CHEMISTRY - PG 2016 Final

1) What is the empirical formula of a compound that contains 72 g carbon, 18 g hydrogen and 192 g oxygen? (The masses of H, C and O are 1,12 and 16)
A. $\mathrm{CH}_{4} \mathrm{O}_{4}$
B. CHO
C. $\mathrm{CH}_{3} \mathrm{O}_{2}$
D. $\mathrm{CH}_{4} \mathrm{O}_{2}$
2) What kind of orbitals do the nonbonding electrons of the oxygen in an alcohol occupy?
A. They occupy s orbitals
B. They occupy sp^{2} orbitals
C. They occupy sp orbitals
D. They occupy sp^{3} orbitals
3) Steam distillation would be the appropriate method of distillation for which of the following?
A. Diethyl ether and water
B. Ethyl alcohol and water
C. Aniline and sodium chloride
D. None of these
4) An organic compound (0.2 g) containing carbon, hydrogen and oxygen yielded on combustion 0.14 g of CO_{2} and 0.12 g of $\mathrm{H}_{2} \mathrm{O}$. The percentage composition of the compound is
A. $\mathrm{C}=19.90 \%, \mathrm{H}=6.66 \%, \mathrm{O}=74.24 \%$
B. $\mathrm{C}=25 \%, \mathrm{H}=1.66 \%, \mathrm{O}=73.34 \%$
C. $\mathrm{C}=66.7 \%, \mathrm{H}=11.1 \%, \mathrm{O}=22.2 \%$
D. $\mathrm{C}=30 \%, \mathrm{H}=3 \%, \mathrm{O}=67 \%$
5) Which of the following have lowest dipole moment?
A. Carbon tetrachloride
B. Chloromethane
C. Dichloromethane
D. Chloroform
6) Optical isomerism is shown by
A. n-butyl chloride
B. sec-butyl chloride
C. tert- butyl chloride
D. isobutyl chloride
7) LPG is a mixture of
A. methane+ethane
B. $\mathrm{O}_{2}+$ Acetylene
C. butane + Isobutane
D. acetylene $+\mathrm{H}_{2}$
8) Baeyer's reagent is
A. dil KMnO_{4}
B. $\mathrm{HCl}+\mathrm{ZnCl}_{2}$
C. Br_{2} in CCl_{4}
D. $\mathrm{NH}_{2} \mathrm{NH}_{2}$
9) 1,3-butadiene reacts with bromine to mainly give
A. 3,4-dibromo-1-butene
B. 4-bromo-1-butene
C. 1,4-dibromo-2-butene
D. 1-bromo-2-butene
10) Ozonolysis of 2-butyne gives
A. formic acid
B. propanoic acid
C. acetic acid
D. butanoic acid
11) Which compound would react most rapidly in an $\mathrm{S}_{\mathrm{N}} 2$ reaction?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$
B. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{I}$
C. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHI}$
D. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CI}$
12) Which compound will give tert-butyl alcohol with methyl magnesium bromide?
A. Acetyl chloride
B. Acetone
C. Isopropyl alcohol
D. Acetaldehyde
13) Isopropyl alcohol can be converted to acetone by treatment with
A. $\mathrm{HCl} / \mathrm{ZnCl}_{2}$
B. $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}_{2} \mathrm{SO}_{4}$
C. NaOH
D. LiAlH_{4}
14) Compound (A) reacts with sodium metal to form one mole of H_{2}. The compound (A) can be
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
B. $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
C. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
15) Compound (A) gave a positive iodoform test, but did not reduce silver metal in ammonia solution. Compound (A) could be
A.

B.

C.

D.

16) 2-bromobutyric acid $\xrightarrow[\text { reflux }]{\mathrm{NaOH}}(\mathrm{A})+\mathrm{NaBr}$
(A) can be
A.

B.

C.

D. $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}$
17) Acetamide can be converted to methylamine by
A. $\mathrm{P}_{2} \mathrm{O}_{5}$
B. PCl_{5}
C. $\mathrm{Br}_{2} / \mathrm{NaOH}$
D. LiAlH_{4}
18) Hydrolysis of an ester can be accomplished by
A. base-promoted hydrolysis
B. acid-catalyzed hydrolysis
C. Both of the above
D. Neither of the above
19) Diethyl malonate reacts with urea to give
A. butyric acid
B. barbituric acid
C. glutaric acid
D. mandelic acid
20) The degree of unsaturation of a fat can be determined by means of its
A. iodine number
B. octane number
C. saponification
D. melting point
21) Which of the following compounds react with nitrous acid to form an alcohol?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
B. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}$
C. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$
D.

22) Glycine reacts with nitrous acid to form
A. glycollic acid
B. diketopiperazine
C. methylamine
D. ethylalcohol
23) Which molecule will decolourize bromine in carbon tetrachloride most readily?
A. 1,2-dimethylcyclopropane
B. Cyclopentane
C. 1,2-dimethylcyclobutane
D. Cyclohexane
24) Uric acid on oxidation with alkaline KMnO_{4} forms
A. urea
B. barbituric acid
C. allantoin
D. caffeine
25)

α-D-glucopyranose is a (n)
A. hemiacetal
B. hemiketal
C. acetal
D. ketal
26) How many signals will vinyl chloride have in its proton NMR spectrum?
A. 4
B. 1
C. 3
D. 2
27) What is the order of basicity (most basic to least)?

