (SCREENING)-2010

63. For an endothermic reaction, energy of activation is E_{a} and enthalpy of reaction is $\Delta \mathrm{H}$ (both of these in $\mathrm{kJ} / \mathrm{mol}$). Minimum value of E_{a} will be:
(1) less than $\Delta \mathrm{H}$
(2) equal to $\Delta \mathrm{H}$
(3) more than $\Delta \mathrm{H}$
(4) equal to zero

Ans. (3)
Sol. In endothermic reactions, energy of reactants is less than that of the products. Potential energy diagram for endothermic reactions is,

Progress of the reaction
where, $E_{a}=$ activation energy of forward reaction
E^{\prime} = activation energy of backward reaction
$\Delta \mathrm{H}=$ enthalpy of the reaction
From the above diagram,

$$
\mathrm{E}_{\mathrm{a}}^{\prime}=\mathrm{E}_{\mathrm{a}}^{\prime}+\Delta \mathrm{H}
$$

Thus, $\quad \mathrm{E}_{\mathrm{a}}>\Delta \mathrm{H}$
64. The correct order of increasing reactivity of $C-X$ bond towards nucleophile in the following compounds is:

I

II
(1) I $<$ II $<$ IV $<$ III
(2) II $<$ III $<$ I $<$ IV
(3) IV $<$ III $<$ I $<$ II
(4) III $<$ II $<$ I $<$ IV

Ans. (1)

Sol. Alkyl halides are more reactive twoward nucleophilic substitution. Reactivity depends upon the stability of carbocation intermedicate formed.
Among the given halides, aryl halide $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{X}\right)$ is least reactive towards nucleophile as in it the $\mathrm{C}-\mathrm{X}$ bond acquire some double bond character due to resonance. Presence of electron withdrawing groups like $-\mathrm{NO}_{2}$ at ortho and para positions facilitate the nucleophilic displancent of -X of aryl halide. Among alkyl halides, 3° halides are more reactive as compared to 2° halides due to the formation of more stable carbocation. Hence, the order of reactivity of $C-X$ bond towards nucleophile is as

AIPMT (SCREENING)-2010

65. For the reduction of silver ions with copper metal, the standard cell potential was found to be +0.46 V at $25^{\circ} \mathrm{C}$. The value of standard Gibbs energy $\Delta \mathrm{G}^{\circ}$ will be ($\mathrm{F}=96500 \mathrm{C} \mathrm{mol}^{-1}$)
(1) -89.0 kJ
(2) -89.0 J
(3) -44.5 kJ
(4) -98.0 kJ

Ans. (1)
Sol. We know that,
standard Gibbs energy, $\Delta \mathrm{G}^{\circ}=-\mathrm{nEF}{ }^{\circ}{ }_{\text {cel }}$
For the cell reaction,

$$
\begin{aligned}
& 2 \mathrm{Ag}^{+}+\mathrm{Cu} \longrightarrow \mathrm{Cu}^{2+}+2 \mathrm{Ag} \\
& \begin{aligned}
\begin{array}{|l}
\\
\mathrm{G}
\end{array} & =-2 \times 96500 \times 0.46 \\
& =-88780 \mathrm{~J} \\
& =-88.7 \mathrm{~kJ} \approx-89.0 \mathrm{~kJ}
\end{aligned}
\end{aligned}
$$

66. In which of the following equilibrium K_{c} and K_{p} are not equal?
(1) $2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
(2) $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$
(3) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
(4) $2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}_{2}(\mathrm{~g})$

Ans. (4)
Sol. $\quad K_{p}=K_{c}(R T)^{\Delta n}$.
67. Which of the following ions will exhibit colour in aqueous solutions ?
(1) $\mathrm{La}^{3+}(Z=57)$
(2) $\mathrm{Ti}^{3+}(\mathrm{Z}=22)$
(3) $L u^{3+}(Z=71)$
(4) $\mathrm{Sc}^{3+}(Z=21)$

Ans. (2)
Sol. $\quad \mathrm{Ti}^{3+}(Z=22)$
Ions which have unpaired electrons exhibit colour in solution. T^{3++} has an outer electronic configuration of $4 \mathrm{~s}^{0}$ $3 d^{1}$, i.e., 1 unpaired electron. Thus its solution will be coloured.
$\mathrm{Sc}^{3+} \rightarrow \mathrm{d}^{0}$
In case of $\mathrm{La}^{3+}, 4 f^{0}$ configuration is present and in Lu ${ }^{3+}, 4 f^{14}$ is present. So, there is no possibility of $f-f$ transition, hence these ions do not appear coloured.
68. Aniline in a set of the following reactions yielded a coloured product ' Y '.

The structure of ' Y ' would be :
(1)

(2)

(3)

(4)

Ans. (1)

AIPMT (SCREENING)-2010

Sol. $\quad \mathrm{NaNO}_{2} / \mathrm{HCl}$ causes diazotisation of $-\mathrm{NH}_{2}$ group and the diazonium chloride gives a coupling product with active aryl nucleus.

69. Acetamide is treated with the following reagents separately. Which one of these would yield methyl amine ?
(1) $\mathrm{NaOH}-\mathrm{Br}_{2}$
(2) Sodalime
(3) Hot conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
(4) PCl_{5}
Ans. (1)

Sol. The reagent which can convert $-\mathrm{CONH}_{2}$ group into $-\mathrm{NH}_{2}$ group is used for this reaction.
Among the given reagents only $\mathrm{NaOH} / \mathrm{Br}_{2}$ converts $-\mathrm{CONH}_{3}$ group to $-\mathrm{NH}_{2}$ group, thus it is used for converting acetamide to methyl amine. This reaction is called Hoffmann bromamide reaction.

70. An aqueous solution is 1.00 molal in KI . Which change will cause the vapour pressure of the solution to increase?
(1) Addition of NaCl
(2) Addition of $\mathrm{Na}_{2} \mathrm{SO}_{4}$
(3) Addition of 1.00 molal KI
(4) Addition of water

Ans. (4)

Sol. Vapour pressure depends upon the surface area of the solution. Larger the surface area, higher is the vapour pressure.
Addition of solute decreases the vapour pressure as some dites of the surface are occupied by solute particles, resulting in decreased surface area. However, addition of solvent, ie, dilution, increases the surface area of the liquid surface, thus results in increased vapour pressure.

Hence, addition of water to the aqueous solution of (1 molal) KI, results in increased vapour pressure.
71. A solution of sucrose (molar mass $=342 \mathrm{~g} \mathrm{~mol}^{-1}$) has been prepared by dissolving 68.5 g of sucrose in 1000 g of water. The freezing point of the solution obtained will be: $\left(\mathrm{K}_{\mathrm{f}}\right.$ for water $\left.=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$
(1) $-0.372^{\circ} \mathrm{C}$
(2) $-0.520^{\circ} \mathrm{C}$
(3) $+0.372^{\circ} \mathrm{C}$
(4) $-0.570^{\circ} \mathrm{C}$

Ans. (3)

Sol. Depression in freezing point,

$$
\Delta T_{f}=k_{f} \times m
$$

where, $m=$ molality $=\frac{W_{B} \times 1000}{M_{B} \cdot W_{A}}=\frac{68.5 \times 1000}{342 \times 1000}=\frac{68.5}{342}$

$$
\begin{aligned}
& \Delta T_{f}=1.86 \times \frac{68.5}{342}=0.372^{\circ} \mathrm{C} \\
& \Delta T_{f}=T^{\circ}-T_{s}=0-0.372^{\circ} \mathrm{C}=0.372^{\circ} \mathrm{C}
\end{aligned}
$$

