All India Pre-Medical/Pre-Dental Common Entrance Examination Conducted by CBSE [AIPMT (Pre.)-2011]

Date : 03-04-2011

IMPORTANT INSTRUCTIONS

1. The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on Side-1 and Side-2 carefully with blue/black ball point pen only.
2. The test is of $\mathbf{3}$ hours duration and Test Booklet contains 200 questions. Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 800.
3. Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses.
4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
5. On completion of the test, the candidate must havdover the Answer Sheet to the invigilator in the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
6. The CODE for this Booklet if B. Make sure that the CODE printed on Side-2 of the Answer Sheet is the same as that on this Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklets and the Answer Sheets.
7. The Candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your roll no. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
8. Use of white fluid for correction is NOT permissible on the Answer Sheet.

Name of the Candidate (in Capitals): \qquad

Roll Number: in figures \qquad

Centre of Examination (in Capitals) : \qquad
Candidate's Signature: \qquad Invigilator's Signature: \qquad

Fascimile signature stamp of
Centre Superintendent: \qquad

PART - A (CHEMISTRY)

1. Considering the state of hybridization of carbon atoms, find out the molecule among the following which is linear?
(1) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
(3) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$
(4)
(2) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

Ans. (2)
Sol. $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$ (linear)
2. In the following reactions,
(a)

(b) $A \underset{\text { in absence of peroxide }}{\mathrm{HBr} \text {, dark }} \underset{\binom{\text { Major }}{\text { product }}}{\mathrm{C}}+\underset{\binom{\text { Minor }}{\text { product }}}{\mathrm{D}}$
the major products (A) and (C) are respecitvely :
(1)

(2)

(3)

(4)

Ans. (2)

Sol.

(C)
3. Standard electrode potential of three metals X, Y and Z are $-1.2 \mathrm{~V},+0.5 \mathrm{~V}$ and -3.0 V respectively. The reducing power of these metals will be :
(1) $Y>Z>X$
(2) $X>Y>Z$
(3) $Z>X>Y$
(4) $X>Y>Z$

Ans. (3)
Sol. $x=-1.2 \mathrm{~V}$
$y=+0.5 \mathrm{~V}$
$z=-3.0 \mathrm{~V}$
$z>X>y$
as $\mathrm{E}_{\mathrm{RP}}^{\circ} \downarrow$, Reducing Power \uparrow
4. The total number of atomic orbitals in fourth energy level of an atom is :
(1) 8
(2) 16
(3) 32
(4) 4

Ans. (2)
Sol. Total No. of atomic orbital in a shell $=n^{2}$
5. Which of the following has the minimum bond length ?
(1) $\mathrm{O}_{2}{ }^{+}$
(2) O_{2}^{-}
(3) $\mathrm{O}_{2}{ }^{2-}$
(4) O_{2}

Ans. (1)
Sol. $\quad \mathrm{O}_{2}^{+}$B.O. $=\frac{10-5}{2}=2.5$
O_{2}^{-}B.O. $=\frac{10-7}{2}=1.5$
O_{2}^{2-} B.O. $=\frac{10-8}{2}=1$
O_{2} B.O. $=\frac{10-6}{2}=2$
B.O. \uparrow B.L. \downarrow
6. If x is amount of adsorbate and m is amount of adsorbent, which of the following relations is not related to adsorption process ?
(1) $x / m=f(p)$ at constant T.
(2) $x / m=f(T)$ at constant p.
(3) $p=f(T)$ at constant (x / m).
(4) $\frac{x}{m}=p \times T$

Ans. (4)
7. A buffer solution is prepared in which the concentration of NH_{3} is 0.30 M and the concentration of $\mathrm{NH}_{4}+$ is 0.20 M. If the equilibrium constant, K_{b} for NH_{3} equals 1.8×10^{-5}, what is the pH of this solution ? $(\log 2.7=0.433)$.
(1) 9.08
(2) 9.43
(3) 11.72
(4) 8.73

Ans. (2)
Sol. $\left[\mathrm{NH}_{3}\right]=0.3 \mathrm{M} \quad\left[\mathrm{NH}_{4}^{+}\right]=0.2 \mathrm{M}$

$$
\begin{aligned}
& \begin{aligned}
\mathrm{P}_{\mathrm{b}}^{\mathrm{H}} & =\mathrm{P}_{\mathrm{kb}}+\log \frac{[\text { salt }]}{[\text { base }]} \\
& =4.74+\log \frac{0.2}{0.3}=4.74+0.3010-0.4771=4.56 \\
\mathrm{P}^{H} & =14-4.56=9.436
\end{aligned}
\end{aligned}
$$

8. The electrode potentials for

$$
\mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-} \longrightarrow \mathrm{Cu}^{+}{ }_{(\mathrm{aq})} \quad \text { and } \quad \mathrm{Cu}^{+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-} \longrightarrow \mathrm{Cu}_{(\mathrm{s})}
$$

are +0.15 V and +0.50 respectively. The value of $\mathrm{E}^{\circ} \mathrm{Cu}^{2+} / \mathrm{Cu}$ will be :
(1) 0.500 V
(2) 0.325 V
(3) 0.650 V
(4) 0.150 V

Ans. (2)
Sol. $\mathrm{Cu}^{2+}+1 \mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+} \quad \mathrm{E}_{1}^{0}=0.15 v \Delta \mathrm{G}_{1}^{0}=-\mathrm{n}_{1} \mathrm{E}_{1}^{0} \mathrm{~F}$

$\mathrm{Cu}^{+}+1 \mathrm{e}^{-} \rightarrow \mathrm{Cu}$	$\mathrm{E}_{2}^{0}=0.50 v \Delta \mathrm{G}_{2}^{0}=-\mathrm{n}_{2} \mathrm{E}_{2}^{0} \mathrm{~F}$
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}$	$\Delta \mathrm{G}^{\circ}=\Delta \mathrm{G}^{\circ}{ }_{1}+\Delta \mathrm{G}^{\circ}{ }_{2}$

$(-1) n E^{0} F=(-1) n_{1} E_{1}^{0} F+(-1) n_{2} E_{2}^{0} F$
$E^{0}=\frac{n_{1} E_{1}^{0}+n_{2} E_{2}^{0}}{n}=\frac{0.15 \times 1+0.50 \times 1}{2} \quad \Rightarrow \quad 0.325$
9. For the four successive transion elements ($\mathrm{Cr}, \mathrm{Mn}, \mathrm{Fe}$ and Co), the stability of +2 oxidation state will be there in which of the following order?
(1) $\mathrm{Mn}>\mathrm{Fe}>\mathrm{Cr}>\mathrm{Co}$
(2) $\mathrm{Fe}>\mathrm{Mn}>\mathrm{Co}>\mathrm{Cr}$
(3) $\mathrm{Co}>\mathrm{Mn}>\mathrm{Fe}>\mathrm{Cr}$
(4) $\mathrm{Cr}>\mathrm{Mn}>\mathrm{Co}>\mathrm{Fe}$
(At. nos. $\mathrm{Cr}=24, \mathrm{Mn}=25, \mathrm{Fe}=26, \mathrm{Co}=27$)

Ans. (1)
10. Which one of the following statements for the order of a reaction is incorrect ?
(1) Order can be determined only experimentally.
(2) Order is not influenced by stoichiometric coefficient of the reactants.
(3) Order of reaction is sum of power to the concentration terms of reactants to express the rate of reaction.
(4) Order of reaction is always whole number.

Ans. (4)
Sol. Order of the Reaction may be zero, whole No. or fraction number.
11. Which one of the following is most reactive towards electrophilic reagent ?
(1)

(2)

(3)

(4)

Ans. (2)
Sol. Due to +M effect of -OH group and hyperconjugation of $-\mathrm{CH}_{3}$ group
12. In a set of reactions m-bromobenzoic acid gave a product D. Identify the product D.

(1)

(2)

(3)

(4)

Ans. (3)

Sol.

13. Which of the two ions from the list given below that have the geometry that is explained by the same hybridization of orbitals, $\mathrm{NO}_{2}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{NH}_{2}^{-}, \mathrm{NH}_{4}^{+}$, SCN^{-}?
(1) NO_{2}^{-}and NO_{3}^{-}
(2) NO_{4}^{+}and NO_{3}^{-}
(3) SCN^{-}and NH_{2}^{-}
(4) NO_{2}^{-}and NH_{2}^{-}

Ans. (1)
Sol. $\quad \mathrm{NO}_{2}^{-} \rightarrow \mathrm{sp}^{2}$
$\mathrm{NO}_{3}^{-} \rightarrow \mathrm{sp}^{2}$
$\mathrm{NH}_{2}^{-} \rightarrow \mathrm{sp}^{3}$
$\mathrm{NH}_{4}^{+} \rightarrow \mathrm{sp}^{3}$
$\mathrm{SCN} \rightarrow \mathrm{sp}$
14. Which of the following is least likely to behave as Lewis base ?
(1) $\mathrm{H}_{2} \mathrm{O}$
(2) NH_{3}
(3) BF_{3}
(4) OH^{-}

Ans. (3)
Sol. $\quad \mathrm{BF}_{3}$
15. Which one of the following statements is not true regarding (+) Lactose ?
(1) On hydrolysis (+) Lactose gives equal amount of $D(+)$ glucose and $D(+)$ galactose.
(2) (+) Lactose is a β-glycoside formed by the union of a molecule of $D(+)$ glucose and a molecule of $D(+)$ galactose.
(3) (+) Lactose is a reducting sugar and does not exhibit mutarotation.
(4) (+) Lactose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ contains $8-\mathrm{OH}$ groups.

Ans. (3)

Sol.

(Lactose)
All reducing sugar shows mutarotation
16. The freezing point depression constant for water is $-1.86^{\circ} \mathrm{C} \mathrm{m}^{-1}$. If $5.00 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}$ is dissolved in 45.0 g $\mathrm{H}_{2} \mathrm{O}$, the freezing point is changed by $-3.82^{\circ} \mathrm{C}$. Calculate the van't Hoff factor for $\mathrm{Na}_{2} \mathrm{SO}_{4}$.
(1) 2.05
(2) 2.63
(3) 3.11
(4) 0.381

Ans. (2)
Sol. $K_{f}=-186^{\circ} \mathrm{cm}^{-1}$
$\Delta T_{f}=i \times K_{f} . m$
$3.82=i \times 1.86 \times \frac{5 \times 1000}{142 \times 45}$
$i=2.63$
17. Of the following complex ions, which is diamagnetic in nature?
(1) $\left[\mathrm{NiCl}_{4}\right]^{2-}$
(2) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
(3) $\left[\mathrm{CuCl}_{4}\right]^{2-}$
(4) $\left[\mathrm{CoF}_{6}\right]^{3-}$

Ans. (2)
Sol. $\quad\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
$\mathrm{Ni}^{2+}=3 \mathrm{~d}^{8} 4 \mathrm{~s}^{\circ}$

Diamagnetic
18. The correct IUPAC name of the compound
(1) 4-Ethyl-3-propyl hex-1-ene
(2) 3-Ethyl-4-ethenyl heptane
(3) 3-Ethyl-4-propyl hex-1-ene
(4) 3-(1-ethylpropyl) hex-1-ene

Ans. (1)

Sol.