I

II

III
A. I, II, III
B. I, III, II
C. III, II, I
D. II, I, III
28) Naphthalene undergoes oxidation with $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}_{2} \mathrm{SO}_{4}$ to form
A. Phthalic acid
B. Benzoic acid
C. Tetralin
D. Decalin
29) The aromaticity of the heterocycles is in the order
A. Thiophene $>$ pyrrole $>$ furan $>$ pyridine
B. Furan $>$ pyrrole $>$ thiophene $>$ pyridine
C. Pyridine $>$ thiophene $>$ pyrrole $>$ furan
D. Pyridine $>$ furan $>$ pyrrole $>$ thiophene
30) The Lindlar catalyst is
A. Na in alcohol
B. Raney nickel
C. $\mathrm{Pd} / \mathrm{CaCO}_{3}$
D. $\mathrm{Na} / \mathrm{LiqNH}_{3}$
31) Which of the following depict the same stereoisomer?

CH_{3}
1

2
$\mathrm{CH}_{2} \mathrm{CH}_{3}$

3
A. 1 and 2
B. 1 and 3
C. 2 and 3
D. 1, 2 and 3
32) Rank the following species in order of decreasing nucleophilicity in a polar protic solvent (most \rightarrow least nucleophilicity).

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}^{-} \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}^{-} \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}$
 $\begin{array}{lll}1 & 2 & 3\end{array}$

A. $3>1>2$
B. $2>3>1$
C. $1>3>2$
D. $2>1>3$
33) Which of the following are pyrimidines?

1. Adenine
2. Cytosine
3. Guanine
4. Thymine
A. 1, 2
B. 1,3
C. 1,4
D. 2, 4
34) A D carbohydrate is
A. always dextrorotatory
B. always levorotatory
C. always the anomer of the corresponding
D. None of the above
35) The optical rotation of the α-form of a pyranose is $+150.7^{\circ}$ and that of the β-form is $+52.8^{\circ}$. In solution an equilibrium mixture of the anomers has an optical rotation of $+80.2^{\circ}$. The percentage of the α-form at equilibrium is
A. 28%
B. 32%
C. 68%
D. 72%
36) Which of the following reactions is more effective?
I. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br} \rightarrow$
II. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{ONa}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br} \rightarrow$
A. Reaction I is more effective
B. Reaction II is more effective
C. Both reactions I and II are effective
D. Neither reaction I nor reaction II is effective
37) The reaction

most likely occurs by which of the following mechanisms?
A. Addition - elimination
B. Elimination - addition
C. Both (A) and (B)
D. Neither of these
38) Which of the following compounds gives a single benzyne intermediate on reaction with sodium amide?

1

2

3
A. 1 only
B. 1 and 3
C. 3 only
D. 1 and 2
39) Choose the response that matches the correct functional group classification with the following group of

A. Anhydride
B. Lactam
C. Imide

Lactam
Lactone
Imide
D. Imide

Lactone
Lactone
Lactam
Anhydride
Lactone
40) Which of the following pairs of aldehydes gives a single product in a mixed aldol condensation?
A. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
B. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{CH}_{2} \mathrm{O}$
C. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}+\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCHO}$
D. $\mathrm{CH}_{3} \mathrm{CHO}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCHO}$
41) Which of the following is a linear polymer?
A. High density polythene
B. Low density polythene
C. Bakelite
D. Vulcanized rubber
42) Bakelite is the product of the reaction between
A. formaldehyde and NaOH
B. aniline and urea
C. phenol and methanol
D. phenol and chloroform
43) Dettol consists of
A. xylenol + terpeneol
B. chloroxylenol + terpeneol
C. cresol + ethanol
D. None of the above
44) Which of the following is an ester?
A. Kerosene oil
B. Soap
C. Bees wax
D. Peptoses
45) Isopropylamine $\longrightarrow \mathrm{X} \longrightarrow \mathrm{Y}$. In the above sequence X and Y are respectively
A. Acetaldimine, Ethanol
B. Ethanol, Ketimine
C. Ketimine, Acetone
D. Acetone, Propan-2-ol
46) Green Chemistry means such reactions which
A. are related to the depletion of ozone layer
B. study of reactions in plants
C. produce colour during reactions
D. reduce the use and production of hazardous chemicals
47) The presence of chlorine is indicated in a compound if its mass spectrum, show M^{+} and $(\mathrm{M}+2)^{+}$peaks in the intensity ratio
A. 2:1
B. 3:1
C. 1:1
D. 1:2
48) Infrared region lies between
A. ultraviolet and radiowave
B. visible and radio waves
C. Visible and microwave
D. UV and Visible waves
49) What reagent and/or reaction conditions would you choose to bring about the following conversion?

A. $\mathrm{LiAlH}_{4}, 2 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{H}_{2} \mathrm{O}, \mathrm{NaOH}$
C. $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4}$
D. $\mathrm{PCC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$
50) Which of the following alcohols gives the best yield of dialkyl ether on being heated with a trace of sulphuric acid?
A. 1-Pentanol
B. 2-Pentanol
C. Cyclo pentanol
D. 2-Methyl-2-butanol
51) $\mathrm{dS}=0$ for a
A. Reversible process in an isolated system
B. Reversible process in a closed system
C. Reversible process in an open system
D. Irreversible process in an isolated system
52) Dispersion of liquid into a gas is called
A. sol
B. aerosol
C. emulsion
D. gel
53) Choose the correct statement:

The enthalpy of mixing for perfect gas
A. $\Delta_{\text {mix }} \mathrm{H}=0$
B. $\Delta_{\text {mix }} \mathrm{H}=1$
C. $\Delta_{\text {mix }} \mathrm{H}=<1$
D. $\Delta_{\text {mix }} H=>1$
54) Match the following:

Molecule	Point group
(I) $\mathrm{H}_{2} \mathrm{O}$	(i) T_{d}
(II) $\mathrm{CH}_{3} \mathrm{Cl}$	(ii) $\mathrm{D}_{2 \mathrm{~h}}$
(III) $\mathrm{C}_{2} \mathrm{H}_{4}$	(iii) $\mathrm{C}_{3 \mathrm{v}}$
(IV) CH_{4}	(iv) $\mathrm{C}_{2 \mathrm{v}}$

A. (I) - (iv), (II) - (iii), (III) - (ii), (IV) - (i)
B. (I) - (ii), (II) - (i), (III) - (iv), (IV) - (iii)
C. (I) - (iii), (II) - (i), (III) - (iv), (IV) - (ii)
D. (I) - (iv), (II) - (ii), (III) - (i), (IV) - (iii)
55) Choose the molecule(s) with a center of symmetry
(I) SF_{6} (II) CO_{2} (III) XeF_{4} (IV) $\mathrm{H}_{2} \mathrm{O}$
A. I, II and III only
B. IV only
C. III and IV only
D. I and IV only
56) Einstein temperature of solid, θ_{E}, is equal to
A. \hbar / kT
B. \hbar
C. ћ $/ \mathrm{k}$
D. PV
(where k is Boltzmann constant)
57) Match the following:

List I

List II

I) Total number of characteristic operations
(i) Symmetry element
II) Sum of diagonal elements
(ii) Identity
(iii) Character
III) Doing nothing
(iv) Order of the point group
A. (I)-(iv), (II)-(iii), (III)-(ii), (IV)-(i)
B. (I)-(ii), (II)-(iv), (III)-(i), (IV)-(iii)
C. (I)-(ii), (II)-(i), (III)-(iii), (IV)-(iv)
D. (I)-(i), (II)-(iii), (III)-(iv), (IV)-(ii)
58) The entropy is \qquad if there is only one way of achieving a given total energy
A. One
B. Zero
C. >1
D. Infinity
59) A reaction is thermodynamically feasible if
A. $\Delta_{\mathrm{r}} \mathrm{G}^{\theta}<0$
B. $\Delta_{\mathrm{r}} \mathrm{G}^{\theta}>0$
C. $\Delta_{\mathrm{r}} \mathrm{G}^{\theta}=0$
D. $\Delta_{\mathrm{r}} \mathrm{G}^{\theta}=1$
60) Number of orbitals in a shell with $\mathrm{n}=5$ (where n is the principal quantum number) is
A. 25
B. 5
C. 125
D. 3
61) Which one of the following statements is not true?
A. Ice has a residual entropy of $3.4 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
B. The osmotic pressure of a solution is proportional to the concentration of the solute
C. An ideal solution is one in which the solute obeys Henry's law
D. All heteronuclear diatomic molecules are nonpolar
62) If a system can exchange matter with the surroundings, it is called
A. open system
B. closed system
C. isolated system
D. metastable system
63) Which one of the following statements is not true?
A. Bosons are particles with half integral spin.
B. The stiffer the bond, the greater is the force constant.
C. Unit of pressure is pascal.
D. Normal value of the pH of the human blood plasma is 7.4.
64) Heat capacity is defined as
A. $C=d S / d T$
B. $\mathrm{C}=\mathrm{dq} / \mathrm{dT}$
C. $\mathrm{C}=\mathrm{dq}$
D. $\mathrm{C}=\mathrm{RT}$
65) The ideal gas constant, R, is equal to
A. $8.314 \mathrm{cal} \mathrm{mol}^{-1}$
B. $8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
C. $8.314 \mathrm{~J}^{\circ} \mathrm{C}^{-1} \mathrm{~mol}^{-1}$
D. $2 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
66) Which one of the following statements is not true?
A. Gold at the nanoscale is red.
B. $\mathrm{C}_{\mathrm{P}}-\mathrm{C}_{\mathrm{V}}=\mathrm{nR}$
C. e^{-}is a Fermion.
D. IR inactive vibration in CO_{2} is bending vibration.
67) Possible quantum states for a carbon atom with the configuration $1 s^{2} 2 s^{2} 2 p^{2}$
A. 12
B. 6
C. 15
D. 9
68) Stirling's approximation is
A. $\ln \mathrm{X}!; X \ln \mathrm{X}-\mathrm{X}$
B. $\ln \mathrm{X}!; X \ln X$
C. $\ln X!; X \ln X+X$
D. $\ln \mathrm{X}!; ~ X$
69) Unit of partition function is
A. dimensionless
B. s^{-1}
C. D
D. K^{-1}
70) Boltzmann's constant, k, is equal to
A. ideal gas constant
B. ideal gas constant \times Avogadro's number
C. ideal gas constant / T
D. ideal gas constant / Avogadro's number
71) Number of IR active normal modes of $\mathrm{H}_{2} \mathrm{O}$ molecule is
A. three
B. two
C. one
D. None of the above
72) Match the following:

Acids $\quad \mathrm{pKa}\left(\right.$ at $\left.25^{\circ} \mathrm{C}\right)$
I) Acetic acid (i) 3.75
II) Formic acid
III) Chromic acid
(ii) 6.49
IV) Periodic acid
(iii) 1.64
(iv) 76
A. (I)-(i), (II)-(iv), (III)-(ii), (IV) - (iii)
B. (I)-(ii), (II)-(i), (III)-(iv), (IV) - (iii)
C. (I)-(iii), (II)-(iv), (III)-(i), (IV) - (ii)
D. (I)-(iv), (II)-(i), (III)-(ii), (IV) - (iii)
73) Pick out the nuclei having spin, $\mathrm{I}=1$
(I) ${ }^{1} \mathrm{H}$ (II) ${ }^{2} \mathrm{D}$ (III) ${ }^{14} \mathrm{~N}$ (IV) ${ }^{19} \mathrm{~F}$
A. (II) and (III) only
B. (I) only
C. (IV) only
D. (I) and (IV) only
74) \qquad is known as dry ice.
A. Solid CO_{2}
B. $\mathrm{H}_{2} \mathrm{O}_{2}$
C. Phenol
D. $\mathrm{NH}_{4} \mathrm{Br}$
75) Choose the correct statement(s)
(I) An ensemble is defined as a collection of identical units of a system.
(II) Exponent is unitless.
(III) Absorbance, $\mathrm{A}=\log \mathrm{I}_{0}$
(IV) In fluorescence, the spontaneous emission may persist for long periods.
A. (I) and (II) only
B. (III) and (IV) only
C. (III) only
D. (IV) only
76) Best catalyst for NH_{3} synthesis is
A.Mo
B. Ni
C. Fe
D. None of the above
77) The number of vibrational degrees of freedom for a nonlinear polyatomics are
A. $3 \mathrm{~N}-6$
B. 3 N
C. $3 \mathrm{~N}-5$
D. $3 \mathrm{~N}+6$
78) The coordination number of a primitive cubic lattice is
A. 4
B. 8
C. 6
D. 9
79) Unit of molar absorption coefficient, ε, is
A. s^{-1}
B. $\mathrm{dm}^{3} \mathrm{~mol}^{-1}$
C. $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$
D. $\mathrm{kJ} \mathrm{mol}^{-1}$
80) The bond order of NO is
A. $2^{1 / 2}$
B. 2
C. 1
D. 3
81) Pick out Boson(s) from the following:
(I) ${ }^{2} \mathrm{H} \quad$ (II) ${ }^{4} \mathrm{He} \quad$ (III) $1^{4} \mathrm{~N} \quad$ (IV) Photon
A. All four
B. None
C. (I) only
D. (II) Only
82) Selection rule for rotational transition is
A. $\Delta \mathrm{J}= \pm 1$
B. $\Delta \mathrm{J}= \pm 2$
C. $\Delta \mathrm{J}=0$
D. $\Delta \mathrm{J}= \pm 3$
83) S branch lines arise from \qquad transition (Raman spectra)
A. $\mathrm{J} \rightarrow \mathrm{J}+1$
B. $\mathrm{J} \rightarrow \mathrm{J}$
C. $\mathrm{J} \rightarrow \mathrm{J}+2$
D. $\mathrm{J} \rightarrow \mathrm{J}-1$
84) The root mean square velocity is
A. 3 kT
B. 3 kTm
C. $(3 \mathrm{kT} / \mathrm{m})^{1 / 2}$
D. $(\mathrm{m} / 3 \mathrm{kT})^{1 / 2}$
85) Spectral region of rotation of polyatomic molecules is
A. Microwave
B. UV
C. Infrared
D. Visible
86) Pick out the microwave active molecule
A. HCl
B. CH_{4}
C. H_{2}
D. SF_{6}
87) Match the following:

Bond
I) $\mathrm{C}-\mathrm{C}$
II) $\mathrm{C}=\mathrm{C}$
III) $\mathrm{C} \equiv \mathrm{C}$
IV) $\mathrm{N} \equiv \mathrm{N}$

Bond Length (A°)
(i) 1.09
(ii) 1.20
(iii) 1.34
(iv) 1.54
A. (I) - (i), (II) - (ii), (III) - (iv), (IV) - (iii)
B. (I) - (ii), (II) - (iii), (III) - (iv), (IV) - (i)
C. (I) - (iii), (II) - (iv), (III) - (i), (IV) - (ii)
D. (I) - (iv), (II) - (iii), (III) - (ii), (IV) - (i)
88) Pick out the polar molecule(s) from the following:
(I) HCl (II) O_{3} (III) NH_{3} (IV) CO_{2}
A. I, II and III only
B. IV only
C. I and II only
D. II and IV only
89) Match the following:

Region

(I) Microwave
(II) Far IR
(III) IR
(IV) Visible \& UV

Molecular Process

(i) Vibration of flexible bonds
(ii) Electronic transitions
(iii) Rotation of small molecules
(iv) Rotation of polyatomic molecule
A. (I) - (iv), (II) - (iii), (III)- (i), (IV) - (ii)
B. (I) - (iii), (II) - (iv), (III)- (ii), (IV) - (i)
C. (I) - (ii), (II) - (iv), (III)- (iii), (IV) - (i)
D. (I) - (i), (II) - (ii), (III)- (iv), (IV) - (iii)
90) Match the following:

Vibration Type $\quad \bar{v} / \mathrm{cm}^{-1}$
I) $\mathrm{C} \equiv \mathrm{C}$ stretch
(i) 700-1250
II) $\mathrm{C}=\mathrm{O}$ stretch
(ii) $1640-1780$
III) C - C stretch, bend
(iii) 2100-2260
IV) Hydrogen bonds
(iv) 3200-3570
A. (I) - (iii), (II) - (ii), (III) - (i), (IV) - (iv)
B. (I) - (iii), (II) - (iv), (III) - (ii), (IV) - (i)
C. (I) - (ii), (II) - (iv), (III) - (iii), (IV) - (i)
D. (I) - (i), (II) - (ii), (III) - (iv), (IV) - (iii)
91) Dipole moment of CCl_{4} is
A. Zero
B. 1.85
C. 1.08
D. 0.45
92) Variance is
A. Equal to standard deviation
B. Average value
C. Square root of the standard deviation
D. Square of the standard deviation
93) Which one of the following statements is not true?
A. The freezing temperature when the pressure is 1 atm is called the normal freezing point.
B. Charge on a proton is equal to $1.6022 \times 10^{-19} \mathrm{C}$.
C. Vibrational energy levels are equally or evenly spaced.
D. The conductivity of a metallic conductor increases as the temperature is raised.
94) Calculate the height of column of water that exerts same pressure as a column of mercury of 760 mm height (density of mercury $=13.6 \mathrm{~g} / \mathrm{cm}^{3}$).
A. 1.05 m
B. 5.25 m
C. 10.3 m
D. 8.3 m
95) A balloon inside a room, where the temperature is $27^{\circ} \mathrm{C}$ has a volume of 2.00 L . What will its volume be outdoors, where the temperature is $-23^{\circ} \mathrm{C}$ (Assume no change in the gas pressure).
A. 1.20 L
B. 1.67 L
C. 4.80 L
D. 2.40 L
96) How much heat does it take to raise the temperature of 225 g water from 25.0 to $100.0^{\circ} \mathrm{C}$?
A. 70.5 kJ
B. 40.37 kJ
C. 58.5 kJ
D. 705.00 J
97) For the reaction $\mathrm{A} \rightarrow$ products a plot of [A] versus time is found to be a straight line. The order of the reaction is
A. first
B. second
C. zero
D. impossible to determine from the graph
98) The reaction $2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}+2 \mathrm{D}$ is first order in A and first order in B . For this reaction
A. rate of reaction $=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]$
B. rate of reaction $=k[A]^{2}$
C. rate of disappearance of $\mathrm{A}=$ rate of disappearance of B
D. rate of formation of $\mathrm{C}=-$ (rate of disappearance of B)
99) The first order reaction has a half life of 13.9 mm . The rate at which the reaction proceeds when $[\mathrm{A}]=0.40 \mathrm{M}$ is
A. $0.020 \mathrm{M} \mathrm{min}^{-1}$
B. $8.0 \mathrm{M} \mathrm{min}^{-1}$
C. $0.050 \mathrm{M} \mathrm{min}^{-1}$
D. $0.125 \mathrm{M} \mathrm{min}^{-1}$
100) Which of the following is most likely to lead to the complete precipitation of a metal ion as its sulphide from a saturated solution of $\mathrm{H}_{2} \mathrm{~S}$?
A. Add an acid
B. Increase the $\left[\mathrm{H}_{2} \mathrm{~S}\right]$ in the solution
C. Raise the pH
D. Heat the solution
101) A body mass of 10 mg is moving with a velocity of $100 \mathrm{~ms}^{-1}$. The wavelength of the deBroglie wave associated with it would be
A. $6.63 \times 10^{-37} \mathrm{~m}$
B. $6.63 \times 10^{-31} \mathrm{~m}$
C. $6.63 \times 10^{-34} \mathrm{~m}$
D. $6.63 \times 10^{-35} \mathrm{~m}$
102) Which of the following is used as moderator in nuclear reactors?
A. Cadmium
B. Heavy water
C. Uranium
D. Boron
103) If MX_{3} is T shaped, then the lone pair around M is
A. 2
B. 0
C. 3
D. 5
104) Which of the following is amphoteric oxide?
A. CO
B. $\mathrm{N}_{2} \mathrm{O}$
C. $\mathrm{Al}_{2} \mathrm{O}_{3}$
D. $\mathrm{P}_{4} \mathrm{O}_{10}$
105) XeF_{6} on reaction with CsF gives
A. $\left[\mathrm{XeF}_{5}\right]^{+}\left[\mathrm{CsF}_{2}\right]^{-}$
B. XeF_{8}
C. $\left[\mathrm{XeF}_{4}\right]^{2+}\left[\mathrm{CsF}_{3}\right]^{2-}$
D. $\mathrm{Cs}^{+}\left[\mathrm{XeF}_{7}\right]^{-}$
106) The oxidation number of Pt in $\left[\mathrm{Pt}_{\left.\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{Cl}_{3}\right]^{-} \text {is }}\right.$