AIPMT (SCREENING)-2010

72. Which of the following alkaline earth metal sulphates has hydration enthalpy higher than the lattice enthalpy?
(1) CaSO_{4}
(2) BeSO_{4}
(3) BaSO_{4}
(4) SrSO_{4}

Ans. (2)
Sol. Hydration energy varies inversely with size and in sulphates of alkaline earth metals lattice energy remains almost constant. The order of size of alkaline earth metals is

$$
\mathrm{Be}^{2+}<\mathrm{Ca}^{2+}<\mathrm{Sr}^{2+}<\mathrm{Ba}^{2+}
$$

Thus, the order of hydration energy is

$$
\mathrm{Be}^{2+}>\mathrm{Ca}^{2+}>\mathrm{Sr}^{2+}>\mathrm{Ba}^{2+}
$$

Hence, BeSO_{4} has the hydration enthalpy higher than the lattice enthalpy.
73. Which of the following ions has electronic configuration $[A r] 3 d^{6}$?
(1) Ni^{3+}
(2) Mn^{3+}
(3) Fe^{3+}
(4) Co^{3+}

Ans. (4)
Sol. Write the electronic configurations of given ions and find the correct answer.

$$
\begin{aligned}
\mathrm{NH}^{3+}(28) & =[\mathrm{Ar}] 3 \mathrm{~d}^{7} \\
\mathrm{Mn}^{3+}(25) & =[\mathrm{Ar}] 3 \mathrm{~d}^{4} \\
\mathrm{ee}^{3+}(26) & =[\mathrm{Ar}] 3 \mathrm{~d}^{5} \\
\mathrm{Co}^{3+}(27) & =\left[\mathrm{Ar} 3 \mathrm{~d}^{6}\right.
\end{aligned}
$$

74. An increase in equivalent conductance of a strong electrolyte with dilution is mainly due to:
(1) increase in ionic mobility of ions.
(2) 100% ionisation of electrolyte at normal dilution.
(3) increase in both i.e. number of ions and ionic mobility of ions.
(4) increase in number of ions.

Ans. (1)
Sol. $\quad \lambda_{\text {eq }}=\kappa \times V=\frac{\kappa \times 1000}{\text { normality }}$
On dilution, the number of current carrying particles per cm^{3} decreases but the volume of solution increases. Consequently, the ionic mobility increases, which in turn increases the equivalent conductance of strong electrolyte.
75. Crystal filed stabilization energy for high spin d^{4} octahedral complex is :
(1) $-1.8 \Delta_{0}$
(2) $-1.6 \Delta_{0}+P$
(3) $-1.2 \Delta_{0}$
(4) $-0.6 \Delta_{0}$

Ans. (4)
Sol. In case of high spin complex, Δ_{0} is small. Thus, the energy required to pair up the fourth electron with the electrons of lower energy d-orbitals would be higher than that required to place the electrons in the higher dorbital. Thus, pairing does not occur.
For high spin d^{4} octahedral complex,

\therefore Crystal field stabilisation energy

$$
\begin{aligned}
& =(-3 \times 0.4+1 \times 0.6) \Delta_{0} \\
& =(-1.2+0.6) \Delta_{0} \\
& =-0.6 \Delta_{0}
\end{aligned}
$$

AIPMT (SCREENING)-2010

76. Oxidation states of P in $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}, \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ are respectively :
(1) $+3,+5,+4$
(2) $+5,+3,+4$
(3) $+5,+4,+3$
(4) $+3,+4,+5$

Ans. (4)
Sol. Oxidation state of H is +1 and that of O is -2 .
Let the oxidation state of P in the given compounds is x .

$$
\begin{gathered}
\text { In } \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5},(+1) \times 4+2 \times \mathrm{x}+(-2) \times 5=0 \\
\\
\\
\\
\\
\therefore \quad 2 \mathrm{t}=2 \mathrm{x}-10=0 \\
\therefore \quad
\end{gathered}
$$

In $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6},(+1) \times 4+2 \times \mathrm{x}+(-2) \times 6=0$

$$
4+2 x-12=0
$$

77. Which of the following statements about primary amines is 'False'?
(1) Alkyl amines are stronger bases than aryl amines
(2) Alkyl amines react with nitrous acid to produce alcohols
(3) Aryl amines react with nitrous acid to produce phenols
(4) Alkyl amines are stronger bases than ammonia

Ans. (3)

Sol. (i) Presence of electron withdrawing substiuent decreases the basicity while the presence of electron releasing substituent like, $-\mathrm{CH}_{3},-\mathrm{C}_{2} \mathrm{H}_{5}$ etc increases the acidity.
(ii) HNO_{2} converts - NH_{2} group of alphatic amine into - OH while that of aromatic amines into $-\mathrm{N}=\mathrm{NCL}$

Since, phenyl group is a electron withdrawing group, it decreases the basicity. Alkyl group, on the other hand, being electron releasing, increases the basicity. Thus, alkyl amines are more basic as compared to aryl amines as well as ammonia.
$\mathrm{R}-\mathrm{NH}_{2} \xrightarrow{\mathrm{HNO}_{2}} \mathrm{R}-\mathrm{OH}$
Thus, HNO_{2} (nitrous acid) converts alkyl amines to alcohols.

Thus, HNO_{2} does not convert aryl amines into phenol.
78. The correct order of increasing bond angles in the following species are :
(1) $\mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}<\mathrm{ClO}_{2}^{-}$
(2) $\mathrm{ClO}_{2}<\mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}^{-}$
(3) $\mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}^{-}<\mathrm{ClO}_{2}$
(4) $\mathrm{ClO}_{2}^{-}<\mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}$

Ans. (4)
Sol. As the number of lone pairs of electrons increases, bond angle decreases due to repulsion between $1 p-1 p$. Moreover, as the electronegativity of central atom decreases, bond angle decreases. Hence, the order of bond angle is

(Cl is less electronegative as compared to O .)

AIPMT (SCREENING)-2010

79. Among the given compounds, the most susceptible to nucleophilic attack at the carbonyl group is:
(1) $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$
(2) $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
(3) $\mathrm{CH}_{3} \mathrm{COOCOCH}_{3}$
(4) $\mathrm{CH}_{3} \mathrm{COCl}$

Ans. (4)

Sol. Lesser the electron density of acyl carbon atom, more will be the susceptiblity of nucleophile to attack it. The Cl atom has strong -I effect because of the weak p -bond between the small sized C -atom and large sized Cl atom. Thus in $\mathrm{CH}_{3} \mathrm{COCl}$, acyl carbon has least electron density and hence, more suceptible for nucleophilic attack.
80. 25.3 g of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is dissolved in enough water to make 250 mL of solution. If sodium carbonate dissociates completely, molar concentration of sodium ion, Na^{+}and carbonate ions, $\mathrm{CO}_{3}{ }^{2-}$ are respectively (Molar mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=106 \mathrm{~g} \mathrm{~mol}^{-1}$)
(1) 0.955 M and 1.910 M
(2) 1.910 M and 0.955 M
(3) 1.90 M and 1.910 M
(4) 0.477 M and 0.477 M

Ans. (2)

Sol. Molarity $=\frac{\text { number of moles of solute }}{\text { volume of solution (inmL) }} \times 1000=\frac{25.3 \times 1000}{106 \times 250}=0.9547 \approx 0.955 \mathrm{M}$
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ in aquesous solution remains dissociated as