4-Ethyl-3-propylhex-1-ene.
19. By what factor does the average velocity of a gaseous molecule increase when the temperature (in Kelvin) is doubled?
(1) 2.0
(2) 2.8
(3) 4.0
(4) 1.4

Ans. (4)
Sol. $\quad V_{\mathrm{av}} \propto \sqrt{\mathrm{T}}$

$$
\frac{\left(\mathrm{V}_{\mathrm{av}}\right)_{2}}{\left(\mathrm{~V}_{\mathrm{av}}\right)_{1}}=\sqrt{\frac{2 \mathrm{~T}}{\mathrm{~T}}}=1.4
$$

20. Which one of the following statement is not true ?
(1) pH of drinking water should be between 5.5-9.5.
(2) Concentration of DO below 6 ppm is good for the growth of fish.
(3) Clean water would have a BOD value of less than 5 ppm .
(4) Oxides of sulphur, nitrogen and carbon are the most widespread air pollutant.

Ans. (2)
21. Name the type of the structure of silicate in which one oxygen atom of $\left[\mathrm{SiO}_{4}\right]^{4}$ is shared ?
(1) Linear chain silicate
(2) Sheet silicate
(3) Pyrosilicate
(4) Three dimensional

Ans. (3)

Sol.

Pyrosilicate $\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]^{6-}$

22. Two gases A and B having the same volume diffuse through a porous partition in 20 and 10 seconds respectively. The molecular mass of A is $49 u$. Molecular mass of B will be :
(1) 50.00 u
(2) 12.25 u
(3) 6.50 u
(4) 25.00 u

Ans. (2)
Sol. $\frac{r_{A}}{r_{B}}=\sqrt{\frac{M_{B}}{M_{A}}}$
$\frac{\mathrm{V} / 20}{\mathrm{~V} / 10}=\sqrt{\frac{\mathrm{M}_{\mathrm{B}}}{49}} \quad \Rightarrow \quad \frac{1}{2}=\sqrt{\frac{\mathrm{M}_{\mathrm{B}}}{49}}$
$M_{B}=\frac{1}{4} \times 49=12.25$ Ans.
23. In Dumans' method of estimation of nitrogen 0.35 g of an organic compound gave 55 mL of nitrogen collected at 300 K temperature and 715 mm pressure. The percentage composition of nitrogen in the compound would be : (Aqueous tension at $300 \mathrm{~K}=15 \mathrm{~mm}$)
(1) 15.45
(2) 16.45
(3) 17.45
(4) 14.45

Ans. (2)
Sol. In Duma's method of estimation of nitrogen :-
Calculation :- volume of N_{2} at NTP (By gas equation)
$\left(\frac{\rho-\rho_{1}}{t+273}\right) v \times \frac{273}{760}=\vee \mathrm{ml}$.
\% of nitrogen in given compound
$\frac{28}{22400} \times \frac{V}{W} \times 100$
Here, $\quad W=0.35 \mathrm{gm}$.
$\rho=715 \mathrm{~mm}$ (Pressure at which N_{2} collected)
$\rho_{1}=$ aqueous tension of water $=15 \mathrm{~mm}$.
$(t+273) K=300 K$
$\mathrm{v} \mathrm{ml}=$ volume of moist nitrogen in nitrometer $=55 \mathrm{ml}$.
so volume of N_{2} at NTP $=(\mathrm{V})=\frac{(715-15) \times 55}{300} \times \frac{273}{760}=46.098 \mathrm{ml}$.
$\%$ of nitrogen $=\frac{28}{22400} \times \frac{46.098}{0.35} \times 100=16.45 \%$
24. Which one of the following is employed as Antihistamine ?
(1) Chloramphenicol
(2) Diphenyl hydramine
(3) Norothindrone
(4) Omeprazole

Ans. (2)
Sol. Diphenyl hydramine is one of the Antihistamine drug.
25. What is the product obtained in the following reaction :

(1)

(2)

(3)

(4)

Ans. (1)

Sol.

26. Standard electrode potential for $\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}$ couple is +0.15 V and that for the $\mathrm{Cr}^{3+} / \mathrm{Cr}$ couple is -0.74 V . These two couples in their standard state are connected to make a cell. The cell potential will be :
(1) +1.19 V
(2) +0.89 V
(3) +0.18 V
(4) +1.83 V

Ans. (2)
Sol. $\quad E_{\mathrm{Sn}^{4+}}^{0} / \mathrm{Sn}^{2+}=+0.15 \mathrm{~V}$

$$
\begin{aligned}
\mathrm{E}_{\mathrm{Cr}^{3+} / \mathrm{Cr}}^{0} & =-0.74 \mathrm{~V} \\
\mathrm{E}_{\mathrm{cell}}^{\circ}=\mathrm{E}_{\mathrm{C}}^{\circ}-\mathrm{E}_{\mathrm{A}}^{\circ} & =0.15-(-0.74) \\
& =0.89 \mathrm{~V}
\end{aligned}
$$

27. The van't Hoff factor i for a compound which undergoes dissociation in one solvent and association in other solvent is respectively :
(1) less than one and greater than one.
(2) less than one and less than one.
(3) greater than one and less than one.
(4) greater than one and greater than one.

Ans. (3)
Sol. If Compound dissociats in solvent $\mathrm{i}>1$, and on association $\mathrm{i}<1$.
28. The Lassaigne's extract is boiled with conc. HNO_{3} while testing for halogens. By doing so it :
(1) decomposes $\mathrm{Na}_{2} \mathrm{~S}$ and NaCN , if formed.
(2) helps in the precipitation of AgCl .
(3) increases the solubility product of AgCl .
(4) increases the concentration of $\mathrm{NO}_{3}{ }^{-}$ions.

Ans. (1)
Sol. $\mathrm{NaCN}+\mathrm{HNO}_{3} \longrightarrow \mathrm{NaNO}_{3}+\mathrm{HCN}$
$\mathrm{Na}_{2} \mathrm{~S}+2 \mathrm{HNO}_{3} \longrightarrow 2 \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{~S}$
29. The energies E_{1} and E_{2} of two radiations are 25 eV and 50 eV respectively. The relation between their wavelengths i.e. λ_{1} and λ_{2} will be :
(1) $\lambda_{1}=\lambda_{2}$
(2) $\lambda_{1}=2 \lambda_{2}$
(3) $\lambda_{1}=4 \lambda_{2}$
(4) $\lambda_{1}=\frac{1}{2} \lambda_{2}$

Ans. (2)
Sol. $E_{1}=25 \mathrm{eV}, \quad \mathrm{E}_{2}=50 \mathrm{eV}$
$\mathrm{E}_{1}=\frac{\mathrm{hc}}{\lambda_{1}} \quad \mathrm{E}_{2}=\frac{\mathrm{hc}}{\lambda_{2}} \Rightarrow \quad \frac{25}{50}=\frac{\lambda_{2}}{\lambda_{1}} \quad \lambda_{1}=2 \lambda_{2}$
30. A gaseous mixture was prepared by taking equal mole of CO and N_{2}. If the total pressure of the mixture was found 1 atmosphere, the partial pressure of the nitrogen $\left(N_{2}\right)$ in the mixture is :
(1) 0.5 atm
(2) 0.8 atm
(3) 0.9 atm
(4) 1 atm

Ans. (1)
Sol. $\quad \mathrm{n}_{\mathrm{CO}}=\mathrm{n}_{\mathrm{N}_{2}}$
$\mathrm{P}_{\mathrm{CO}}+\mathrm{P}_{\mathrm{N}_{2}}=1 \mathrm{~atm}$.
$2 \mathrm{P}_{\mathrm{N}_{2}}=1 \mathrm{~atm}$.
$\mathrm{P}_{\mathrm{N}_{2}}=0.5 \mathrm{~atm}$. Ans.
31. Mole fraction of the solute in a 1.00 molal aqueous solution is :
(1) 0.1770
(2) 0.0177
(3) 0.0344
(4) 1.7700

Ans. (2)
Sol. $n_{\text {salute }}=1 \quad W_{\text {salvent }}=1000 \mathrm{~g}$

$$
\begin{gathered}
n_{\text {solvent }}=\frac{1000}{018}=55.56 \\
x_{\text {solute }}=\frac{1}{1+55.56}=0.0177 \text { Ans. }
\end{gathered}
$$

32. Clemmensen reduction of a ketone is carried out in the presence of which of the following ?
(1) Glycol with KOH
(2) $\mathrm{Zn}-\mathrm{Hg}$ with HCl
(3) $\mathrm{Li} \mathrm{Al} \mathrm{H}_{4}$
(4) H_{2} and Pt as catalyst

Ans. (2)
Sol. Clemmenson reduction is

33. Acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution turns green when $\mathrm{Na}_{2} \mathrm{SO}_{3}$ is added to it. This is due to the formation of :
(1) $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(2) CrO_{4}^{2-}
(3) $\mathrm{Cr}_{2}\left(\mathrm{SO}_{3}\right)_{3}$
(4) CrSO_{4}

Ans. (1)
Sol. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{SO}_{3}^{2-}+8 \mathrm{H}^{+} \longrightarrow 3 \mathrm{SO}_{4}^{2-}+2 \mathrm{Cr}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$
34. Which of the following elements is present as the impurity to the maximum extent in the pig iron ?
(1) Manganese
(2) Carbon
(3) Silicon
(4) Phosphorus

Ans. (2)
Sol. Pig gron contain about 4\% carbon and many impurity in smaller amount (S, P, Si, Mn
35. If the enthalpy change for the transition of liquid water to steam is $30 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $27^{\circ} \mathrm{C}$, the entropy change for the process would be :
(1) $10 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
(2) $1.0 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
(3) $0.1 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
(4) $100 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

Ans. (4)
Sol. Liquid water \longrightarrow steam $\Delta \mathrm{H}_{\mathrm{T}}=30 \mathrm{kj} \mathrm{mol}^{-1}$

$$
\begin{aligned}
& \Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ} \\
& O=30 \times 10^{3}-\mathrm{T} \Delta \mathrm{~S} \\
\Rightarrow \quad & \Delta \mathrm{~S}=\frac{30 \times 10^{3}}{300} \Rightarrow \quad 100 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{k}^{-1}
\end{aligned}
$$

36. Which of the following compounds has the lowest melting point ?
(1) CaCl_{2}
(2) CaBr_{2}
(3) CaI_{2}
(4) CaF_{2}

Ans. (3)
Sol. Covalent character increases, melting point decreases.
$\mathrm{CaF}_{2}>\mathrm{CaCl}_{2}>\mathrm{CaBr}_{2}>\mathrm{CaI}_{2}$
37. The complexes $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$ are the examples of which type of isomerism?
(1) Linkage isomerism
(2) Ionization isomerism
(3) Coordination isomerism
(4) Geometrical isomerism

Ans. (3)
Sol. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
38. The complex, $\left[\mathrm{Pt}(\mathrm{Py})\left(\mathrm{NH}_{3}\right) \mathrm{BrCl}\right]$ will have how many geometrical isomers ?
(1) 3
(2) 4
(3) 0
(4) 2

Ans. (1)
Sol. $\quad\left[\mathrm{Pt}(\mathrm{Py})\left(\mathrm{NH}_{3}\right)(\mathrm{Br})(\mathrm{Cl})\right]$
$\Rightarrow[\mathrm{M}(\mathrm{abcd})](\mathrm{ab})(\mathrm{cd})$
$\Rightarrow[\mathrm{M}(\mathrm{abcd})](\mathrm{ac})(\mathrm{bd})$
$\Rightarrow[\mathrm{M}(\mathrm{abcd})](\mathrm{ad})(\mathrm{bc})$
There are 3 Geometrical isomerism
39. Enthalpy change for the reaction, $4 \mathrm{H}_{(\mathrm{g})} \longrightarrow 2 \mathrm{H}_{2(\mathrm{~g})}$ is -869.6 kJ .