A. +1
B. +2
C. +3
D. +4
107) An example of a molecule with 3center-2 electron band is
A. XeF_{2}
B. $\mathrm{B}_{2} \mathrm{H}_{6}$
C. ICl_{2}
D. BF_{4}
108) Which of the following gives red precipitate with AgNO_{3} ?
A. KI
B. $\mathrm{K}_{2} \mathrm{CrO}_{4}$
C. NaBr
D. NaNO_{3}
109) When a substance A reacts with water, it produces a combustible gas B and a solution of substance C in water. When another substance D reacts with this solution of C, it also produces the same gas B on warming but D can produce gas B on reaction with dilute sulphuric acid at room temperature. A imparts a deep golden yellow colour to a smokeless flame of Bunsen burner. A, B, C and D respectively are
A. $\mathrm{Na}, \mathrm{H}_{2}, \mathrm{NaOH}, \mathrm{Zn}$
B. $\mathrm{K}, \mathrm{H}_{2}, \mathrm{KOH}, \mathrm{Al}$
C. $\mathrm{Ca}, \mathrm{H}_{2}, \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Sn}$
D. $\mathrm{CaC}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Fe}$
110. If 3.22 g of $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot \mathrm{nH}_{2} \mathrm{O}$ on heating expels 1.80 g of water to give the anhydrous salt, then its molecular formula is
A. $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
B. B. $2 \mathrm{Na}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
D. $3 \mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
111. The order of polarity of bonds, shown by a dash is
A. $\mathrm{H}-\mathrm{Cl}>\mathrm{H}-\mathrm{OH}>\mathrm{H}-\mathrm{NH}_{2}$
B. $\mathrm{H}-\mathrm{OH}>\mathrm{H}-\mathrm{Cl}>\mathrm{H}-\mathrm{NH}_{2}$
C. $\mathrm{H}-\mathrm{Cl}>\mathrm{H}-\mathrm{NH}_{2}>\mathrm{H}-\mathrm{OH}$
D. $\mathrm{H}-\mathrm{OH}>\mathrm{H}-\mathrm{NH}_{2}>\mathrm{H}-\mathrm{Cl}$
112. The first four ionization energies of an element are $288,412,650$ and $3220 \mathrm{~kJ} / \mathrm{mol}$ respectively. The number of valence electrons present in the element is
A. 1
B. 2
C. 3
D. 4
113. The correct order of the first ionization energies of $\mathrm{C}, \mathrm{N}, \mathrm{O}$ and F is
A. $\mathrm{C}<\mathrm{N}<\mathrm{O}<\mathrm{F}$
B. $\mathrm{F}<\mathrm{N}<\mathrm{O}<\mathrm{C}$
C. $\mathrm{O}<\mathrm{F}<\mathrm{N}<\mathrm{C}$
D. $\mathrm{C}<\mathrm{O}<\mathrm{N}<\mathrm{F}$
114. The common isotopes of carbon are ${ }^{12} \mathrm{C}(98.9 \%)$ and ${ }^{13} \mathrm{C}(1.1 \%)$. The atomic mass of naturally occurring carbon is
A. 12.50 u
B. 13.00 u
C. 12.00 u
D. 12.01 u
115. The boiling points of $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{H}_{2} \mathrm{Se}$ are in the order
A. $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}$
B. $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}$
C. $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{Se}$
D. $\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{Se}$
116. The radii of hydrated ions is in the order
A. $\mathrm{Rb}^{+}>\mathrm{K}^{+}>\mathrm{Na}^{+}>\mathrm{Li}^{+}$
B. $\mathrm{Li}^{+}>\mathrm{Na}^{+}>\mathrm{K}^{+}>\mathrm{Rb}^{+}$
C. $\mathrm{Na}^{+}>\mathrm{K}^{+}>\mathrm{Rb}^{+}>\mathrm{Li}^{+}$
D. $\mathrm{Rb}^{+}>\mathrm{Na}^{+}>\mathrm{K}^{+}>\mathrm{Li}^{+}$
117. In the graph of atomic number vs. ionization energy for the elements through Na to Ar,
A. maxima occur at Mg and S
B. maxima occur at Mg and P
C. maxima occur at Na and P
D. maxima occur at Na and S
118. In the series, $\mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{Na}^{+}$and Mg^{2+}, the ionic radii varies in the order
A. $\mathrm{O}^{2-}>\mathrm{F}^{-}>\mathrm{Na}^{+}>\mathrm{Mg}^{2+}$
B. $\mathrm{O}^{2-}<\mathrm{F}^{-}>\mathrm{Na}^{+}<\mathrm{Mg}^{2+}$
C. $\mathrm{O}^{2-}>\mathrm{F}^{-}<\mathrm{Na}^{+}>\mathrm{Mg}^{2+}$
D. $\mathrm{O}^{2-}=\mathrm{F}^{-}=\mathrm{Na}^{+}=\mathrm{Mg}^{2+}$
119. The formal charge on oxygen in the species