Since, the molarity of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is 0.955 M , the molartiy of CO_{3}^{2-} is also 0.955 M and that of $\mathrm{Na}+$ is 2×0.955 $=1.910 \mathrm{M}$
81. In a buffer solution containing equal concentration of B^{-}and HB , the K_{b} for B^{-}is 10^{-10}. The pH of buffer solution is:
(1) 10
(2) 7
(3) 6
(4) 4

Ans. (4)
Sol. (i) For basic buffer

$$
\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{[\text { salt }]}{[\text { base }]}
$$

(ii) $\mathrm{pH}+\mathrm{pOH}=14$

Given, $\quad \mathrm{K}_{\mathrm{b}}=1 \times 10^{-10},[$ salt $]=[$ base $]$

$$
\begin{aligned}
\mathrm{pOH} & =-\log \mathrm{K}_{\mathrm{b}}+\log \frac{[\text { salt }]}{[\text { base }]} \\
\therefore \quad \mathrm{pOH} & =-\log \left(1 \times 10^{-10}\right)+\log 1 \\
& =10 \\
\mathrm{pH}+\mathrm{POH} & =14 \\
\mathrm{pH} & =14-10=4
\end{aligned}
$$

AIPMT (SCREENING)-2010

82. The existance of two different coloured complexes with the composition of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$is due to :
(1) linkage isomerism
(2) geometrical isomerism
(3) coordination isomerism
(4) ionization isomerism

Ans. (4)
Sol. Complexes of $\left[\mathrm{MA}_{4} \mathrm{~B}_{2}\right]$ type exhibit geometrical isomerism.
The complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]+$ is a $\left[\mathrm{MA}_{4} \mathrm{~B}_{2}\right]$ type complex and thus, fulfills the conditions that are necessary to exhibit geometrical isomerism. Hence, it has two geometrical isomers of different colours as :
The structure of the geometrical isomers is are

cis - form trans-form
For linkage isomerism, presence of ambidetance ligand is necessary. For coordination isomerism, both the cation and anion of the complex must be complex ions. For ionisation isomerism, an anion different to the ligands must be present outside the coordination sphere. All these condtions are not satisfied by this complex. Hence, it does not exhibit other given isomerisms.
83. Property of the alkaline earth metals that increases with their atomic number:
(1) Solubility of their hydroxides in water
(2) Solubility of their sulphates in water
(3) Ionization energy
(4) Electronegativity

Ans.
 (1)

Sol. Electronegativity as well as ionisation energy both usually decrease on moving downward a group with increase in atomic number. The hydroxides and sulphates of alkaline earth metals are ionic solids and the solubility of ionic solids and the solubility of ionic solids is governed by two factors, viz, lattice energy and hydration energy. For solubility, hydration energy > lattice energy.
Hydration energy varies inversely with size, ie, decreases with increase in size. However, lattice energy in case of sulphates, remains almost same with increase in the atomic number of alkaline earth metals, due to large size of sulphate ion. Hence, hydration energy only governs the solubility in this case. Thus, solubility of alkaline earth metal sulphates decreases on moving downward the group II A group.
On the other hand, in case of hydroxides, the lattice energies are different because of medium size of hydroxide ions, and decreases on moving from Be to Ba . This tends to increase the solubility and to overcome the counter-effect produced by the decrease in hydration energy. Hence, the solobility of alkaline earth metal hydroxides increases with increase in the atomic number of alkaline earth metals.
84. During the kinetic study of the reaction, $2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$, following results were obtained:

Ru n $[A] / \mathrm{mol} \mathrm{L}^{-1}$	$[B] / \mathrm{mol} \mathrm{L}^{-1}$	Initial rate of formation of $\mathrm{D} / \mathrm{mol} \mathrm{L}^{-1} \mathrm{~min}^{-1}$	
I			6.0×10^{-3}
II	0.1	0.1	7.2×10^{-2}
III	0.3	0.2	2.88×10^{-1}
IV	0.3	0.4	2.40×10^{-2}

Based on the above data which one of the following is correct?
(1) rate $=k[A]^{2}[B]$
(2) rate $=k[A][B]$
(3) rate $=k[A]^{2}[B]^{2}$
(4) rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}]^{2}$

Ans. (4)
Sol. Let order of reaction with respect to A is x and with respect to B is y. Thus,

$$
\text { rate }=k[A]^{x}[B]^{y}
$$

AIPMT (SCREENING)-2010

For the given cases,
(I) rate $=\mathrm{k}(0.1)^{\mathrm{x}}(0.1)^{\mathrm{y}}=6.0 \times 10^{-3}$
(II) rate $=\mathrm{k}(0.3)^{\mathrm{x}}(0.2)^{\mathrm{y}}=7.2 \times 10^{-2}$
(III) rate $=k(0.3)^{x}(0.40)^{y}=2.88 \times 10^{-1}$
(IV) rate $=(0.4)^{x}(0.1)^{y}=2.40 \times 10^{-2}$

On dividing Eq. (i) by (IV), we get
$\left(\frac{0.1}{0.4}\right)^{x}\left(\frac{0.1}{0.1}\right)^{y}=\frac{6.0 \times 10^{-3}}{2.4 \times 10^{-2}} \quad$ or $\quad\left(\frac{1}{4}\right)^{x}=\left(\frac{1}{4}\right)^{1}$

$$
x=1
$$

On dividing Eq. (II) by (III), we get
$\left(\frac{0.3}{0.3}\right)^{x}\left(\frac{0.2}{0.4}\right)^{y}=\frac{7.2 \times 10^{-2}}{2.88 \times 10^{-1}} \quad$ or $\quad\left(\frac{1}{2}\right)^{y}=\frac{1}{4}$
or $\quad\left(\frac{1}{2}\right)^{y}=\left(\frac{1}{2}\right)^{2}$
$\therefore \quad y \quad=2$
Thus, rate law is,

$$
\text { rate }=\mathrm{k}[\mathrm{~A}]^{1}[\mathrm{~B}]^{2} \text { or }=\mathrm{k}[\mathrm{~A}][\mathrm{B}]^{2}
$$

85. Which of the following pairs has the same size ?
(1) $\mathrm{Fe}^{2+}, \mathrm{Ni}^{2+}$
(2) $\mathrm{Zr}^{4+}, \mathrm{Ti}^{4+}$
(3) $\mathrm{Zr}^{4+}, \mathrm{H} f^{4+}$
(4) $\mathrm{Zn}^{4+}, \mathrm{H} f^{4+}$

Ans. (3)

Sol. In general, the atomic and ionic radii increases on moving down a group. But the elements of second series (eg, $\mathrm{Zr}, \mathrm{Nb}, \mathrm{Mo}$ etc.) have the almost same radii as the elements of third transition serries (eg, $\mathrm{Hf}, \mathrm{Ta}, \mathrm{W}$ etc). This is because of lanthanide contraction ie, imperfect sheilding of one 4 f - electron by another.
86. The correct order of the decreasing ionic radii among the following is electronic species are:
(1) $\mathrm{Ca}^{2+}>\mathrm{K}^{+}>\mathrm{S}^{2-}>\mathrm{Cl}^{-}$
(2) $\mathrm{Cl}^{-}>\mathrm{S}^{2-}>\mathrm{Ca}^{2+}>\mathrm{K}^{+}$
(3) $\mathrm{S}^{2-}>\mathrm{Cl}^{-}>\mathrm{K}^{+}>\mathrm{Ca}^{2+}$
(4) $\mathrm{K}^{+}>\mathrm{Ca}^{2+}>\mathrm{Cl}^{-}>\mathrm{S}^{2-}$