The dissociation energy of $\mathrm{H}-\mathrm{H}$ bond is :
(1) -434.8 kJ
(2) -869.6 kJ
(3) +434.8 kJ
(4) +217.4 kJ

Ans. (3)
Sol. $\quad 4 \mathrm{H}_{(\mathrm{g})} \longrightarrow 2 \mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=-869.6 \mathrm{KJ}$.
$4 \mathrm{H}_{2} \longrightarrow 4 \mathrm{H}(\mathrm{g}) \quad \Delta \mathrm{H}=869.6 \mathrm{KJ}$.
$\mathrm{H}_{2)} \longrightarrow 2 \mathrm{H}(\mathrm{g}) \Delta \mathrm{H}=\frac{869.6}{2}=434.8 \mathrm{KJ}$. no of unpaired
40. The d-electron configurations of $\mathrm{Cr}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}$ and Co^{2+} are $\mathrm{d}^{4}, \mathrm{~d}^{5}, \mathrm{~d}^{6}$ and d^{7} respectively. Which one of the following will exhibit minimum paramagnetic behaviour?
(1) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(2) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(3) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(4) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(At, nos. $\mathrm{Cr}=24, \mathrm{Mn}=25, \mathrm{Fe}=26, \mathrm{Co}=27$)

Ans. (3)
Sol. $\quad \mathrm{Cr}^{2+} \mathrm{d}^{4}$
$\mathrm{Mn}^{2+} \mathrm{d}^{5}$

1	1	1	1	
 1 1 1 1 1 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1	4			

Minimum Paramagnetic behaviour $=\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
41. Which of the following is correct option for free expansion of an ideal gas under adiabatic condition ?
(1) $q=0, \Delta T \neq 0, w=0$
(2) $q \neq 0, \Delta T=0, w=0$
(3) $q=0, \Delta T=0, w=0$
(4) $q=0, \Delta T<0, w \neq 0$

Ans. (3)
Sol. For free expansion of an Ideal gas under adiabatic condition $\mathrm{q}=0 \Delta \mathrm{~T}=0 \mathrm{~W}=0$.
42. The value of $\Delta \mathrm{H}$ for the reaction

$$
\mathrm{X}_{2(\mathrm{~g})}+4 \mathrm{Y}_{2(\mathrm{~g})} \rightleftharpoons 2 X \mathrm{Y}_{2(\mathrm{~g})} \text { is less than zero. Formation of } X Y_{4(\mathrm{~g})} \text { will be favoured at : }
$$

(1) High temperature and high pressure.
(2) Low pressure and low temperature.
(3) High temperature and low pressure.
(4) High pressure and low temperature.

Ans. (4)
Sol. $\quad \mathrm{X}_{2}(\mathrm{~g})+4 \mathrm{Y}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{XY}_{4}(\mathrm{~g}) \quad \Delta \mathrm{H}<0$,
$\Delta \mathrm{n}<0$
This will undergo in forward direction at low temp and high pressure.
43. The correct order of increasing bond length of $\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{C}$ and $\mathrm{C}=\mathrm{C}$ is :
(1) $\mathrm{C}-\mathrm{H}<\mathrm{C}=\mathrm{C}<\mathrm{C}-\mathrm{O}<\mathrm{C}-\mathrm{C}$
(2) $\mathrm{C}-\mathrm{C}<\mathrm{C}=\mathrm{C}<\mathrm{C}-\mathrm{O}<\mathrm{C}-\mathrm{H}$
(3) $\mathrm{C}-\mathrm{O}<\mathrm{C}-\mathrm{H}<\mathrm{C}-\mathrm{C}<\mathrm{C}=\mathrm{C}$
(4) $\mathrm{C}-\mathrm{H}<\mathrm{C}-\mathrm{O}<\mathrm{C}-\mathrm{C}<\mathrm{C}=\mathrm{C}$

Ans. (1)
Sol. Bond length order is
(1) $\mathrm{C}-\mathrm{H}<\mathrm{C}=\mathrm{C}<\mathrm{C}-\mathrm{O}<\mathrm{C}-\mathrm{C}$
$1.10 \mathrm{~A}^{\circ} \quad 1.34 \mathrm{~A}^{\circ} \quad 1.40 \mathrm{~A}^{\circ} \quad 1.54 \mathrm{~A}^{\circ}$
44. If the $\mathrm{E}_{\text {cell }}^{\circ}$ for a given reaction has a negative value, then which of the following gives the correct relationships for the values of ΔG^{0} and $K_{e q}$?
(1) $\Delta G^{\circ}>0 ; K_{e q}>1$
(2) $\Delta G^{0}<0 ; \mathrm{K}_{\text {eq }}>1$
(3) $\Delta G^{\circ}<0 ; K_{e q}<1$
(4) $\Delta G^{\circ}>0 ; \mathrm{K}_{\text {eq }}<1$

Ans. (4)
Sol. $\Delta G^{0}=-n E^{0} F$
$\mathrm{E}_{\text {cell }}^{0}>0$
$\Delta G^{\circ}=-R T \ell$ nK $_{\text {eq }}$
$\Delta G^{0}>0 \quad ; \quad K_{e q}<1$
45. Which one is a nucleophilic substitution reaction among the following ?
(1)

(2)

(3)

(4) $\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{HCN} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}$

Ans. (3)
Sol. (1) Electrophilic addition
(2) Nucleophilic addition
(3) Nucleophilic Substitution
(4) Nucleophilic addition
46. Which of the following pairs of metals is purified by van Arkel method?
(1) Ga and In
(2) Zr and Ti
(3) Ag and Au
(4) Ni and Fe

Ans. (2)
Sol. Van arkel method is used to purification Ti, \& Zr
47. For the reaction $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$, the equilibrium constant is K_{1}. The equilibrium constant is K_{2} for the reaction $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$. What is K for the reaction $\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$?
(1) $1 /\left(2 \mathrm{~K}_{1} \mathrm{~K}_{2}\right)$
(2) $1 /\left(4 \mathrm{~K}_{1} \mathrm{~K}_{2}\right)$
(3) $\left[1 / \mathrm{K}_{1} \mathrm{~K}_{2}\right]^{1 / 2}$
(4) $1 /\left(\mathrm{K}_{1} \mathrm{~K}_{2}\right)$

Ans. (3)

Sol. $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NOK}_{1} \ldots$.... (i)

$$
\begin{align*}
& 2 \mathrm{NO}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}_{2} \mathrm{~K}_{2} \tag{ii}\\
& \mathrm{NO}_{2} \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}+\mathrm{O}_{2} \quad \mathrm{~K}=\sqrt{\frac{1}{\mathrm{k}_{1} \cdot \mathrm{k}_{2}}}
\end{align*}
$$

48. Which one of the following is present as an active ingredient in bleaching powder for bleaching action ?
(1) CaOCl_{2}
(2) $\mathrm{Ca}(\mathrm{OCl})_{2}$
(3) $\mathrm{CaO}_{2} \mathrm{Cl}$
(4) CaCl_{2}

Ans. (2)
Sol. Active ingredient in bleaching powder for bleaching action is $\mathrm{Ca}(\mathrm{OCl})_{2}$
49. Of the following which one is classified as polyester polymer ?
(1) Tertylene
(2) Backelite
(3) Melamine
(4) Nylone-66

Ans. (1)
Sol. Ethylene Glycol + Terephtalic acid \rightarrow Terylene (Polyester)
50. If $\mathrm{n}=6$, the correct sequence for filling of electrons will be :
(1) $\mathrm{ns} \rightarrow(\mathrm{n}-2) \mathrm{f} \rightarrow(\mathrm{n}-1) \mathrm{d} \rightarrow \mathrm{np}$
(2) $n s \rightarrow(n-1) d \rightarrow(n-2) f \rightarrow n p$
(3) $n s \rightarrow(n-2) f \rightarrow n p \rightarrow(n-1) d$
(4) $n s \rightarrow n p(n-1) d \rightarrow(n-2) f$

Ans. (1)
Sol. $n s \rightarrow(n-2) f \rightarrow(n-1) d \rightarrow n p \quad n=6$

PART-B (BIOLOGY)

51. What will you look for to identify the sex of the following
(1) Female Ascaris-Sharply curved posterior end
(2) Male frog-A copulatory pad on the first digit of the hind limb
(3) Female cokroach- Anal cerci
(4) Male shark -Claspers borne on pelvic fins

Ans. (4)

52. 'Filiform apparattus is a characteristic feature of:
(1) Suspensor
(2) Egg
(3) Synergid
(4) Zygote

Ans. (3)
Hint : Filiform apparatus is part synergid that secretes chemicals to attract the pollen tube towards micropyle of ovule.
53. "Jaya" and "Ratna" dveloped for green revolution in India are the varieties of
(1) Maize
(2) Rice
(3) Wheat
(4) Bajra

Ans. (2)
Hint : Jaya \& ratna are dwarf varieties of rice.
54. A prokaryotic autotrophicnitrogen fixing symbiont is found in :
(1) Alnus
(2) Cycas
(3) Cicer
(4) Pisum

Ans. (2)
Hint : Anabaena cycadae is a procaryotic autotrophic nitrogen fixing symbiont in coralloid roots of cyas.
55. One very special feature in the earthworm pheretima is that
(1) Fertilisation for eggs occurs inside the body
(2) The typhlosole greatly increases the effective absorption area of the digested food in the intestine
(3) The S-shaped setae embedded in the integument are the defensive weapons used against the enemies
(4) It has a long dorsal tubular heart

Ans. (2)
56. What type of human population is represented by the following age pyramid

(1) Vanishing population
(2) Stable population
(3) Declining population
(4) Expanding population

Ans. (3)
Hint : The population of prereroductive and reproductive age group is less.
57. Mass of living matter ata trophic level in an area at any time is called
(1) Standing crop
(2) Deteritus
(3) Humus
(4) Standing state

Ans. (1)
58. Given below is a sample of a portion of DNA strand. What is so special shown in it

3' _ CTTAAG- 5^{\prime}
(1) Replication completed
(2) Deletion mutation
(3) Start codon at the 5' end
(4) Palindromic sequence of base pairs

Ans. (4)

Hint: 5'__ GAATTC-3'
3'_—CTTAAG——5'
It is a palindromic sequence of Restriction Enzyme EcoRI.
59. The most common substrate used in distilleries for the production of ethanol is
(1) Corn meal
(2) Soya meal
(3) Ground gram
(4) Molasses

Ans. (4)
60. Ground tissue includes
(1) All tissues external to endodermis
(2) All tissues except epidermis and vascular bundles
(3) Epidermis and cortex
(4) All tissues is internal to endodermis

Ans. (2)
61. Eutrophication is often seen in
(1) Deserts
(2) Fresh water lakes
(3) Ocean
(4) Mountains