is
A. -2
B. -1
C. +1
D. +3
120. Both the structures, (a) and (b) of CO_{2} given below satisfy the octet rule.

The better structure between them and the reason for that is
A. (a); there is no formal charge on any atom.
B. (a); all the electron pairs are symmetrically arranged.
C. (b); sum of the single and triple bond energies is greater than the sum of the two double bond energies.
D. (b); the two oxygens carry opposite formal charges and hence attract each other.
121. Which one of the following properties is not the characteristic of alkali metals?
A. Low I E
B. Low electronegativity
C. Outermost ns ${ }^{1}$ electronic configuration
D. Low atomic volume
122. According to the VSEPR theory, the structures of PF_{5} and BrF_{5} are respectively
A. TBP and SP
B. SP and TBP
C. TBP and TBP
D. SP and SP
123. The number of bond pairs and lone pairs present in the molecules, (a) BF_{3} and (b) PF_{3} are,
A. (a) 3,1 ; (b) 3,1
B. (a) 3,0 ; (b) 3,1
C. (a) 1,0 ; (b) 3,1
D. (a) 3,0 ; (b) 3,0
124. The hybridisations and the geometries of XeF_{4} and SF_{4} are respectively,
A. $\mathrm{sp}^{3} \mathrm{~d}^{2}$, octahedral and sp^{3}, tetrahedral
B. $\mathrm{sp}^{3} \mathrm{~d}^{2}$, octahedral and $\mathrm{sp}^{3} \mathrm{~d}$, see-saw
C. $\mathrm{sp}^{3} \mathrm{~d}^{2}$, square planar and sp^{3}, tetrahedral
D.sp ${ }^{3} \mathrm{~d}^{2}$, square planar and $\mathrm{sp}^{3} \mathrm{~d}$, see-saw
125. In which of the following the $\mathrm{O}-\mathrm{N}-\mathrm{O}$ bond angle is the highest?
A. $\mathrm{N}_{2} \mathrm{O}_{4}$
B. $\mathrm{NO}_{2}{ }^{+}$
C. $\mathrm{NO}_{2}{ }^{-}$
D. NO_{3}^{-}
126. The order of screening effect of electrons in the inner orbitals of an atom on the outer most electrons is
A. $s>p>d>f$
B. $s>d>p>f$
C. $\mathrm{p}>\mathrm{d}>\mathrm{f}>\mathrm{s}$
D. $d>f>p>s$
127. Which of the following represents the best resonance structure for $\mathrm{N}_{2} \mathrm{O}$?
A.
B. $\quad \because: \because-\stackrel{\oplus}{N} \equiv N$:
C.
D.
128. Among $\mathrm{H}_{2} \mathrm{O}, \mathrm{PF}_{5}, \mathrm{BrF}_{5}$ and BF_{3}, the molecules with zero dipole moment are
A. BrF_{5} and BF_{3}
B. PF_{5} and BrF_{5}
C. PF_{5} and BF_{3}
D. BF_{3} and $\mathrm{H}_{2} \mathrm{O}$
129. The strongest Bronsted base among $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HSO}_{4}^{-}, \mathrm{NO}_{3}^{-}$and $\mathrm{CH}_{3} \mathrm{COO}^{-}$is
A. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
B. HSO_{4}^{-}
C. $\mathrm{CH}_{3} \mathrm{COO}^{-}$
D. NO_{3}
130. Among $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{NO}, \mathrm{NO}^{+}, \mathrm{O}_{2}^{+}$and $\mathrm{O}_{2}{ }^{2-}$, the species having the same bond orders are
A. $\mathrm{O}_{2}, \mathrm{NO}$,
B. $\mathrm{N}_{2}, \mathrm{NO}^{+}$
C. $\mathrm{N}_{2}, \mathrm{O}_{2}{ }^{2-}$
D. $\mathrm{NO}^{+}, \mathrm{O}_{2}{ }^{+}$
131. Which of the following reactions of xenon compounds is not feasible?
A. $3 \mathrm{XeF}_{4}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Xe}+\mathrm{XeO}_{3}+12 \mathrm{HF}+1.5 \mathrm{O}_{2}$
B. $\mathrm{XeO}_{3}+6 \mathrm{HF} \rightarrow \mathrm{XeF}_{6}+3 \mathrm{H}_{2} \mathrm{O}$
C. $2 \mathrm{XeF}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Xe}+4 \mathrm{HF}+\mathrm{O}_{2}$
D. $\mathrm{XeF}_{6}+\mathrm{RbF} \rightarrow \mathrm{Rb}\left[\mathrm{XeF}_{7}\right]$
132. When Br_{2} reacts with hot concentrated KOH , the oxidation numbers of bromine in the products changes as
A. 0 to -1 and 0 to +3
B. 0 to -1 and 0 to +5
C. 0 to -1 and 0 to +7
D. 0 to +3
133. The most acidic and the least acidic among $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{As}_{2} \mathrm{O}_{3}, \mathrm{Sb}_{2} \mathrm{O}_{3}$ and $\mathrm{Bi}_{2} \mathrm{O}_{3}$ are respectively,
A. $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{As}_{2} \mathrm{O}_{3}$
B. $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{Bi}_{2} \mathrm{O}_{3}$
C. $\mathrm{Bi}_{2} \mathrm{O}_{3}, \mathrm{P}_{2} \mathrm{O}_{5}$
D. $\mathrm{Bi}_{2} \mathrm{O}_{3}, \mathrm{P}_{2} \mathrm{O}_{5}$
134. Which among the following compounds would have optical isomers?
$\mathbf{I}:$ cis- $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}$, II: trans-[$\left.\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}, \mathbf{I I I}:\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ and IV: $\left[\mathrm{Ni}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$.
A. Both I and II
B. both I and III
C. All the four
D. I only
135. The order of CFSEs for octahedral complexes of $\mathrm{Cr}(\mathrm{III})$ with $\mathrm{I}^{-}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$ and CN^{-} are in the order,
A. $\mathrm{CN}^{-}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{I}^{-}$
B. $\mathrm{CN}^{-}<\mathrm{H}_{2} \mathrm{O}<\mathrm{I}^{-}<\mathrm{NH}_{3}$
C. $\Gamma<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{CN}^{-}$
D. $\Gamma^{-}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{CN}^{-}$
136. The complex [$\left.\mathrm{Ma}_{4} \mathrm{bc}\right]$ can exist as cis- and trans-isomer. Which one of them will give three isomeric products by replacing a ' a ' ligand by ' c '? (a, b and c are monodentate ligands).