Ans. (3)
Sol. Ionic radii \propto charge on anion $\propto \frac{1}{\text { chargeoncation }}$
During the formation of a cation, the electrons are lost from the outer shell and the remaining electrons experience a great force of attraction by the nucleous, ie, attracted more towards the nucleous. In other words, nucleous hold the remaining electrons more tightly and this results in decreased radii.
However, in case of anion formation, the addition of electron(s) takes place in the same outer shell, thus the hold of nucleous on the electrons of outer shell decreases and this results in increased ionic radii.
Thus, the correct order of ionic radii is

$$
\mathrm{S}^{2-}>\mathrm{Cl}^{-}>\mathrm{K}^{+}>\mathrm{Ca}^{2+}
$$

87. In which one of the following species the central atom has the type of hybridization which is not the same as that present in the other three?
(1) SF_{4}
(2) I_{3}^{-}
(3) SbCl_{5}^{2-}
(4) PCl_{5}

Ans. (3)

Sol. Molecules having the same number of hybrid orbitals, have same hybridisation and number of hybrid orbitals,

$$
H=\frac{1}{2}[V+X-C+A]
$$

AIPMT (SCREENING)-2010

where, $\mathrm{V}=$ no. of valence electrons of central atom
$X=$ no. monovalent atoms
$C=$ charge on cation
$A=$ Charge on anion.
(1) $\ln \mathrm{SF}_{4}, \quad \mathrm{H}=\frac{1}{2}[6+4-0+0)=5$
(2) $\ln \mathrm{I}_{3}^{-}$,

$$
H=\frac{1}{2}[7+2+1]=5
$$

(3) $\ln \mathrm{SbCl}_{5}^{2^{-}}, \quad \mathrm{H}=\frac{1}{2}[5+5+2)=6$
(4) $\ln \mathrm{PCl}_{5}, \quad \mathrm{H}=\frac{1}{2}[5+5+0-0]=5$

Since, only SbCl_{5}^{2-} has different number of hybrid orbitals (ie, 6) from the other given species, its hybrisation is different from the others, ie, $\mathrm{sp}^{3} \mathrm{~d}^{2}$. (The hybridsation of other species is $\mathrm{sp}^{3} \mathrm{~d}$).
88. Standard entropies of X_{2}, Y_{2} and $X Y_{3}$ are 60,40 and $50 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively. For the reaction

$$
\frac{1}{2} X_{2}+\frac{3}{2} Y_{2} \rightleftharpoons X Y_{3} ; \quad \Delta H=-30 k J
$$

to be at equilibrium, the temperature should be:
(1) 750 K
(2) 1000 K
(3) 1250 K
(4) 500 K

Ans. (1)

Sol. For the reaction,

$$
\begin{aligned}
& \frac{1}{2} X_{2}+\frac{3}{2} Y_{2} \rightleftharpoons X Y_{3}: \Delta H=-30 \mathrm{~kJ} \\
& \Delta S^{\circ}=S^{\circ}\left(X Y_{3}\right)-\left[\frac{1}{2} S^{\circ} X_{2}+\frac{3}{2} S^{\circ} y_{2}\right]=50-\left[\frac{1}{2} \times 60+\frac{3}{2} \times 40\right] \\
& \quad=50-[30+60]=50-90=-40 \mathrm{~kJ}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

We know that,

$$
\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}
$$

At equilibrium,

$$
\begin{aligned}
& \Delta \mathrm{G}^{\circ}=0 \\
& \Delta \mathrm{H}=\mathrm{T} \Delta \mathrm{~S}^{\circ} \\
& \mathrm{T}=\frac{\Delta \mathrm{H}}{\Delta \mathrm{~S}^{\circ}}=\frac{-30 \times 10^{3} \mathrm{~J}}{-40 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}}=750 \mathrm{~K}
\end{aligned}
$$

89. Which of the following represents the correct order of increasing electron gain enthalpy with negative sign for the elements $\mathrm{O}, \mathrm{S}, \mathrm{F}$ and Cl ?
(1) $\mathrm{Cl}<\mathrm{F}<\mathrm{O}<\mathrm{S}$
(2) $\mathrm{O}<\mathrm{S}<\mathrm{F}<\mathrm{Cl}$
(3) $\mathrm{F}<\mathrm{S}<\mathrm{O}<\mathrm{Cl}$
(4) $\mathrm{S}<\mathrm{O}<\mathrm{Cl}<\mathrm{F}$

Ans. (2)

AIPMT (SCREENING)-2010

Sol. Electron gain enthalpy, generally, increases in a period from left to right and decreases in a group on moving downwards. However, members of III period have samewhat higher electron gain enthalpy as compared to the coressponding members of second period, because of their small size.
O and S belong to $\mathrm{VIA}(16)$ group and Cl and F belong to $\mathrm{VII} \mathrm{A}(17)$ group. Thus, the electron gain enthalpy of Cl and F is higher as compared to O and S .

Cl and $\mathrm{F}>\mathrm{O}$ and S
Between Cl and F, Cl has higher electron gain enthalpy as in F , the incoming electron experiences a greater force of repulsion because of small size of F atom. Similar is true in case of O and S ie, the electron gain enthalpy of S is higher as compared to O due to its small size. Thus, the correct order of electron gain enthalpy of given elements is

$$
\mathrm{O}<\mathrm{S}<\mathrm{F}<\mathrm{Cl}
$$

90. Which one of the following compounds is a peroxide ?
(1) KO_{2}
(2) BaO_{2}
(3) MnO_{2}
(4) NO_{2}

Ans. (2)

Sol. In peroxides, the oxidation state of O is -1 and they give $\mathrm{H}_{2} \mathrm{O}_{2}$, with dilute acids, and have peroxide linkage. $\ln \mathrm{KO}_{2}$,

$$
+1+(X \times 2)=0
$$

$x=-\frac{1}{2}$ (thus, it is a superoxide, not a peroxide.)
$\ln \mathrm{BaO}_{2}, \quad+2+(\mathrm{x} \times 2)=0$

$$
x=-1
$$

Thus, it is a perioxide. Only it gives $\mathrm{H}_{2} \mathrm{O}_{2}$ when reacts with dilute acids and has peroxide linkage as
$\mathrm{Ba}^{2+}[\mathrm{O}-\mathrm{O}]^{2-}$
peroxide linkage
In MnO_{2} and $\mathrm{NO}_{2}, \mathrm{Mn}$ and N exhibit variable oxidation states, thus, the oxidation state of O in these is -2. Hence, these are not peroxides. Thus, it is clear, that among the given molecules only BaO_{2} is a peroxide.
91. Which one is most reactive towards electrophilic reagent?
(1)

(2)

(3)

(4)

Ans. (1)
Sol. Electron withdrawing substituent deactivates the benzene nucleous towards electrophilic substitution while electron releasing substituent activates the ring towards electrophilic substitution.
Among the given, - OH has the higher electron donating tendency and thus, activates the ring more towards electrophilic substitution. Hence, is more reactive towards electrophilic reagent.

AIPMT (SCREENING)-2010

92. Which one of the following is employed as a Tranquilizer drug?
(1) Promethazine
(2) Valium
(3) Naproxen
(4) Mifepristone.