Ans. (2)
Hint : Eutrophication - Nutritional enrichment of waterbodies - like - fresh water lakes.
62. Which one of the following elements in plants is not remobilised
(1) Phosphorus
(2) Calcium
(3) Potassium
(4) Sulphur

Ans. (2)
63. Where will you look for the sporozoites of the malarial parasite?
(1) Saliva of infected female Anophelesmosquito
(2) red blood corpuscles of humans suffering from malaria
(3) Spleen of infectd humans
(4) Salivary glands of freshly moulted female Anopheles mosquito

Ans. (1)
64. 'Himgiri' developed by hybridisation and selection for disease resistance against rust pathogens is a variety of
(1) Chilli
(2) Maize
(3) Sugarcane
(4) Wheat

Ans. (4)

65．Of the total incident solar radiation the proportion of PAR is ：
（1）About 70\％
（2）About 60\％
（3）Less than 50%
（4）More than 80%

Ans．（3）

66．Which one of the following is not a part of a renal pyramid．
（1）Peritubular capillaries
（2）Convoluted tubules
（3）Collecting ducts
（4）Loops of Henle

Ans．（2）

67．Which one of the following expanded forms of the following acronyms is correct
（1）IPCC＝International Panel for Climate Change
（2）UNEP＝United Nations Environmental Policy
（3）EPA＝Environmental Pollution Agency
（4）IUCN＝International Union for Conservation of Nature and Natural Resources

Ans．（4）

68．Which one of following pairs of gases are the major cause of＂Greenhouse effect＂
（1） CO_{2} and O_{3}
（2） CO_{2} and CO
（3）CFCs and SO_{2}
（4） CO_{2} and $\mathrm{N}_{2} \mathrm{O}$

Ans．（4）
69．Which one of the following conditions correctly describes the manner of determining the sex in the given example
（1）Homozygous sex chromosomes（ZZ）determine female sex in Birds ．
（2）XO type of sex chromosomes determine male sex in grasshopper
（3）XO condition in human as found in Turner Syndrome，determines female sex．
（4）Homozygous sex chromosomes（XX）produce male in Drosophila．

Ans．（2）

Hint ：＂Greenhouse gases $\mathrm{CO}_{2}-60 \%, \mathrm{~N}_{2} \mathrm{O}-6 \%$ ．These are major cause of green house effect along with methane（20\％）and CFc（14\％）．

70．Nucellar polyembryony is reported in species
（1）Citrus
（2）Gossypium
（3）Triticum
（4）Brassica

Ans．（1）
Hint ：Nucellar polyembrony is found is Citrus．Some of Nucellar cells surrounding embryo sac start dividing protrude in to the embryo sac and develop into the embryos．

71．Important site for formatition of glycoproteins and Glycolipids in
（1）Vacuole
（2）Golgi apparatus
（3）Plastid
（4）Lysosome

Ans．（2）
72．Which one of the following is not a biofertilizer
（1）Agrobacterium
（2）Rhizobium
（3）Nostoc
（4）Mycorrhiza

Ans．（1）
73．Secondary sewage treatment is mainly a
（1）Physical process
（2）Mechanical process
（3）Chemical process
（4）Biological process

Ans．（4）

74．At which stage of HIV infection does one usually show symptoms of AIDS
（1）When the infecting retrovirus enters host cells
（2）When viral DNA is produced by reverse trancriptase
（3）When HIV repliates reapidly in helper T－lymphocytes and damages large number of these
（4）Within 15 day of sexual contact with an infected person．
Ans．（3）
75．In which one of the following pollination is autogamous
（1）Geitonogamy
（2）Xenogamy
（3）Chasmogamy
（4）Cleistogamy

Ans．（4）
Hint ：Cleistogamy－Flowers never open therefore Autogamy is obligatory Ex：Pea．

Educating for better tomorrow
76. The figure given below shows a small part of human lung where exchange of gases takes place. In which one of the options given below, the one part $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D} is correctly indentified along with its function.

Options:

(1) C : arterial capillary - passes oxygen to tissues
(2) A : alveolar cavity - mains site of exchange of respiratory gases
(3) D : Capillary wall - exchange of O_{2} and CO_{2} takes place here.
(4) B : red blood cell - transport of CO_{2} mainly

Ans. (2)
77. 'Bundle of His' is a part of which one of the following organs is humans
(1) Brain
(2) Heart
(3) Kidney
(4) Pancreas

Ans. (2)
78. Which of the following is mainly produced by the activity of anaerobic bacteria on sewage
(1) Laughing gas
(2) Propane
(3) Mustard gas
(4) Marsh gas

Ans. (4)
79. The "Eyes" of the potato tuber are
(1) root buds
(2) flower buds
(3) shoot buds
(4) axillary buds

Ans. (4)
Hint : Eyes of potato are actually axillary buds that help in vegetative propagation.
80. Match the source gland with respective hormone as well the function.

	Source gland	Hormone	Function
1	Anterior pituitary	Oxytocin	Contraction of uterus muscles during child birht
2	Posterior pituitary	Vasopressin	Stimulates resorption of water in the distal tubules in the nephron
3	Corpus luteum	Estrogen	Supports pregnancy
4	Thyroid	Thyroxine	Regulates blood calcium level

Ans. (2)
81. Which one of the following have the highest number of species is nature
(1) Fungi
(2) Insects
(3) Birds
(4) Angiosperms

Ans. (2)
Hint : Highest number of species - about 8.5 lakh of insects.
82. Which one of the following statements is correct?
(1) In tomato, fruit is a capsule
(2) Seeds of orchids have oil-rich endosperm
(3) Placentation in primose is basal
(4) Flower of tulip is a modified shoot

Ans. (4)

Hint : Tomato - fruit is berry.
Orchid - Endosperm is suppressed or absent.
Primrose - Free central placentation
Tulip - flower - Flower is considered as modified shoot.
83. Peptide synthesis inside a cell takes place in :
(1) Chloroplast
(2) Mitochondria
(3) Chromoplast
(4) Ribosomes

Ans. (4)
Hint : Peptide (Protein) synthesis - Ribosome - Site of Protein synthesis
84. Which one of the following groups of animals is correctly matched with its one characteristic feature without even a single exception?
(1) Reptilia : possess 3 - chambered heart with one incompletely divided ventricle
(2) Chordata : possess a mouth provided with an upper and lower jaw
(3) Chondrichthyes : possess cartilanginous endoskeleton
(4) Mammalia : give birth to young one.

Ans. (3)

85. Large Woody Vines are more commonly found in :
(1) Temperate forest
(2) Mangroves
(3) Tropical rainforests
(4) Alpine forests

Ans. (3)
Hint : Woody climbers - Lianas - That are more commonly found in Tropical rain forests.
86. An organism used as a biofertilizer for raising soyabean crops is :
(1) Azotobacter
(2) Azospirillum
(3) Rhizobium
(4) Nostoc

Ans. (3)
87. Which one of the following plasma proteins is involved in the coagulation of blood ?
(1) an albumin
(2) serum amylase
(3) a globulin
(4) Fibrinogen

Ans. (4)
88. Ethanol is commercially produced through a particular species of :
(1) Saccharomyces
(2) Clostridium
(3) Trichoderma
(4) Aspergillus

Ans. (1)

89. Which one of the following structural formulae of two organic compounds is correctly identified along with its related function?

(1) B : Adenine - a nucleotide that makes up nucleic acids
(2) A : Triglyceride - major source of energy
(3) B : Uracil - a component of DNA
(4) A : Lecithin - a component of cell membrane

Ans. (4)
90. Which one of the following organisms is not an example of eukaryotic cells ?
(1) Paramecium caudatum
(2) Escherichia coli
(3) Euglena viridis
(4) Amoeba proteus

Ans. (2)
91. Given below is an incomplete table about certain hormones, their source glands and one major effect of each on the body in humans. Identify the correct option for the three blanks A, B and C.

GLAND	SECRETION	EFFECT ON BODY
A	Oestrogen	Maintenance of secondary sexual characters
Alpha cells of islets of Langerhans	B	Raises blood sugar level
Anterior pituitary	C	Over secretion leads to gigantism

Options:

	A	B	C
(1)	Ovary	Glucagon	Growth hormone
(2)	Placenta	Insulin	Vasopressin
(3)	Ovary	Insulin	Calcitonin
(4)	Placenta	Glucagon	Calcitonin

Ans. (1)

92. What are those structures that appear as beads - on - string in the chromosomes when viewed under electron microscope ?
(1) Genes
(2) Nucleotides
(3) Nucleosomes
(4) Base pairs

Ans. (3)

Hint : Beads on string - Nucleosome (Stractural and functional unit of chromatin).
93. Nitrifying bacteria :
(1) Oxidize ammonia to nitrates
(2) Convert free nitrogen to nitrogen compounds
(3) Convert proteins into ammonia
(4) reduce nitrates to free nitrogen

Ans. (1)

94. Archegoniophore is present in :
(1) Marchantia
(2) Chara
(3) Adiantum
(4) Funaria

Ans. (1)
95. There is a restriction endonuclease called EcoRI. What does 'co' part in it stand for ?
(1) colon
(2) coelom
(3) coenzyme
(4) coli

Ans. (4)
96. A large proportion of oxygen is left unused in the human blood even after its uptake by the body tissues. This O_{2} :
(1) acts as a reserve during muscular exercise
(2) raise the pCO_{2} of blood to 75 mm of Hg .
(3) is enough to keep oxyhaemoglobin saturation at 96%
(4) helps in releasing more O_{2} to the epithelial tissues.

Ans. (1)
97. In land plants, the guard cells differ from other epidermal cells in having :
(1) Cytoskeleton
(2) Mitochondria
(3) Endoplasmic reticulum (4) Chloroplasts

Ans. (4)
98. Which one of the following is the most widely accepted method of contraception in India, as at present ?
(1) Cervical caps
(2) Tubectomy
(3) Diaphragms
(4) IUDs' (Intra uterine devices)

Ans. (4)
99. The ciliated columnar epithelial cells in humans are known to occur in :
(1) Eustachian tube and stomach lining
(2) Bronchioles and Fallopian tubes
(3) Bile duct and oesophagus
(4) Fallopian tubes and urethra

Ans. (2)
100. Two friends are eating together on a dining table. One of them suddenly starts coughing while swallowing some food. This coughing would have been due to improper movement of :
(1) Epiglottis
(2) Diaphragm
(3) Neck
(4) Tongue

Ans. (1)
101. What would be the number of chromosome of the aleurone cells of a plant with 42 chromosomes in its root tip cells ?
(1) 42
(2) 63
(3) 84
(4) 21

Ans. (2)
Hint : Root tip cell is diploid $2 n=42$. Aleuron layer is outermost part of Triploid endosperm there fore the chromosome no. will be $3 n=63$.
102. Consider the following four conditions (a-d) and select the correct pair of them as adaptation to environment in desert lizards.
The conditions :
(a) burrowing in soil to escape high temperature
(b) losing heat rapidly from the body during high temperature
(c) bask in sun when temperature is low
(d) insulating body due to thick fatty dermis

Options :

(1) (c), (d)
(2) (a), (c)
(3) (b), (d)
(4) (a), (b)

Ans. (2)
103. Maximum number of existing transgenic animals is of :
(1) Fish
(2) Mice
(3) Cow
(4) Pig

Ans. (2)
104. Which one of the following statements is correct for secondary succession ?
(1) It begins on a bare rock
(2) It occurs on a deforested site
(3) It follows primary succession
(4) It is similar to primary succession except that it has a relatively fast pace

Ans. (2)
Hint : Establishment of new vegetation in an area after destroying pre existing vagetation by deforestation, forest fire, volcanic erruption etc. is called secondary succession.
105. In eubacteria, a cellular component that resembles eukaryotic cells is :
(1) Plasma membrane
(2) Nucleus
(3) Ribosomes
(4) Cell wall

Ans. (1)
106. A collection of plants and seeds having diverse alleles of all the genes of a crop is called :
(1) Herbarium
(2) Germplasm
(3) Gene library
(4) Genome

Ans. (3)

107. If for some reason, the vasa efferentia in the human reproductive system get blocked, the gametes will not be transported from :
(1) testes to epididymis
(2) epididymis to vas deferencs
(3) ovary to uterus
(4) vagina to uterus

Ans. (1)
Hint : Vasa efferentia are 15-20 small tubes emerging out of testes and opens in to epididymis.
108. Which one of the following correctly explains the function of a specifice part of a human nephron ?
(1) Podocytes: Create minute spaces (slite pores) for the filtration of blood into the Bowman's capsule
(2) Henle's loop : most reabsorption of the major substances from the glomerular filtrate
(3) Distal convoluted tubule : reabsorption of K^{+}ions into the surrounding blood capilaries
(4) Afferent arteriole : carries the blood away from the glomerulus towards renal vein.