A. cis-only
B. trans-only
C. both cis- and trans
D. none of them
137. Identify the not true statement among the following:
A. $\left[\mathrm{CoF}_{6}\right]^{3-}$: octahedral and paramagnetic
B. $\left[\mathrm{NiCl}_{4}\right]^{2-}$: square planar and diamagnetic
C. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$: square planar and diamagnetic
D. $\left[\mathrm{CuCl}_{4}\right]^{2-}$: square planar and paramagnetic
138. In which of the following compounds, the formal oxidation state and coordination number of Co are, respectively, -1 and 4 ?
A. $\mathrm{Co}_{2}(\mathrm{CO})_{8}$
B. $\mathrm{MeCo}(\mathrm{CO})_{4}$
C. $\mathrm{NaCo}(\mathrm{CO})_{4}$
D. $\mathrm{Co}_{4}(\mathrm{CO})_{12}$
139. The increasing order of magnetic moments of I :
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4+}$, II: $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$, III: $\left[\mathrm{CrCl}_{6}\right]^{3-}$ and IV: $\left.\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is
A. I $<$ II $<$ III $<$ IV
B. I $<$ II $<$ IV $<$ III
C. IV $<$ III $<$ I $<$ II
D. II $<$ III $<$ I $<$ IV
140. Which one of the following pairs of isomers and types of isomerism are correctly matched?
(I) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}_{2}\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{ONO})\right] \mathrm{Cl}_{2}$ - linkage
(II) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{PtCl}_{4}\right]$ and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{CuCl}_{4}\right]$ - coordination
(III) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{SO}_{4}$ and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Br}_{2}-$ ionization
A. (II) and (III)
B. (I), (II) and (III)
C. (I) and (II)
D. (I) and (III)
141. Which one of the following combinations is likely to yield a stable molecule of the type XY_{7} ?
A. $\mathrm{X}=\mathrm{F}, \mathrm{Y}=\mathrm{I}$
B. $\mathrm{X}=\mathrm{Cl}, \mathrm{Y}=\mathrm{F}$
C. $\mathrm{X}=\mathrm{Br}, \mathrm{Y}=\mathrm{Cl}$
D. $\mathrm{X}=\mathrm{I}, \mathrm{Y}=\mathrm{F}$
142. The number of P-O-P bridges in $\mathrm{P}_{4} \mathrm{O}_{6}$ and $\mathrm{P}_{4} \mathrm{O}_{10}$ are respectively,
A. 4,4
B. 4,6
C. 6,4
D. 6,6
143. Identify the isostructural pairs among the following: $\mathrm{NF}_{3}, \mathrm{NO}_{3}{ }^{-}, \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{I}_{3}{ }^{-}$and BF_{3}.
A. $\left[\mathrm{NF}_{3}, \mathrm{NO}_{3}\right]$ and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$and $\left.\mathrm{BF}_{3}\right]$
B. $\left[\mathrm{NF}_{3}, \mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{NO}_{3}^{-}\right.$and $\left.\mathrm{BF}_{3}\right]$
C. $\left[\mathrm{NF}_{3}, \mathrm{BF}_{3}\right]$ and $\left[\mathrm{NO}_{3}^{-}\right.$and $\left.\mathrm{I}_{3}\right]$
D. $\left[\mathrm{NF}_{3}, \mathrm{NO}_{3}{ }^{-}\right]$and $\left[\mathrm{BF}_{3}\right.$ and $\left.\mathrm{I}_{3}{ }^{-}\right]$
144. For a transition metal ion having eight electrons in its d-orbitals, the spin-only magnetic moment (in B M) will be
A. $\sqrt{18}$
B. $\sqrt{8}$
C. $\sqrt{9}$
D. $\sqrt{10}$
145. The E^{0} values for $\mathrm{Ag}^{+} / \mathrm{Ag}, \mathrm{K}^{+} / \mathrm{K}, \mathrm{Mg}^{2+} / \mathrm{Mg}$ and $\mathrm{Cr}^{3+} / \mathrm{Cr}$ are $0.80 \mathrm{~V},-2.93 \mathrm{~V},-2.37 \mathrm{~V}$ and -0.74 V respectively. The reducing power of the metals is in the order
A. $\mathrm{Ag}>\mathrm{Cr}>\mathrm{Mg}>\mathrm{K}$
B. $\mathrm{K}>\mathrm{Mg}>\mathrm{Cr}>\mathrm{Ag}$
C. $\mathrm{Ag}>\mathrm{Cr}>\mathrm{K}>\mathrm{Mg}$
D. $\mathrm{Cr}>\mathrm{Ag}>\mathrm{Mg}>\mathrm{K}$
146. Metallic copper and iron have respectively FCC and BCC structures at room temperature. The coordination numbers of Cu and Fe in their structures are
A. $\mathrm{Cu}: 12$ and $\mathrm{Fe}: 8$
B. $\mathrm{Cu}: 8$ and $\mathrm{Fe}: 12$
C. $\mathrm{Cu}: 6$ and $\mathrm{Fe}: 8$
D. $\mathrm{Cu}: 6$ and $\mathrm{Fe}: 6$
147. Which of the following are peroxo acids of suphur?
A. $\mathrm{H}_{2} \mathrm{SO}_{5}$ and $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
B. $\mathrm{H}_{2} \mathrm{SO}_{5}$ and $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
C. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ and $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
D. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$ and $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
148. The atomicity and the total number of bonds in elemental white phosphorus molecule are, respectively
A. 4 and 6
B. 6 and 4
C. 4 and 4
D. 6 and 6
149. Which one of the following does not obey 18 -electron rule?
A. $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$
B. $\left[\mathrm{Cr}(\mathrm{CO})_{5}\right]^{2-}$
C. $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+}$
D. $\left[\mathrm{V}(\mathrm{CO})_{6}\right]$
150. If the CFSE for an octahedral complex ML_{6} is $20000 \mathrm{~cm}^{-1}$, then the CFSE of the tetrahedral complex, ML_{4} will be approximately
A. $20000 \mathrm{~cm}^{-1}$
B. $15000 \mathrm{~cm}^{-1}$
C. $9000 \mathrm{~cm}^{-1}$
D. $45000 \mathrm{~cm}^{-1}$