Ans.
 (2)

Sol. Tranquilizer are the chemicals that reduce anxiety and mental tension. Thus, they are sometimes called psychotherapteutic drugs. Equanil, valium and serotonin are some commonly used transquilizers.
93. In the following the most stable conformation of n-butane is :
(1)

(2)

(3)

(4)

Ans. (1)
Sol. The conformation in which the heavier groups are present at maximum possible distances, so that the forces of repulsion get weak, is more stable.
Among the given conformation of n-butane, the conformation is most stable as in it the bulkier group (ie, CH_{3} group) are present at maximum possible distance.
94. Which of the following reactions will not result in the formation of carbon-carbon bonds?
(1) Reimer-Tieman reaction
(2) Cannizaro reaction
(3) Wurtz reaction
(4) Friedel-Crafts acylation

Ans. (2)
Sol. (a) Reimer - Tiemann reaction,

(Here, a new C - C bond is formed.)
(b) Cannizaro reaction,

(No new C-C bond is formed in this reaction.)
(c) Wrutz reaction,

(one new C - C bond is formed.)
(d) Friedel - crafts acylation,

(New C - C bond is formed.)
Thus, among the given reactions, only cannizaro reaction does not involve the formation of a new $\mathrm{C}-\mathrm{C}$ bond.

AIPMT (SCREENING)-2010

95. Which of the following structures represents Neoprene polymer ?
(1)

(2)

(3)

(4)

Ans. (1)
Sol. Neoprene (synthetic rubber) is a polymer of chloroprene (ie, 2-chloro-1, 3-butadiene).

2 - cholro-1,3-butadiene (chloroprene)
neoprene
(synthetic rubber)
96. Which one is most reactive towards $\mathrm{S}_{\mathrm{N}} 1$ reaction?
(1) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{Br}$
(2) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Br}$
(3) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{Br}$
(4) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br}$

Ans.
(3)

Sol. Key Idea: $S_{N} 1$ reaction involves the formation of carbocation intermediate. More the stability of carbocation, more is the reactivity of alkyl/aryl haldies towards $S_{N} 1$ reaction.
The intermediate carbocations formed by given haldies are as :
(1) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{Br} \rightarrow\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \stackrel{+}{\mathrm{C}} \mathrm{H}+\mathrm{Br}^{-}$
(2) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Br} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \stackrel{+}{\mathrm{C}} \mathrm{H}\left(\mathrm{CH}_{3}\right)+\mathrm{Br}^{-}$
(3) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{Br} \rightarrow\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \stackrel{+}{\mathrm{C}}\left(\mathrm{CH}_{3}\right)+\mathrm{Br}^{-}$
(4) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}^{+}+\mathrm{Br}^{-}$

The order of stability of these carbocations is as $\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{C}^{+}\left(\mathrm{CH}_{3}\right)>\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{C}^{+} \mathrm{H}>\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \stackrel{+}{\mathrm{C}} \mathrm{H}_{\left(\mathrm{CH}_{3}\right)}\right) \stackrel{+}{\mathrm{CH}_{2}}$ Thus, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{Br}$ is most reactive towards $\mathrm{S}_{\mathrm{N}} 1$ reaction.
97. AB crystallizes in a body centred cubic lattice with edge length 'a' equal to 387 pm . The distance between two oppositively charged ions in the lattice is:
(1) 335 pm
(2) 250 pm
(3) 200 pm
(4) 300 pm

Ans. (1)
Sol. For body centred cubic (bcc) lattice, distance between two oppositely charged ions,

$$
\begin{aligned}
& d=\frac{\sqrt{3} a}{2}=\frac{\sqrt{3} \times 387}{2} \mathrm{pm} \\
& =335.15 \mathrm{pm}
\end{aligned}
$$

98. The number of atoms in 0.1 mol of a triatomic gas is: $\left(N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)$
(1) 6.026×10^{22}
(2) 1.806×10^{23}
(3) 3.600×10^{23}
(4) 1.800×10^{22}

Ans. (2)
Sol. Number of atoms $=$ number of moles $\times N_{A} \times$ atomicity

$$
\begin{aligned}
& =0.1 \times 6.02 \times 10^{23} \times 3 \\
& =1.806 \times 10^{23} \text { atoms } .
\end{aligned}
$$

AIPMT (SCREENING)-2010

99. Which one of the following molecular hydrides acts as a Lewis acid ?
(1) NH_{3}
(2) $\mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{B}_{2} \mathrm{H}_{6}$
(4) CH_{4}

Ans. (3)
Sol. Electron deficient molecules behave as Lewis acid.
Among the given molecules, only dibroane is electron deficient, i.e. does not have complete octet. Thus, it acts as a Lewis acid.
NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ being electron rich molecules behave as Lewis base.
100. The tendency of $\mathrm{BF}_{3}, \mathrm{BCl}_{3}$ and BBr_{3} to behave as Lewis acid decreases in the sequence :
(1) $\mathrm{BCl}_{3}>\mathrm{BF}_{3}>\mathrm{BBr}_{3}$
(2) $\mathrm{BBr}_{3}>\mathrm{BCl}_{3}>\mathrm{BF}_{3}$
(3) $\mathrm{BBr}_{3}>\mathrm{BF}_{3}>\mathrm{BCl}_{3}$
(4) $\mathrm{BF}_{3}>\mathrm{BCl}_{3}>\mathrm{BBr}_{3}$

Ans. (2)

Sol. As the size of halogen atom increases, the acidic strength of boron halides increases. Thus, BF_{3} is the weakest Lewis acid. This is because of the $p \pi-p \pi$ back bonding between the fully-filled unutilised $3 p$ orbitals of F and vacant $2 p$ orbitals of boron which makes BF_{3} less electron deficient. Such back donation is not possible in case of BCl_{3} or BBr_{3} due to larger energy difference between their orbitals. Thus, these are more electron deficient. Since on moving down the group the energy difference increases, the Lewis the acid character also increases. Thus, the tendency to behave as Lewis acid follows the order

$$
\mathrm{BBr}_{3}>\mathrm{BCl}_{3}>\mathrm{BF}_{3}
$$

PART- C (BIOLOGY)

101. Apomictic embryos in citrus arise form :
(1) Maternal sporophytic tissue in ovule
(2) Antipodal cells
(3) Diploid egg
(4) Synergids

Ans. (1)
102. If due to some injury the chordae tendinae of the tricuspid valve of the human heart is partially non-functional, what will be the immediate effect
(1) The pacemaker will stop working
(2) The blood will tend to flow into the leftatrium
(3) The flow of blood into the pulmonary artery will be reduced
(4) The flow of blood into the aorta will be slowed down

Ans. (3)
103. The nerve centres which control the body temperature and the urge for eating are contained in
(1) Pons
(2) Cerebellum
(3) Thalamus
(4) Hypothalamus

Ans. (1)
104. The plasma membrane consists mainly of
(1) Proteins embedded in a phospholipid bilayer
(2) Proteins embedded in a polymer of glucose molecules
(3) Proteins embedded in a carbohydrate bilayer
(4) Phospholipids embedded in protein bilayer

Ans. (1)
105. In unilocular ovary with a single ovule the placentation is
(1) Basal
(2) Free Central
(3) Axile
(4) Marginal

Ans. (1)

AIPMT (SCREENING)-2010

106. The genetically-modified (GM) brinjal in India has been developed for
(1) Enhancing shelf life
(2) Enhanicing mineral content
(3) Drought-resistance
(4) Insect-resistance

Ans. (4)
107. Ringworm is humans is caused by
(1) Fungi
(2) Nematodes
(3) Viruses
(4) Bacteria

Ans. (1)
108. Which one of the following pair is incorrectly matched
(1) Somatostatin - Delta cells (Source)
(2) Corpusluteum - Relaxin (secretion)
(3) Insulin - Diabetes mellitus (disease)
(4) Glucagon - Beta cells (source)