Ans. (1)
109. The correct floral formula of chilli is :
(1) $\oplus_{9}{ }^{-} \mathrm{K}_{(5)} \mathrm{C}_{5} \mathrm{~A}_{5} \mathrm{G}_{(2)}$
(2) $\oplus_{q}{ }^{\circ} \mathrm{K}_{(5)} \hat{C}_{(5)} \mathrm{A}_{5} \mathrm{G}_{(2)}$
(3) $\oplus_{\uparrow}{ }_{q} \mathrm{~K}_{(5)} \mathrm{C}_{(5)} \mathrm{A}_{(5)} \mathrm{G}_{(2)}$

Ans. (2)
110. Arteries are best defined as the vessels which :
(1) supply oxygenated blood to the different organs
(2) break up into capillaries which reunite to form one visceral organ
(3) break up into capillaries which reunite to form a vein
(4) carry blood from one visceral organ to another visceral organ

Ans. (2)
Hint : It is major difference between arteries and veins.
111. Which one of the following is categorised as a parasite in true sense ?
(1) The female Anopheles bites and sucks blood from humans
(2) Human foetus developing inside the uterus draws nourishment from the mother
(3) Head louse living on the human scalp as well as laying eggs on human hair
(4) The cuckoo (koel) lays its eggs in crow's nest.

Ans. (3)
Hint : Head or body louce is ectoparasite and leaves proginese behind to continue parasitism.
112. The testes in humans are situated outside the abdominal cavity insides pouch called scrotum. The abdominal cavity inside a pouch called scrotum. The pupose served is for :
(1) maintaining the scrotal temperature lower than the internal body temperature
(2) escaping any possible compression by the visceral organs
(3) providing more space for the growth of epididymis
(4) providing a secondary sexual feature for exhibiting the male sex

Ans. (1)
Hint : Scrotal temperature is $3^{\circ} \mathrm{C}$ less than abdominal cavity.
113. Which one of the following statements is correct with respect to kidney function regulation ?
(1) When someone drinks lot of water, ADH release is suppressed.
(2) Exposure to cold temperature blood flow stimulates formation of Angiotensin II.
(3) An in crease in glomerular blood flow stimulates formation of Angiotensin II.
(4) During summer when body loses lot of water by evaporation, the release of ADH is suppressed.

Ans. (1)
Hint : Decrease body water increased ADH secretion and vice versa.
114. Agarose extracted from sea weeds finds use in :
(1) Spectrophotometry
(2) Tissue Culture
(3) PCR
(4) Gel electrophoresis

Ans. (4)
Hint : Is used during DNA finger printing for arranging DNA fragmants according to their size.
115. Which of the following is correctly stated as it happens in the common cockroach ?
(1) Malpighian tubules are excretory organs projecting out from the colon.
(2) Oxygen is transported by haemoglobin in blood
(3) Nitrogenous excretory product is urea.
(4) The food is ground by mandibles and gizzard

Ans. (4)
116. Which one of the following also acts asa catalyst in a bacterial cell ?
(1) 5 sr RNA
(2) sn RNA
(3) hn RNA
(4) 23 sr RNA

Ans. (4)
Hint : It is found in procaryote while 28 sr RNA in Eukaryotes.
117. Which one of the following acts as a physiological barrier to the entry of microorganisms in human body ?
(1) Epithelium of urogenital tract
(2) Tears
(3) Monocytes
(4) Skin

Ans. (4)

Educating for better tomorrow

Hint : (1) Epithelium of urogenital tract (physical)
(2) Tears, saliva, HCl of gastric juice) - (Physiological)
(3) Monocytes - (Phagocytic or cellular)
(4) Skin - (Physical)
118. The function of leghaemoglobin in the root nodules of legumes is:
(I) inhibition of nitrogenase activity
(2) oxygen removal
(3) nodule differentiation
(4) expression of nif gene

Ans. (2)
Hint : Leghaemoglobin is scavenger of O_{2} and protect the nitrogenase enzyme from the effect of O_{2}.
119. The process of RNA interference ha.been used in the development of plants resistant to
(1) Nematodes
(2) Fungi
(3) Viruses
(4) Insects

Ans. (1)
120. Compared with the gametophytes of the bryophytes the qametophytes of vascular plan
(1) smaller but to have larger sex organs
(2) iarger but to have srnallter sex organs
(3) Ic3rgerand to have larger sex organs
(4) smaller and to have smaller sex organs

Ans. (1)
121. The gametophyte is not an independent, free living generation in :
(1) Polytrichum
(2) Adiantum
(3) Marchantia .
(4) Pinus

Ans. (4)
122. The cork cambium, cork and secondary cortex are collectively called:
(1) Phelloderm'
(2) Phelloqen '.
(3) Periderm
(4) Phellem

Ans. (3)
Hint : Phellem (Cork) + Phellogen (cork eambium) + \& Phelloderm (secondary cortex) = Periderm.
123. Which one of the following staternents for pyramid of energy is incorrect, whereas the remaining three
are correct?
(1) Its base is broad
(2) II show s energy cont I1t of different trophic level organisms
(3) It is inverted in shape
(4) It is upright in shape

Ans. (3)
Hint : Pyramids of energy are alway upright. Energy pyramid will never be inverted.
124. Select the correct option with respect to mitosis.
(1) Chromatid separate but remain in the centre of the cell in anaphase.
(2) Chromatids tart moving towards opposite poles in telophase.
(3) Golgi complex and endoplasmic reticulurn are still visible at the end of prophase.
(4) Chromosome move to the spindle equator and get aligned along equatorial plate in metaphase

Ans. (4)
125. Uricoteli mode of passing out nitrogenous wastes is found in :
(1) Reptiles and Bird
(2) Birds and Annelids
(C) Amphibians and Reptiles
(4) Insects and Amphibians

Ans. (1)
Hint : (1) Reptiles and Bird (Uricotelic)
(2) Birds and Annelids (Urico and ureolatic)
(3) Amphibians and Reptiles (Ureo and uricotalic)
(4) Insects and Amphibians (Urico and ureotalic)
126. Flower. are Zygomorphic in :
(1) Mustard
(2) Culmohur
(3) Ioruato
(4) Datura

Ans. (2)

Hint : (1) Mustard - Actimomarphic
(2) Gulmohur - Belongs to Caesalpinoideae with zygomorphic flower.
(3) Tomato - Actinomorphic
(4) Datura - Actinomorphic

127．Which one of the following statements is correct regarding blood pressure ：
（1） $130 / 90 \mathrm{mmHg}$ is considered high and requires tr atment
（2） $100 / 55 \mathrm{rnmHg}$ is considered an ideal blood pressure
（3） $105 / 50 \mathrm{mmHg}$ makes one very active
（4） $190 / 110 \mathrm{mmHg}$ may harm vital organs like brain and kidney
Ans．（4）
Hint ：140／90 or above it is hypertension stage that causes damage of some vital organ like brain and kidney．

128．Medical Termination of Pregnancy（MTP）is considered safe up to how man＇weeks of pregnancy？
（1）Eight weeks
t2）Twelve weeks
（3）Eighteen week＇
（4）Six weeks

Ans．（2）
Hint ：（First trimenster）
129．The ovary is half inferior in flowers of
（1）Peach
（2）Cucumber
（3）Cotton
（4）Guava

Ans．（1）
Hint ：Cucumber－Inferior ovary Cotton－Superior ovary Guava－Inferior ovary Peach－Half inferior ovary

130．When two unrelated individuals or lines are crossed，the performance of F_{1} hybrid is often superior to both is parents．This phenomenon is called：
（1）Heterosis
（2）Transfortnation
（3）Splicing
（4）Metamorphosis

Ans．（1）
Hint ：（1）Heterosis or hybrid vigour
131．Mutations can be induced with ：
（1）Infral red radiations
（2）I A A
（3）Ethylene
（4）Gamma radiations

Ans．（4）
Hint ：（1）Infral red radiations－Help in seed germination．
（2）I A A－Growth hormone
（3）Ethylene
－Growth hormone
（4）Gamma radiations－It is physical Mutagen
132．Which one of the in absorption of phosphorus from soil by plants？
（1）Glomus
（2）Rhizobium
（3）Frankia
（4）Anabaena

Ans．（1）
Hint ：Glomus－Endomycarrhiza that helps in phosphorus absorption．
133．When a neuron is in resting state i．e．not conducting anv impulse，the axonal membrane is：
（1）Comparatively more permeable to Na^{+}ions and nearly impermeable to K^{+}ions
（2）Equally permeable to both ion＇s Na^{+}and K^{+}ions
（3）Impermeable to both Na^{+1} and K^{+}ions
（4）Comparatively more permeable to K^{+}ions and nearly impermeable to Na^{+1} ions
Ans．（4）
Hint ：When a neuron is in resting state i．e．not conducting anv impulse，the axonal membrane is compara－ tively more permeable to K^{+}ions and nearly impermeable to Na^{++}ions．

134．A certain patient is suspected to be suffering from Acquired Immune Deficiency syndrome．Which diag nostic technique will you recommend for its detection？
（1）ELISA
（2）MRI
（3）Ultra sound
（4）WIDAL

Ans．（1）
Hint ：（1）ELISA（Enzyme linked immuno sorbent assay is for AIDS）
（2）MRI－Brain，Spinal cord and muscles
（3）Ultra sound－Brain，Spinal cord and muscles
（4）WIDAL－Typhoid
135. Continuous addition of sugars in 'fed batch' fermentation is done to:
(1) produce methane
(2) obtain antibiotics
(3) purify enzymes
(4) degrade sewage

Ans. (2)
136. The purplish red pigment rhodopsin contained in the rods type of photoreceptor cells of the human eye, is a derivative of:
(1) Vitamin B_{1}
(2) Vitamin C
(3) Vitamin D
(4) Vitamin A