Ans. (4)
109. Widal test is used for the diagnosis of
(1) Pneumonia
(2) Tuberculosis
(3) Typhoid
(4) Malaria

Ans. (3)
110. Which one of the following is an example of ex-situ conseryation
(1) Seed bank
(2) Sacred groves
(3) National park
(4) Wildlife sanctuary

Ans. (1)
111. Whcih one of the following symbols and its representation used in human pedigree analysis is correct
(1) $\bigcirc=$ Unaffected male
(2)\square = unaffected female
(3) = male affected
(4)

Ans. (4)
112. The permissible use of the technique amniocentesis is for
(1) Artificial insemination
(2) Transjfer of embryo into the uterus of a surrogate mother
(3) Detecting any genetic abnormality
(4) Detecting sex of the unborn foetus

Ans.
 (3)

113. Some hyperthermophilic organisms that grow in highly acidic (pH 2) habitats belong to the two groups
(1) Cyanobacteria and diatoms
(2) Protists and mosses
(3) Liverworts and yeasts
(4) Eubacteria and archaea

Ans. (4)
114. Which one of the following statements in regard to the excretion by the human kidneys is correct
(1) Distal convoluted tubule is incapable of reabsorbing HCO_{2}^{-}
(2) Nearly 99 per cent of the glomerular filtrate is reabsorbed by the renal tubules
(3) Ascending limb of loop of Henle is impermeable to electrolytes
(4) Descending limb of loop of Henle is impermeable to water

Ans. (2)

AIPMT (SCREENING)-2010

115. Which one of the following is not lateral meristem
(1) Interfascicular cambium
(2) Phellogen
(3) Intercalary meristem
(4) Intrafascicular cambium

Ans. (3)
116. Single-celled eukaryotes included in
(1) Fungi
(2) Archaea
(3) Monera
(4) Protista

Ans. (4)
117. $\quad \mathrm{C}_{4}$ plants are more efficient in photosynthesis than C_{3} plants due to
(1) Presence of larger number of chloroplasts in the leaf cells
(2) Presence of thin cuticle
(3) Lower rate fo photorespiration
(4) Higher leaf area

Ans. (1)
118. Which one of the following is used as vector for cloning genes into higher organisms
(1) Salmonell typhimurium
(2) Rhizopus nigricans
(3) Retrovirus
(4) Baculovirus

Ans. (3)
119. Which one of the following is not a micronutrient
(1) Magnesium
(2) Zinc
(3) Boron
(4) Molybdenum

Ans. (1)

120. One example of animal having a single opening to the ouside that serves both as mouth as well as anus is
(1) Asterias
(2) Ascidia
(3) Fasciola
(4) Octopus

Ans. (3)
121. Which one of the following structure between two adjacent cells is an effective transport pathway
(1) Plastoquinones
(2) Endoplasmic reticulum
(3) Plasmalemma
(4) Plasmodesmata

Ans. (4)

122. Which one of the following does not follow the central dogma of molecular biology
(1) Mucor
(2) Chlamydomonas
(3) HIV
(4) Pea

Ans. (3)
123. Which one of the following is not used in organic farming
(1) Earthworm
(2) Oscillatoria
(3) Snail
(4) Glomus

Ans. (3)
124. Study the four statements (a-d) given below and select the two correct ones out of them
(a) A lion eating a deer and a sparrow feeding on grain are ecologically similar in being consumers
(b) Predator star fish pisaster helps in maintaining species diverstiy of some invertebrates
(c) Predators ultimately lead to the extinction of pery species
(d) Production of chemicals such as nicotine, strychnine by the plants are metabolic disorders

The two correct statements are
(1) (c) and (d)
(2) (a) and (d)
(3) (a) and (b)
(4) (b) and (c)

Ans. (3)

AIPMT (SCREENING)-2010

125. Toxic agents present in food which interfere with thyroxine synthesis lead ot the development of
(1) cretinism
(2) simple goitre
(3) thyrotoxicosis
(4) toxic goitre

Ans. (2)
126. Which stages of cell division do the following figures A and B represent respectively

(1) Telophase - Metaphase
(2) Late Anaphase - Prophase
(3) Prophase - Anaphase
(4) Metaphase - Telophase

Ans. (2)
127. A common biocontrol agent for the control of plant disease is
(1) Bacillus thruingiensis
(2) Glomus
(3) Trichoderma
(4) Baculovirus

Ans. (3)
128. Carrior ions like Na^{+}facilitate the absorption of substances like
(1) glucose and fatty acids
(2) fatty acids and glycerol
(3) fructose and some amino acids
(4) amino acids and glucose

Ans. (3)
129. The first movements of the foetus and appearance of hair on its head are usually observed during which month of pregnancy
(1) Fifth month
(2) Sixth month
(3) Third month
(4) Fourth month

Ans. (1)
130. Which two of the following changes (a-d) usually tend to occur in the plain dwellers when they move to high altitudes ($3,500 \mathrm{~m}$ or more)
(a) Increase in red blood cell size
(b) Increase in red blood cell production
(c) Increased breathing rate
(d) Increase in the thrombocyte count

Changes occurring are
(1) (c) and (d)
(2) (a) and (d)
(3) (a) and (b)
(4) (b) and (c)

Ans. (4)
131. Which one of the following kinds of animals are triploblastic
(1) Sponges
(2) Ctenophores
(3) Corals
(4) Flat worms

Ans. (4)

AIPMT (SCREENING)-2010

132. Stirred-tank bioreactors have been designed for
(1) Purification of the product
(2) Ensuring anaerobic conditions in the culture vessel
(3) Availability of oxygen thronghout the process
(4) Addition of preservatives to the product

Ans. (3)

133. The kind of epithelium which forms the inner walls of blood vessels is
(1) columnar epithelium
(2) ciliated columnar epithelium
(3) squamous epithelium
(4) cuboidal epithelium

Ans. (3)
134. Some of the characteristics of Bt cotton are
(1) Medium yield, long fibre and resistance to beetle pests
(2) High yield and production of toxic protein crystals which kill dipteran pests
(3) High yield and resistance to bollworms
(4) Long fibre and resistance to aphids

Ans. (3)
135. Which one of the following statments about certain given animals is correct
(1) Molluscs are acoelomates
(2) Insects are pseudocoelomates
(3) Flat worms (Platyhelminthes) are coelomates
(4) Round worms (Aschelminthes) are pseudocoelomates

Ans. (4)
136. Cu ion released from copper-releasing Intra Uterine Devices (IUDs)
(1) increase phagocytosis of sperms
(2) suppress sperm motility
(3) prevent ovulation
(4) make uterus unsuitable for implantation

Ans. (2)
137. The second maturation division of the mammalian ovum occurs
(1) Until after the ovum has been penetrated by a sperm
(2) Until the nucleus of the sperm has fused with that of the ovum
(3) In the Graafian follicle after the first maturation division
(4) Shortly after ovulation before the ovum makes entry into the fallopian tube

Ans. (1)
138. Infectious proteins are present in
(1) Prions
(2) Viroids
(3) Satellite viruses
(4) Geminal viruses

Ans. (1)
139. Low Ca^{++}in the body fluid may be the cause of
(1) Anaemia
(2) Angina pectoris
(3) Gout
(4) Tetany

Ans. (4)
140. Which one of the following statements about morula in humans is correct
(1) It has far less cytoplasm as well as less DNA than in an uncleaved zygote
(2) It has more or less equal quantity of cytoplasm and DNA as in uncleaved zygote
(3) It has more cytoplasm and more DNA than an uncleaved zygote
(4) It has almost equal quantiity of cytoplasm as an uncleaved zygote but much more DNA

Ans. (4)

AIPMT (SCREENING)-2010

141. Select the two correct statements out of the four (a-d) given below about lac operon.
(a) Glucose or galactose may bind with the repressor and inactivate it
(b) In the absence of lactose the repressor binds with the operator region
(c) The Z- gene codes for permease
(d) This was elucidated by Francois Jacob and jacque Monod

The correct statements are
(1) (a) and (c)
(2) (b) and (d)
(3) (a) and (b)
(4) (b) and (c)

Ans. (2)
142. During mitosis ER and nucleolus begin to disappear at
(1) Early metaphase
(2) Late metaphase
(3) Early Prophase
(4) Late prophase

Ans. (4)
143. Seminal plasma in human males is rich in
(1) glucose and calcium
(2) DNA and testosterone
(3) ribose and potassium
(4) fructose and calcium

Ans. (4)
144. Virus envelope is known as
(1) Virion
(2) Nucleoprotein
(3) Core
(4) Capsid

Ans. (4)
145. Satellite DNA is useful tool in
(1) Sex determination
(2) Foretic engineering
(3) Genetic engineering
(4) Organ transplantation

Ans. (2)
146. An element playing important role in nitrogen fixation is
(1) Copper
(2) Manganese
(3) Zinc
(4) Molybdenum

Ans. (4)
147. Breeding of crops with high level of minerals, vitamins and proteins is called
(1) Biofortification
(2) Biomagnification
(3) Micropropagation
(4) Somatic hybridisation

Ans. (1)
148. Keel is characteristic of the frowers of
(1) Cassia
(2) Calotropis
(3) Bean
(4) Gulmohur

Ans. (3)
149. Which one of the following cannot be explained on the basis of Mendel's Law of Dominance
(1) Out of one pair of factors one is dominant, and the other recessive
(2) Alleles do not show any blending and both the characters recover as such in F_{2} generation.
(3) Factors occur in pairs
(4) The discrete unit controlling a particular character is called a factor

Ans. (2)
150. ABO blood groups in humans are controlled by the gene I. It has three alleles $-I^{A}, I^{B}$ and i. Since there are three different alleles, six different genotypes are possible. How many phenotyes can occur
(1) One
(2) Four
(3) Two
(4) Three

Ans. (2)

AIPMT (SCREENING)-2010

151. The one aspect which is not a salient feature of genetic code, is its being
(1) Ambiguous
(2) Universal
(3) Specific
(4) Degenerate

Ans. (1)
152. Consider the following four statements (a-d) regarding kidney transplant and select the two correctones out of these.
(a) Even if a kidney transplant is proper the recipient may need to take immunosuppresants for a long time
(b) The cell-mediated immune response is responsible for the graft regection
(c) The B-lymphocytes are responsible for rejection of the graft
(d) The acceptance or rejection of a kidney transplant depends on specific interferons

The two correct statements are
(1) (c) and (d)
(2) (a) and (c)
(3) (a) and (b)
(4) (b) and (c)

Ans. (3)
153. Sertoli cells are found in
(1) adrenal cortex and secrete adrenaline
(2) Seminiferous tubules and provide nutrition to germ cells
(3) Pancreas and secrete progesterone
(4) Ovaries and secrete progesterone

Ans. (2)
154. Which one of the following palindromic base sequences in DNA can be easily cut at about the middle by some particular restriction enzyme
(1) $5^{\prime}-\quad$ GATATG $-3^{\prime}, 3^{\prime}-\quad$ CTACTA -5^{\prime}

(3) $5^{\prime}-\quad$ CACGTA $-3^{\prime}, 5^{\prime}-\quad$ CTCAGT $-\quad 3^{\prime}$
(4) 5^{\prime}-_ CGTTCG - $3^{\prime}, 3^{\prime}-$ - ATGGTA -5^{\prime}

Ans. (2)
155. The two gases making highest relative contribution to the greenhouse gases are
(1) CH_{4} and $\mathrm{N}_{2} \mathrm{O}$
(2) CFC_{5} and $\mathrm{N}_{2} \mathrm{O}$
(3) CO_{2} and $\mathrm{N}_{2} \mathrm{O}$
(4) CO_{2} and CH_{4}

Ans. (4)
156. Select the correct statement form the ones given below with resprect to dihybrid cross.
(1) Genes far apart on the same chromosomes show very few recombinations
(2) Genes loosely linked on the same chromosome show similar recombinations as the tightly linked ones
(3) Tightly linked genes one the same chromosome show very few recombinations
(4) Tightly linked genes on the same chromosomes show higher recombinations

Ans. (3)
157. The energy-releasing metabolic process in which substrate is oxidised without an external electron acceptor is called.
(1) Fermentation
(2) Aerobic respiration
(3) Photorespiration
(4) Glycolysis

Ans. (4)

AIPMT (SCREENING)-2010

158. Phototropic curvature is the result of uneven distribution of
(1) Phytochrome
(2) Cytokinins
(3) Auxin
(4) Gibberellin

Ans. (3)
159. Select the correct statement from the following
(1) Methanobaeterium is aerobic bacterium found in rumen of cattle
(2) Biogas, commonly called gobar gas, is pure methane
(3) Activated sludge-sediment in settlement tanks of sewage treatment plant is a rich source of aearobic bacteria
(4) Biogas is produced by the activity of aerobic bacteria on animal waste

Ans. (3)
160. $d B$ is a standard abbreviation used for the quantitative expression of
(1) A particular pollutant
(2) The dominant Bacillus in a culture
(3) A certain pesticide
(4) The density of bacteria in a medium

Ans. (1)
161. Male and female gametophytes are independent and free-living in
(1) Castor
(2) Pinus
(3) Sphagnum
(4) Mustard

Ans. (3)
162. The biomass available for consumption by the herbivores and decomposers is called
(1) Secondary productivity
(2) Standing crop
(3) Gross primary productivity
(4) Net primary productivity

Ans. (4)
163. The principal nitrogenous excretroy compound in humans is synthesised
(1) In kidneys as well eliminated by kidneys
(2) In liver and also eliminated by the same throught bile
(3) In the liver, but eliminated mostly through kidneys
(4) In kidneys but eliminated mostly through liver

Ans. (3)
164. The chief water conducting elements of xylem in gymnosperms are
(1) Fibres
(2) Transfusion tissue
(3) Tracheids
(4) Vessels

Ans. (3)
165. Injury to adrenat cortex is not likely to affect the secretion of which of the following
(1) Both Androstendione and Dehydroepiandroserone
(2) Adrenaline
(3) Cortisol
(4) Aldosterone

Ans. (2)
166. The technical term used for the androecium in a flower of China rose (Hibiscus rosa-sinensis) is
(1) Diadelphous
(2) Polyandrous
(3) Polyadelphous
(4) Monadelphous

Ans. (4)

AIPMT (SCREENING)-2010

167. PGA as the first CO_{2} fixation product was discovered in photosynthesis of
(1) Gymnosperm
(2) Angiosperm
(3) Alga
(4) Bryophyta

Ans. (3)
168. The main arena of various types of activities of a cell is
(1) Mitochondria
(2) Cytoplasm
(3) Nucleus
(4) Plasma membrane

Ans. (3)
169. Darwin's finches are a good example of
(1) Connecting link
(2) Adaptive radiation
(3) Convergent evolution
(4) Industrial melanism

Ans. (2)
170. Which one of the following statements about all the four of Spongilla, Leech, Dolphin and Penguin is currect
(1) Leech is a fresh water form while all others are marine
(2) Spongilla has special collared cells called choano cytes, not found in the remaining three
(3) All are bilaterally symmetrical
(4) Penguin is homoiothermic while the remaining three are poikilothermic