Ans. (1)
Hint : Retinine + scotopsin derived from vite-A
137. Wind pollination is common in :
(1) Legumes
(2) Lilies
(3) Grasses
(4) Orchids

Ans. (3)
Hint : (1) Legumes - Cleistogamy and self pollination
(2) Lilies - Mostly insect pollination
(3) Grasses - Feathery stigma, pollen grain small and light weighted, flowers colourless, scentless
(4) Orchids - Insect pollination
138. Which one of the following is wrongly matched?
(1) Root pressure - Guttation
(2) Puccinia - Smut
(3) Root - Exarch protoxylem
(4) Cassia - Imbricate aestivation

Ans. (2)
Hint : (2) Puccinia - It is responsible for rust disease instead of smut (Ustilago causes smut).
139. A drupe develops in:
(1) Mango
(2) Wheat
(3) Pea
(4) Tomato

Ans. (1)
Hint : (1) Mango - (Drupe)
(2) Wheat - (Caryopsis)
(3) Pea - (Pod or legume)
(4) Tomato - (Berry)
140. Which one of the following enzymes carries out the initial step in the digestion of milk in humans ?
(1) Pepsin
(2) Rennin
(3) Lipase
(4) Trypsin

Ans. (2)
141. CAM helps the plants in:
(1) Conserving water
(2) Secondary growth
(3) Disease resistance
(4) Reproduction

Ans. (1)
Hint : CAM (Crassulacean acid metabolism) plants bear scotoactive stomata (open during night \& closed in day time) \& helps is conserving water.
142. Which one of the following animals is correctly matched with its particular named taxonomic category ?
(1) Tiger - tigris, the species
(2) Cuttlefish - Mollusca, a class
(3) Humans - Primata, the family
(4) Housefly - Musca an order

Ans. (1)
Hint : Panthera (Generic name) tigris (Specific epithet or name)
143. Organisrn called Metaanogens are most abundant in a :
(1) Sulphur rock
(2) Cattle yard
(3) Polluted stream
(4) Hot spring

Ans. (2)
Hint : Generally they are present in gut wall and also helps in digestion and passes of through dung and cattle yard.
144. What was the most significant trend in evolution of modern man (Homosapiens) from his ancestors ?
(1) Upright posture
(2) Shortening of jaws
(3) Binocular vision
(4) Increasing brain capacity

Ans. (4)

145. In which one of the following the genus name, its two characters and its, class/phylum are correctly matched?

	Genus name		Two characters	Class/phylum
1	Ascaris	(a)	Body segmented	Annelida
		(b)	Males and females distinct	
2	Salamandra	(a)	A tympanum represents ear	Amphibia
		(b)	Fertilization is external	
3	Pteropus	(a)	Skin possesses hair	Mammalia
		(b)	Oviparous	
4	Aurelia	(a)	Cnidoblasts	Coelenterata
		(b)	Organ level of organization	

Ans. (3)
146. Which one of the following statements is wrong in Case of Bhopal tragedy ?
(1) Methyl Isocyanate gas leakage took place
(2) Thousands of human beings died.
(3) Radioactive fall out engulfed Bhopal
(4) It took place in the night of December 2/3 1984.

Ans. (2)
147. Which one of the following shows maximum genetic diversity in India ?
(1) Groundnut
(2) Rice
(3) Maize
(4) Mango

Hint : First - rice (50000 species)and second- Mango (1000 species)
148. The figure given below depicts a diagrammatic sectional view of th female reproductive system of humans, Which one set of three parts out of I-VI have been correctly identified?

(1) (II) Endometrium (III) Infundibulum, (IV) Fimbriae
(2) (III) Infundibulum, (IV) Fimbriae, (V) Cervix,
(3) (IV) Oviducal funnel, (V) Uterus, (VI) Cervix
(4) (I) Perimetriurn, (II) Myometrium, (III) Fallopian tube

Ans. (2)
149. A person with unknown blood group under $A B O$ system, has suffered much blood loss in an accident and needs immediate blood transfusion. His one friend who has a valid certificate of his own blood type. offers blood donation without delay. What would have been the type of blood group of the donor friend.
(1) Type B
(2) Type AB
(3) Type O
(4) Type A

Ans. (3)
Hint : Type O blood group - Universal donar.
150. The curve given below shows enzymatic activity with relation to three conditions (pH , temperature and substrate concentration.

What do the two axises (x and y) represent?

\mathbf{x} - axis

(1) enzymatic activity
(2) temperature
(3) Substrate concentration, (4 enzymatic activity

y-axis

pH
enzyme activity enzymatic activity temperature

Ans. (2)

Hint : By increasing temperture beyond normal enzyme gradually denaturated and the activity of enzyme decreases.

PART - C (PHYSICS)

151. Photoelectric emmision occurs only when the incident light has more than a certain minimum:
(1) power
(2) wavelength
(3) intensity
(4) frequency

Ans. (4)
Sol. $\frac{1}{2} m v^{2}=h v-v_{0}$
for Photo electric emission

$$
v \geq v_{0}
$$

152. A current carrying loop in the form of a right angle isosceles triangle $A B C$ is placed in a uniform magnetic field acting along $A B$. If the magnetic force on the arm $B C$ is \vec{F}, the force on the arm $A C$ is :

(1) $-\sqrt{2} \vec{F}$
(2) $-\vec{F}$
(3) \vec{F}
(4) $\sqrt{2} \vec{F}$

Ans. (2)
Sol. Component of AC perpendicular to magnetic field is just equal in magnitude and oppsite in direction to BC so force on $A C$ is $-\vec{F}$.
153. A particle moves in a circle of radius 5 cm with constant speed and time period $0.2 \pi \mathrm{~s}$. The acceleraiton of the particle is :
(1) $15 \mathrm{~m} / \mathrm{s}^{2}$
(2) $25 \mathrm{~m} / \mathrm{s}^{2}$
(3) $36 \mathrm{~m} / \mathrm{s}^{2}$
(4) $5 \mathrm{~m} / \mathrm{s}^{2}$

Ans. (4)
Sol. Centripetal acceleration

$$
\begin{aligned}
& a_{c}=\omega^{2} r \\
& \quad=\left(\frac{2 \pi}{T}\right)^{2} r \\
& =\left(\frac{2 \pi}{0.2 \pi}\right)^{2} \times 5 \times 10^{-2} \\
& =5 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

tangential acceleration is zero as constant speed so
acceleration $=\sqrt{a_{c}{ }^{2}+\mathrm{a}_{\mathrm{t}}{ }^{2}}$

$$
=5 \mathrm{~m} / \mathrm{s}^{2}
$$

154. Which of the is not due to total internal reflection?
(1) working of optical fibre
(2) difference between apparent and real depth of pond
(3) mirage on hot summer days
(4) brillance of diamond

Ans. (2)
Sol. Difference between apparent and eal depth of a pond is due to refraction
Other three are due to TIR.
155. A missile is fired for maximum range with an initial velocity of $20 \mathrm{~m} / \mathrm{s}$. If $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$, the range of the missile is:
(1) 40 m
(2) 50 m
(3) 60 m
(4) 20 m

Ans. (1)
Sol. $\quad R_{\max }=\frac{u^{2} \sin 90^{\circ}}{g}=\frac{20^{2}}{10}=40 \mathrm{~m}$
156. The wavelength of the first line of Lyman series for hydrogen atom is equal to that of the second line of Balmer series for a hydrogen like ion. The atomic number Z of hydrogen like ion is :
(1) 3
(2) 4
(3) 1
(4) 2

Ans.. (4)
Sol. For hydrogen
$\frac{\mathrm{hc}}{\lambda}=\operatorname{Rhc}\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)$
for hydrogen like ion
$\frac{\mathrm{hc}}{\lambda}=Z^{2} \operatorname{Rhc}\left(\frac{1}{2^{2}}-\frac{1}{4^{2}}\right)$
or $\quad\left(\frac{1}{1}-\frac{1}{2}\right)=Z^{2}\left(\frac{1}{4}-\frac{1}{16}\right) \quad$ or $\quad Z=2$
157. The half life of a radioactive isotope ' X ' is 50 years. It decay to another element ' Y ' which is stable. The two elements ' X ' and ' Y ' were found to be in the ratio of $1: 15$ in a sample of a given rock. The age of the rock was estimated to be :
(1) 150 years
(2) 200 years
(3) 250 years
(4) 100 years

Ans. (2)
Sol. Number of X : N_{x}
Number of $\mathrm{Y}: \mathrm{N}_{\mathrm{y}}$
$\frac{\mathrm{N}_{\mathrm{x}}}{\mathrm{N}_{\mathrm{y}}}=\frac{1}{15}$

$$
\text { Part of } \begin{aligned}
N_{x} & =\frac{1}{16}\left(N_{x}+N_{y}\right) \\
& =\frac{1}{2^{4}}\left(N_{x}+N_{y}\right)
\end{aligned}
$$

So total 4 half lives are passed so age of rock is

$$
4 \times 50=200 \text { years }
$$

158. The potential energy of a system increases if work is done :
(1) upon the system by a nonconservative force
(2) by the system against a conservative force
(3) by the system against a nonconservative force
(4) upon the system by a conservative force

Sol. (4)
159. A charge Q is enclosed by a Gaussian spherical surface of radius R. If the radius is doubled, then the outward electric flux will :
(1) increase four times
(2) be reduced to half
(3) remain the same
(4) be doubled

Sol. (3)
Total flux $=\frac{\text { Net Charge enclosed }}{\epsilon_{0}}$
It depends only on net charge enclosed by the surface.
160. The power obtained in a reactor using U^{235} disintegration is 1000 kW . The mass decay of U^{235} per hour is :
(1) 10 microgram
(2) 20 microgram
(3) 40 microgram
(4) 1 microgram

Sol. (3)
$\mathrm{E}=\mathrm{mc}^{2}$
$m=\frac{E}{c^{2}}$
So mass decay per second
$\frac{\mathrm{dm}}{\mathrm{dt}}=\frac{1}{\mathrm{c}^{2}} \frac{\mathrm{dE}}{\mathrm{dt}}=\frac{1}{\mathrm{c}^{2}}$ (Power in watt)
$=\frac{1}{\left(3 \times 10^{8}\right)^{2}} \times 1000 \times 10^{3}$
and mass decay per hour $=\frac{\mathrm{dm}}{\mathrm{dt}} \times 60 \times 60$
$\frac{1}{\left(3 \times 10^{8}\right)^{2}} \times 10^{6} \times 3600=4 \times 10^{-8} \mathrm{~kg} .=40$ microgram
161. A radioactive nucleus of mass M emits a photon of frequency v and the nucleus recoils. The recoil energy will be :
(1) $\mathrm{Mc}^{2}-\mathrm{hu}$
(2) $h^{2} v^{2} / 2 M c^{2}$
(3) zero
(4) hu

Sol. (2)