Ans. (2)

171. The figure given below is a diagrammatic representation of response of organisms to abiotic factors. What do a, b and c represent respectively

(a)
(1) regulator
(2) parital regulator
(3) regulator
(4) conformer
(b)
partial regulator regulator conformer regulator
(c)

Conformer
Conformer
partial regulator
partial regulator

Ans. (3)
172. Algae have cell wall made up of
(1) Hemicellulose, pectins and proteins
(2) pectins, celluose and proteins
(3) Cellulose, hemicellulose and pectins
(4) Cellulose, galactans and mannans

Ans. (4)
173. An improved variety of transgenic basmati rice
(1) gives high yield and is rich in vitamin A
(2) is completely resistant to all insect pests and diseases of paddy
(3) gives high yield but has no characteristic aroma
(4) does not require chemical fertilizers and growth hormones

Ans. (1)

AIPMT (SCREENING)-2010

174. In vitro ferilisation is a technique that involves transfer of which one of the following into the fallopian tube
(1) Either zygote or early embryo upto 8 cell stage
(2) Embryo of 32 cell stage
(3) Zygote only
(4) Embryo only, upto 8 cell stage

Ans. (1)
175. Listed below are four respiratory capacities (a-d) and four jumbled respiratory volumes of a normal human adult

Respiratory	Respiratory
capacites	volumes

(a) Residual volume	2500 mL
(b) Vital capacity	3500 mL
(c) Inspiratory reserve volume	1200 mL
(d) Inspiratory capacity	4500 mL

Which one of the following is the correct matching of two capacities and volumes
(1) (c) 1200 mL ,
(d) 2500 mL
(2) (d) 3500 mL ,
(a) 1200 mL
(3) (a) 4500 mL ,
(b) 3500 mL
(4) (b) 2500 mL ,
(c) 4500 mL

Ans. (2)
176. Membrane - bound organelles are absent in
(1) Streptococcus
(2) Chlamydomonas
(3) Plasmoldium
(4) Saccharomyces

Ans. (1)
177. The scutellum observed in a grain of wheat or maize is comparable to which part of the seed in other monocotyledons
(1) Endosperm
(2) Aleurone layer
(3) Plumule
(4) Cotyledon

Ans. (4)
178. Coiling of garden pea tendrils around any support is an example of
(1) Thigmonasty
(2) Thigmotropism
(3) Thermotaxis
(4) Thigmotaxis

Ans. (2)
179. Restriction endonucleases are enzymes which
(1) Recognize a specific nueleotide sequence for binding of DNA ligase
(2) Restrict the action of the enyme DNA polymerase
(3) Remove nucleotides from the ends of the DNA molecule
(4) Make cuts at specific positions within the DNA molecule

Ans. (4)
180. If for some reason our goblet cells are non-functional, this will adversely affect
(1) secretion of sebum from the sebaceous glands
(2) maturation of sperms
(3) smooth movement of food down the intestine
(4) production of somatostatin

Ans. (4)

AIPMT (SCREENING)-2010

181. Transfer of pollen grains from the anther to the stigma of another flower of the same plant is called
(1) Geitonogamy
(2) Karyogamy
(3) Autogamy
(4) Xenogamy

Ans. (1)
182. One of the free-living anaerobic nitrogen-fixer is
(1) Rhodospirillum
(2) Rhizobium
(3) Azotobacter
(4) Beijernickia

Ans. (3)
183. Photoperiodism was first characterised in
(1) Potato
(2) Tomato
(3) Cotton
(4) Tobacco

Ans. (4)
184. Vasa efferentia are the ductules leading from
(1) Rete testis to vas deferens
(2) Vas deferens to epididymis
(3) Epididymis to urethra
(4) Testicular lobules to rete testis

Ans. (1)
185. Which one of the following has its own DNA
(1) Dictyosome
(2) Lysosome
(3) Peroxisome
(4) Mitochondria

Ans. (4)
186. Select the correct statement from the ones given below
(1) Morphine is often given to persons who have undergone surgery as a pain killer
(2) Chewing tobacco lowers blood pressure and heart rate
(3) Cocaine is given to patients after surgery as it stimulates recovery
(4) Barbiturates when given to criminals make them tell the truth

Ans. (1)
187. What is true about RBCs in humans
(1) They transport 99.5 per cent of O_{2}
(2) They transport about 80 per cent oxygen only and the rest 20 per cent of it is transported in dissolved state in blood plasma
(3) They do not carry CO_{2} at all
(4) They carry about $20-25$ per cent of CO_{2}

Ans. (4)
188. Which one of the following statements about human sperm is correct.
(1) The sperm lysins in the acrosome dissolve the egg envelope facilitating fertilisation
(2) Acrosome serves as a sensory structure leading the sperm towards the ovum
(3) Acrosome seves no particular function
(4) Acrosome has a conical pointed structure used for piercing and penetrating the egg resulting in fertilisation.

Ans. (1)
189. The signals for parturition originate from
(1) Placenta as well as fully developed foetus
(2) Oxytocin released from maternal pituitary
(3) Fully developed foetus only
(4) Placenta only

Ans. (2)

AIPMT (SCREENING)-2010

190. The common nitrogen- fixer in paddy fields is
(1) Azospirillum
(2) Oscillatoria
(3) Frankia
(4) Rhizobium

Ans. (1)
191. Wind pollinated flowers are
(1) Small, producing large number of dry pollen grains
(2) Large producing abunant nectar and pollen
(3) Small, producing nectar and dry pollen
(4) Small, brightly coloured, producing large number of pollen grains

Ans. (1)

192. Ovary is half-inferior in the flowers of
(1) Plum
(2) Brinjal
(3) Cucumber
(4) Guava

Ans. (4)
193. Genetic engineering has been successfully used for producing
(1) Transgenic models for studying new treatments for certain cardiac diseases
(2) Transgenic Cow-Rosie which produces high fat milk for making ghee
(3) Animals like bulls for farm work as they have super power
(4) Transgenic mice for testing safety of polio vaccine before use is humans

Ans. (2)
194. Which one of the following is one of the characteristics of a biological community
(1) Natality
(2) Mortality
(3) Sex-ratio
(4) Stratification

Ans. (3)
195. The genotype of a plant showing the dominant Pheotype can be determined by
(1) Dihybrid cross
(2) Pedigree analysis
(3) Back cross
(4) Test cross

Ans. (4)
196. DNA or RNA segment tagged with a radioactive molecule is called
(1) Probe
(2) Clone
(3) Plasmid
(4) Vector

Ans. (1)
197. Which one of following statements is correct with respect of AIDS
(1) Drug addicts are least suceptible to HIV infection
(2) AIDS patinets are being fully cured cent per cent with proper care and nutrition
(3) The causative HIV retrovirus enters helper T-lymphocyte thus reducing their numbers
(4) The HIV can be transmitted through eating food together with an infected person.

Ans. (3)
198. Heartwood differs from sapwood in
(1) Absence of vessels and parenchyma
(2) Having dead and non-conducing elements
(3) Being susceptible to pests and pathogens
(4) Presence of rays and fibres

Ans. (2)
199. A renewable exhaustible natural resource is
(1) Petroleum
(2) Minerals
(3) Forest
(4) Coal

Ans. (3)
200. The part of Fallopian tube closest to the ovary is
(1) Infundibulum
(2) Cervix
(3) Ampulla
(4) Isthmus

Ans. (1)