Momentum
$M u=\frac{E}{c}=\frac{h u}{c}$
Recoil energy
$\frac{1}{2} M u^{2}=\frac{1}{2} \frac{M^{2} u^{2}}{M}=\frac{1}{2 M}\left(\frac{h v}{c}\right)^{2}$
$=\frac{h^{2} v^{2}}{2 \mathrm{Mc}^{2}}$
162. The electric and the magnetic field associated with an e.m. wave, propagating along the $+z$-axis, can be represented by :
(1) $\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_{0} \hat{\mathrm{i}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_{0} \hat{\mathrm{j}}\right]$
(2) $\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_{0} \hat{\mathrm{k}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_{0} \hat{\mathrm{i}}\right]$
(3) $\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_{0} \hat{\mathrm{j}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_{0} \hat{\mathrm{i}}\right]$
(4) $\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_{0} \hat{\mathrm{j}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_{0} \hat{\mathrm{k}}\right]$

Sol. (1)
$\vec{u}=\vec{E} \times \vec{B}=E_{0} i+B_{0} \hat{j}=E_{0} B_{0} \hat{k}$
163. During an isothermal expansion, a confined ideal gas does -150 J of work against its surroundings. This implies that:
(1) 150 J heat has been removed from the gas
(2) 300 J of heat has been added to the gas
(3) no heat is transferred because the process is isothermal
(4) 150 J of heat has been added to the gas

Sol. (1) or (4)
If a process is expansion then work done is positive so answer will be (1).
But in question work done by gas is given -150 J so that according to it answer will be (4).
164. Two waves are represented by the equations $y_{1}=a \sin (\omega t+k x+0.57) m$ and $y_{2}=a \cos (\omega t+k x) m$, where x is in meter and t in sec. The phase difference between them is :
(1) 1.0 radian
(2) 1.25 radian
(3) 1.57 radian
(4) 0.57 radian

Sol. (1)
$\Delta \phi=\phi_{1}-\phi_{2}=\frac{\pi}{2}-0.57$
$=1$ radian
165. The instantaneous angular position of a point on a rotating wheel is given by the equation $\theta(t)=2 t^{3}-6 t^{2}$. The torque on the wheel becomes zero at :
(1) $t=1 \mathrm{~s}$
(2) $t=0.5 \mathrm{~s}$
(3) $t=0.25 \mathrm{~s}$
(4) $t=2 \mathrm{~s}$

Sol. (1)
When angular acc. (α) is zero than torque on the wheel becomes zero
$\theta(\mathrm{t})=2 \mathrm{t}^{3}-6 \mathrm{t}^{2}$
$\frac{d \theta}{d t}=6 t^{2}-12 t$
$\frac{d^{2} \theta}{d t^{2}}=12 t-12=0$
$\mathrm{t}=1 \mathrm{Sec}$.
166. A boy standing at the top of a tower of 20 m height drops a stone. Assuming $\mathrm{g}=10 \mathrm{~ms}^{-2}$, the velocity with which it hits the ground is:
(1) $10.0 \mathrm{~m} / \mathrm{s}$
(2) $20.0 \mathrm{~m} / \mathrm{s}$
(3) $40.0 \mathrm{~m} / \mathrm{s}$
(4) $5.0 \mathrm{~m} / \mathrm{s}$

Sol. (2)
$v=\sqrt{2 g h}=\sqrt{2 \times 10 \times 20}=20 \mathrm{~m} / \mathrm{sec}$.
167. The moment of inertia of a thin uniform rod of mass M and length L about an axis passing through its midpoint and perpendicular to its length is I_{0}. Its moment of inertia about an axis passing through one of its ends and perpendicular to its length is :
(1) $\mathrm{I}_{0}+\mathrm{ML}^{2} / 2$
(2) $\mathrm{I}_{0}+\mathrm{ML}^{2 / 4}$
(3) $\mathrm{I}_{0}+2 \mathrm{ML}^{2}$
(4) $I_{0}+M L^{2}$

Sol. (2)
$\mathrm{I}=\mathrm{I}_{\mathrm{cm}}+\mathrm{md}^{2}$
$\mathrm{I}=\mathrm{I}_{0}+\mathrm{M}(\mathrm{L} / 2)^{2}=\mathrm{I}_{0}+\mathrm{ML}^{2} / 4$
168. A nucleus ${ }_{n}^{m} X$ emits one $\alpha-$ particle and two β^{-}particles. The resulting nucleus is :
(1) ${ }_{n-4}^{m-6} Z$
(2) ${ }_{n}^{m-6} Z$
(3) ${ }_{n}^{m-4} X$
(4) ${ }_{n-2}^{m-4} Y$

Sol. (3)
α-particle ${ }_{2} \mathrm{He}^{4}$
during β^{-1} emission neutron converts into proton
So new Nucleus is
${ }_{\mathrm{n}} \mathrm{X}^{\mathrm{m}-4}$
169. A parallel plate condenser has a uniform electric field $E(V / m)$ in the space between the plates. If the distance between the plates is $d(m)$ and area of each plate is $A\left(m^{2}\right)$ the enrgy (joules) stored in the condenser is :
(1) $\mathrm{E}^{2} \mathrm{Ad} / \epsilon_{0}$
(2) $\frac{1}{2} \in_{0} E^{2}$
(3) $\in_{0} \mathrm{EAd}$
(4) $\frac{1}{2} \in_{0} E^{2} A d$

Sol. (4)
$U=\frac{1}{2} c v^{2}$
$U=\frac{1}{2}\left(\frac{A \in_{0}}{d}\right)(E d)^{2}=\frac{1}{2} A \in_{0} E^{2} d$
170. A planet moving along an elliptical orbit is closest to the sun at a distance r_{1} and farthest away at a distance of r_{2}. If v_{1} and v_{2} are the linear velocities at these points respectively, then the ratio $\frac{v_{1}}{v_{2}}$ is :
(1) $\left(r_{1} / r_{2}\right)^{2}$
(2) r_{2} / r_{1}
(3) $\left(r_{2} / r_{1}\right)^{2}$
(4) r_{1} / r_{2}

Sol. (2)
Using angular momentum conservation
$\mathrm{L}_{1}=\mathrm{L}_{2}$
$m r_{1} v_{1}=m r_{2} v_{2}$
$r_{1} v_{1}=r_{2} v_{2}$
$\frac{v_{1}}{v_{2}}=\frac{r_{2}}{r_{1}}$
171. A body is moving with velocity $30 \mathrm{~m} / \mathrm{s}$ towards east. After 10 seconds its velocity becomes $40 \mathrm{~m} / \mathrm{s}$ towards north. The average acceleration of the body is :
(1) $1 \mathrm{~m} / \mathrm{s}^{2}$
(2) $7 \mathrm{~m} / \mathrm{s}^{2}$
(3) $\sqrt{7} \mathrm{~m} / \mathrm{s}^{2}$
(4) $5 \mathrm{~m} / \mathrm{s}^{2}$

Sol. (4)
$<a>=\frac{\text { Change in velocity }}{\text { Total Time }}$
$<a>=\frac{|40 \hat{j}-30 \hat{i}|}{10-0}$
$<a>=5 \mathrm{~m} / \mathrm{sec}^{2}$
172. Fusion reaction takes place at high temperature because :
(1) nuclei break up at high temperature
(2) atoms get ionised at high temperature
(3) kinetic energy is high enough to overcome the coulomb repulsion between nuclei
(4) molecules break up at high temperature

Sol. (3)

173. A body projected vertically from the earth reaches a height equal to earth's radius before returning to the earth. The power exerted by the gravitational force is greatest :
(1) at the highest position of the body
(2) at the instant just before the body hits the earth
(3) it remains constant all through
(4) at the instant just after the body is projected

Sol. (2)

$$
P=F(V)
$$

174. The dimensions of $\left(\mu_{0} \in_{0}\right)^{-1 / 2}$ are :
(1) $\left[\mathrm{L}^{1 / 2} \mathrm{~T}^{-1 / 2}\right]$
(2) $\left[\mathrm{L}^{-1} \mathrm{~T}\right]$
(3) $\left[\mathrm{L} \mathrm{T}^{-1}\right]$
(4) $\left[\mathrm{L}^{-1 / 2} \mathrm{~T}^{1 / 2}\right]$

Sol. (3)
$C=\frac{1}{\sqrt{\mu_{0} \in_{0}}}$ So dimensions are $L T^{-1}$
175. A ac voltage is applied to a resistance R and an inductor L in series. If R and the inductive reactance are both equal to 3Ω, the phase difference between the applied voltage and the current in the circuit is :
(1) $\pi / 6$
(2) $\pi / 4$
(3) $\pi / 2$
(4) zero

Sol. (2)
$\tan \phi=\frac{X_{L}}{R}=1$
176. A transistor is operated in common emitter configuration at $V_{C}=2 \mathrm{~V}$ such that a change in the base current from $100 \mu \mathrm{~A}$ to $300 \mu \mathrm{~A}$ produces a change in the collector current from 10 mA to 20 mA . The current gain is:
(1) 50
(2) 75
(3) 100
(4) 25

Sol. (1)
$\beta=\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{I}_{\mathrm{B}}}=\frac{10 \mathrm{~mA}}{200 \mu \mathrm{~A}}=\frac{10 \times 10^{3}}{200}=50$
177. In forward biasing of the $\mathrm{p}-\mathrm{n}$ junction :
(1) the positive terminal of the battery is connected to p-side and the depletion region becomes thick
(2) the positive terminal of the battery is connected to n-side and the depletion region becomes thin
(3) the positive terminal of the battery is connected to n-side and the depletion region becomes thick
(4) the positive terminal of the battery is connected to p-side and the depletion region becomes thin

Sol. (4)
178. There are four light-weight-rod samples A, B, C, D separtely suspended by threads. A bar magnet is slowly brought near each sample and the following observations are noted :
(i) A is feebly repelled
(ii) B is feebly attacted
(iii) C is strongly attracted
(iv) D remains unaffected

Which one of the following is true?
(1) B is of a paramagnetic material
(2) C is of a diamagnetic material
(3) D is of a ferromagnetic material
(4) A is of a non-magnetic material

Sol. (1)

$$
\begin{aligned}
& \mathrm{A} \rightarrow \text { diamagnetic } \\
& \mathrm{B} \rightarrow \text { paramagnetic } \\
& \mathrm{C} \rightarrow \text { Ferromagnetic } \\
& \mathrm{D} \rightarrow \text { Non magnetic }
\end{aligned}
$$

179. A person of mass 60 kg is inside a lift of mass 940 kg and presses the button on control panel. The lift starts moving upwards with an acceleration $1.0 \mathrm{~m} / \mathrm{s}^{2}$. If $\mathrm{g}=10 \mathrm{~ms}^{-2}$, the tension in the supporting cable is :
(1) 8600 N
(2) 9680 N
(3) 11000 N
(4) 1200 N

Sol. (3)

$T-1000 \mathrm{~g}=1000 \times 1$
$T=1000 \times 11$
180. Symbolic representation of four logic gate are shown as:
(i)

(ii)

(iii)

(iv)

Pick out which ones are for AND, NAND and NOT gates, respectively:
(1) (ii), (iii) and (iv)
(2) (iii), (ii) and (i)
(3) (iii), (iii) and (iv)
(4) (ii), (iv) and (iii)

Sol. (4)
181. In an ac circuit an alternating voltage $e=200 \sqrt{2} \sin 100 t$ volts is connected to a capacitor of capacity 1 $\mu \mathrm{F}$. The r.m.s. value of the current in the circuit is :
(1) 10 mA
(2) 100 mA
(3) 200 mA
(4) 20 mA

Sol. (4)

$$
\begin{aligned}
i_{r m s} & =\frac{v_{r m s}}{X_{C}}=\frac{200}{\frac{1}{100 \times 10^{-6}}} \\
& =2 \times 10^{-2}=20 \mathrm{~mA}
\end{aligned}
$$

182. A current of 2 A flows through a 2Ω resistor when connected across abattery. The same battery supplies a current of 0.5 A when connected across a 9Ω reisstor. The internal resistance of the battery is :
(1) 0.5Ω
(2) $1 / 3 \Omega$
(3) $1 / 4 \Omega$
(4) 1Ω

Sol. (2)
$Z=\frac{E}{Z+r} \quad$;
$0.5=\frac{E}{9+r}$
$4=\frac{9+r}{2+r} \quad ; \quad 8+4 r=9+r$
$r=\frac{1}{3}$
183. A particle of mass m isreleased from rest and follows a parabolic path as shown. Assuming that the displacement of the mass from the origin is small, which graph correctly depicts the position of the particle as a function of time

(1)

(2)

(3)

(4)

Sol. (1)
SHM $t=0, v=0$
$\mathrm{X}=\mathrm{X}_{\text {max }}$
184. If power dissipated in the $9-\Omega$ resistor in the circuit shown in 36 Watt, the potential difference across the $2-\Omega$ resistor is

(1) 4 Volt
(2) 8 Volt
(3) 10 Volt
(4) 2 Volt

Sol. (3)
$p=\frac{v^{2}}{R}$
$36=\frac{v^{2}}{9}$
$v=6 \times 3=18$ volt
$p=i_{1}^{2} R \times 9$
$i_{1}=2 A=i \times \frac{6}{9+6}$
$i=\frac{2 \times 15}{6}$
$\mathrm{i}=5 \mathrm{~A}$
$V_{2}=5 \times 2=10 \mathrm{~V}$
185. A bioconvex lens has a radius of curvature of magnitude 20 cm . Which one of the following options describe best the image formed of an object of height 2 cm placed 30 cm from the lens ?
(1) Virtual, upright, height $=1 \mathrm{~cm}$
(2) Virtual, upright, height $=0.5 \mathrm{~cm}$
(3) Real, inverted, height $=4 \mathrm{~cm}$
(4) Real, inverted, height $=1 \mathrm{~cm}$

Sol. (3)

$\mathrm{R}=20$
$\mathrm{n}_{1}=2$
$u=-30$
$\frac{1}{f}=\left(\frac{3}{2}-1\right) \times \frac{2}{20}$
$f=20$
$m=\frac{v}{u}=-2$
$\frac{1}{20}=\frac{1}{v}+\frac{1}{30}$
$\frac{1}{v}=\frac{1}{20}-\frac{1}{30}$
$=\frac{10}{600}$
$v=60$
186. In the Davisson and Germer experiment, the velocity of electrons emitted from the electron gun can be increased by :
(1) increasing the potential difference between the anode and filament
(2) increasing the filament current
(3) decreasing the filament current
(4) decreasing the potential difference between the anode and filament

Sol. (1)
$\stackrel{\longmapsto \ominus}{ }$ E
187. The decreasing order of wavelength of infrared, microwave, ultraviolet and gamma rays is :
(1) microwave, infrared, ultraviolet, gamma rays
(2) gamma rays, ultraviolet, infrared, microwaves
(3) microwaves, gamma rays, infrared, ultraviolet
(4) infrared, microwave, ultraviolet, gamma rays

Sol. (1)
λ
microwave, infrared, ultraviolet, gamma rays.
188. Four electric charges $+q,+q,-q$ and $-q$ are placed at the corners of a square of side $2 I$ (see figure). The electric potential at point A, midway between the two charges $+q$ and $+q$, is :

(1) $\frac{1}{4 \pi \epsilon_{0}} \frac{2 q}{L}(1+\sqrt{5})$
(2) $\frac{1}{4 \pi \epsilon_{0}} \frac{2 q}{L}\left(1+\frac{1}{\sqrt{5}}\right)$
(3) $\frac{1}{4 \pi \in_{0}} \frac{2 q}{L}\left(1-\frac{1}{\sqrt{5}}\right)$
(4) Zero

Sol. (3]

$$
\mathrm{V}_{\mathrm{A}}=\frac{\mathrm{kq}}{\mathrm{~L}} \times 2-2 \frac{\mathrm{kq}}{\mathrm{~L} \sqrt{5}} \quad \quad\left(\text { Here, } \mathrm{k}=\frac{1}{4 \pi \epsilon_{0}}\right)
$$

$$
=\frac{2 \mathrm{kq}}{\mathrm{~L}}\left(1-\frac{1}{\sqrt{5}}\right)
$$

189. When 1 kg of ice at $0^{\circ} \mathrm{C}$ melts to water at $0^{\circ} \mathrm{C}$, the resulting change in its entropy, taking latent heat of ice to be $80 \mathrm{Cal} /{ }^{\circ} \mathrm{C}$, is :
(1) $273 \mathrm{Cal} / \mathrm{K}$
(2) $8 \times 10^{4} \mathrm{CaI} / \mathrm{K}$
(3) $80 \mathrm{Cal} / \mathrm{K}$
(4) $293 \mathrm{Cal} / \mathrm{K}$

Sol. (4)
$\mathrm{ds}=\frac{\mathrm{dQ}}{\mathrm{T}} \quad ; \quad \Delta \mathrm{s}=\frac{\Delta \mathrm{Q}}{\mathrm{T}}=\frac{\mathrm{mL}_{f}}{273}$
$\Delta \mathrm{s}=\frac{1000 \times 80}{273}=293 \mathrm{Cal} / \mathrm{K}$.
190. A uniform electric field and uniform magnetic field are acting along the same direction in a certain region. If an electron is projected in the region such that its velocity is pointed along the direction of fields, then the electron :
(1) will turn towards right of direction of motion
(2) speed will decrease
(3) speed will increase
(4) will turn towards left direction of motion

Sol. (2)

\vec{v} and \vec{B} are in same direction so that magnatic force on e^{-1} becomes zero only electric force acts.
But force on e^{-1} due to electric field opposite to the direction of velocity.
191. Sound waves travel at $350 \mathrm{~m} / \mathrm{s}$ through a warm air and at $3500 \mathrm{~m} / \mathrm{s}$ through brass. The wavelength of a 700 Hz acoustic wave as it enters brass from warm air :
(1) decreases by a factor 10
(2) increases by a factor 20
(3) increases by a factor 10
(4) decreases by a factor 20

Sol. (3)

192. Light of two different frequencies whose photons have energies 1 eV and 2.5 eV respectively illuminate a metallic surface whose work function is 0.5 eV successively. Ratio of maximum speeds emitted electrons will be :
(1) $1: 4$
(2) $1: 2$
(3) $1: 1$
(4) $1: 5$

Sol. (2)
$\mathrm{K} . \mathrm{E}=\phi-\phi_{0}$
$K . E_{1}=1 \mathrm{ev}-0.5 \mathrm{ev}=0.5 \mathrm{ev}$

$$
\frac{\mathrm{K} \cdot \mathrm{E}_{1}}{\mathrm{~K} \cdot \mathrm{E}_{2}}=\frac{0.5 \mathrm{ev}}{2 \mathrm{ev}}=\frac{1}{4} \quad ; \quad \frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\sqrt{\frac{1}{4}}=\frac{1}{2}
$$

193. A body of mass M hits normally a rigid wall with velocity V and bounces back with the same velocity. The impulse experienced by the body is :
(1) MV
(2) 1.5 MV
(3) 2 MV
(4) Zero

Sol. (3)
194. Electrons used in a electron microscope are accelerated by a voltage of 25 kV . If the voltage is increased to 100 kV then the de-Broglie wavelength associated with the electrons would :
(1) increases by 2 times
(2) decrease by 2 times
(3) decrease by 4 times
(4) increases by 4 times

Sol. (2)
$\lambda \propto \frac{1}{\sqrt{v}}$
$\frac{\lambda_{1}}{\lambda_{2}}=\sqrt{\frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}}=\sqrt{\frac{100 \mathrm{Kev}}{25 \mathrm{Kev}}}=2$
$\lambda_{2}=\frac{\lambda_{1}}{2}$
195. Out of the following functions representing motion of a particle which represents SHM :
(A) $y=\sin \omega t-\cos \omega t$
(B) $y=\sin ^{3} \omega t$
(C) $y=5 \cos \left(\frac{3 \pi}{4}-3 \omega t\right)$
(D) $y=1+\omega t+\omega^{2} t^{2}$
(1) Only (A)
(2) Only (D) does not represent SHM
(3) Only (A) and (C)
(4) Only (A) and (B)

Sol. (3)
196. In photoelectric emission process from a metal of work function 1.8 eV , the kinetic energy of most energetic electrons is 0.5 eV . The corresponding stopping potential is :
(1) 1.8 V
(2) 1.2 V
(3) 0.5 V
(4) 2.3 V

Sol. (3)
Maximum K.E. = Stopping Potential
197. The rate of increase of thermo-e.m.f. with temperature at the neutral temperature of a thermocouple :
(1) is positive
(2) is zero
(3) depends upon the choice of the two materials of the thermocouple.
(4) is negative

Sol. (2)
$e=a t+b t^{2} \quad \frac{d e}{d t}=a+2 b t$, as $T_{n}=-\frac{a}{2 b} \quad ; \quad$ At neutral temperature $\frac{d e}{d t}=0$

Resomance
Educating for better tomorrow
198. Force F on a particle moving in a straight line varies with distance d as shown in the figure. The work done on the particle during its displacement of 12 m is :

(1) 18 J
(2) 21 J
(3) 26 J
(4) 13 J

Sol. (4)

199. The current i in a coil varies with time as shown in the figure. The variation of induced emf with time would be :

(1)

(2)

(3)

(4)

Sol. (1)
$e=-L \frac{d i}{d t}$
during 0 to $\mathrm{T} / 4 \frac{\mathrm{di}}{\mathrm{dt}}=$ const. $(\mathrm{e} \Rightarrow-\mathrm{ve})$
$\mathrm{T} / 4$ to $\mathrm{T} / 2 \frac{\mathrm{di}}{\mathrm{dt}}=0 \quad(\mathrm{e} \Rightarrow 0)$
$\mathrm{T} / 2$ to $3 \mathrm{~T} / 4 \frac{\mathrm{di}}{\mathrm{dt}}=$ const. $\quad(\mathrm{e} \Rightarrow+\mathrm{ve})$
200. If a small amount of antimony is added to germanium crystal :
(1) It becomes a p-type semiconductor
(2) the antimony becomes an acceptor atom
(3) there will be more free electrons than holes in the semiconductor
(4) its resistance is increased

Sol. (3)
When small amount of antimony (pentavalent) is added to germanium crystal then crystal becomes n-type semi conductor.

Read carefully the following instructions:

1. Each candidate must show on demand his/her Admission Card to the Invigilator.
2. No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
3. The Candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. Cases where a candidate has not signed the Attendance Sheet the second time will be deemed not to have handed over Answer Sheet and dealt with as an unfair means case.
4. Use of Electronic/Manual Calculator is prohibited.
5. The Candidates are governed by all Rules and Regulations of the Board with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of the Board.
6. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
7. The candidates will write the Correct Test Booklet Code as given in Test Booklet/Answer Sheet in The Attendance Sheet.
