# Rao IIT Academy 

Symbol of Excellence and Perfection
JEE | MEDICAL-UG | BOARDS | KVPY | NTSE | OLYMPIADS | MHT-CET

$$
\begin{gathered}
\text { MEDICAL - UG } \\
\text { NEET - II }
\end{gathered}
$$

## QUESTION PAPER (24/07/2016)

## CODE : AA/PP/WW

1. Planck's constant ( $h$ ) speed of light in vacuum (c) and 4. Newton's gravitational constant are three fundamental constant. Which of the following combination of these has the dimension of length?
(1) $\frac{\sqrt{h G}}{c^{3 / 2}}$
(2) $\frac{\sqrt{h G}}{c^{5 / 2}}$
(3) $\sqrt{\frac{h c}{G}}$
(4) $\sqrt{\frac{G c}{h^{3 / 2}}}$
2. Two cars P and Q start from a point at the same time in a straight line and their positions are represented by $x_{P}(t)=a t+b t^{2}$ and $x_{Q}(t)=f t-t^{2}$. At what time do the cars have the same velocity?
(1) $\frac{a-f}{1+b}$
(2) $\frac{a+f}{2(b-1)}$
(3) $\frac{a+f}{2(1+b)}$
(4) $\frac{f-a}{2(1+b)}$
3. In the given figure, $\alpha=15 \mathrm{~m} / \mathrm{s}^{2}$ represents the total acceleration of a particle moving in the clockwise directin in a circle of radius $R=2.5 \mathrm{~m}$ at a given instant of time. The speed of the particle is

(1) $4 \cdot 5 \mathrm{~m} / \mathrm{s}$
(2) $5 \cdot 0 \mathrm{~m} / \mathrm{s}$
(3) $5.7 \mathrm{~m} / \mathrm{s}$
(4) $6 \cdot 2 \mathrm{~m} / \mathrm{s}$

A rigid ball of mass $m$ strikes a rigid will at $60^{\circ}$ and gets reflected without loss of speed as shown in the figure below. The value of impulse imparted by the wall on the ball will be

(1) $m V$
(2) $2 m V$
(3) $\frac{m V}{2}$
(4) $\frac{m V}{3}$
5. A bullet of mass 10 g moving horizontally with a velocity of $400 \mathrm{~ms}^{-1}$ srike a wooden block of mass 2 kg which is suspended by a light inextensible string of length 5 m . As a result, the centre of gravity of the block is found to rise a vertical distance of 10 cm . The speed of the bullet after it emerges out horizontally from the block will be
(1) $100 \mathrm{~ms}^{-1}$
(2) $80 \mathrm{~ms}^{-1}$
(3) $120 \mathrm{~ms}^{-1}$
(4) $160 \mathrm{~ms}^{-1}$
6. Two identical balls $A$ and $B$ having velocities of $0.5 \mathrm{~m} / \mathrm{s}$ and $-0.3 \mathrm{~m} / \mathrm{s}$ respectively collide elastically in one dimension. The velocities of B and A after the collision respectively will be
(1) $-0.5 \mathrm{~m} / \mathrm{s}$ and $0.3 \mathrm{~m} / \mathrm{s}$
(2) $0.5 \mathrm{~m} / \mathrm{s}$ and $-0.3 \mathrm{~m} / \mathrm{s}$
(3) $-0.3 \mathrm{~m} / \mathrm{s}$ and $0.5 \mathrm{~m} / \mathrm{s}$
(4) $0.3 \mathrm{~m} / \mathrm{s}$ and $0.5 \mathrm{~m} / \mathrm{s}$
7. A particle moves from a point $(-2 \hat{i}+5 \hat{j})$ to $(4 \hat{j}+3 \hat{k})$ when a force of $(4 \hat{i}+3 \hat{j}) N$ is applied. How much work has been done by the force ?
(1) 8 J
(2) 11 J
(3) 5 J
(4) 2 J
8. Two rotating bodies A and B masses $m$ and $2 m$ with 12. A satellite of mass $m$ is orbiting the earth (of radius $R$ ) at a
(4)

moments of inertial $I_{A}$ and $I_{B}\left(I_{B}>I_{A}\right)$ have equal kinetic energy of rotation. If $L_{A}$ and $L_{B}$ be their angular momenta respectively, then
(1) $L_{A}=\frac{L_{B}}{2}$
(2) $L_{A}=2 L_{B}$
(3) $L_{B}>L_{A}$
(4) $L_{A}>L_{B}$
(1) $m g_{0} R^{2}$
(2) $-\frac{m g_{0} R^{2}}{2(R+h)}$
(3) $\frac{2 m g_{0} R^{2}}{R+h}$
9. A solid sphere of mass $m$ and radius $R$ is rotating about its diameter. A solid cylinder of the same mass and same radius is also rotating about its geometrical axis with an angular speed twice that of the sphere. The ratio of their kientic energies of rotation $\left(E_{\text {sphere }} / E_{\text {cylinder }}\right)$ will be
(1) $2: 3$
(2) $1: 5$
(3) $1: 4$
(4) $3: 1$
(4) $-\frac{2 m g_{0} R^{2}}{R+h}$
13. A rectangular film of liquid is extended from ( $4 \mathrm{~cm} \times 2$ $\mathrm{cm})$ to $(5 \mathrm{~cm} \times 4 \mathrm{~cm})$. If the work done is $3 \times 10^{-4} \mathrm{~J}$, the value of the surface tension of the liquid is
(1) $0.250 \mathrm{Nm}^{-1}$
(2) $0.125 \mathrm{Nm}^{-1}$
(3) $0.2 \mathrm{Nm}^{-1}$
(4) $8.0 \mathrm{~N} \mathrm{~m}^{-1}$
14. Three liquids of densities $\rho_{1}, \rho_{2}$ and $\rho_{3}$ (with $\rho_{1}>\rho_{2}>\rho_{3}$ ), having the same value of surface tension T , rise to the same height in three identical capillaries. The angle of contact $\theta_{1}, \theta_{2}$ and $\theta_{3}$ obey
(1) $\frac{\pi}{2}>\theta_{1}>\theta_{2}>\theta_{3} \geq 0$
(2) $0 \leq \theta_{1}<\theta_{2}<\theta_{3}<\frac{\pi}{2}$
11. Starting from the centre of the earth having redius $R$, the variation of $g$ (acceleration due to gravity) is shown by
(1)

(3) $\frac{\pi}{2}<\theta_{1}<\theta_{2}<\theta_{3}<\pi$
(4) $\pi>\theta_{1}>\theta_{2}>\theta_{3}>\frac{\pi}{2}$
(2)

(3)
 height $h$ from its surface. The total energy of the satellite in terms of $g_{0}$, the value of acceleration due to gravity at the earth's surface is
(3) $\left(m_{1}+m_{2}\right) l^{2}$
(4) $\sqrt{m_{1} m_{2}} l^{2}$
15. Two identical bodies are made of a material for which the heat capacity increases with temperature. One of these is at $100^{\circ} \mathrm{C}$, while the other one is at $0^{\circ} \mathrm{C}$. If the two bodies are brought into contact, then, assuming no heat loss, the final common temperature is
(1) $50{ }^{\circ} \mathrm{C}$
(2) more than $50^{\circ} \mathrm{C}$
(3) less than $50^{\circ} \mathrm{C}$ but greater than $0^{\circ} \mathrm{C}$
(4) $0{ }^{\circ} \mathrm{C}$
16. A body cools from a temperature $3 T$ to $2 T$ in 10 minutres. 20. A body of mass $m$ is attached to the lower end of a spring

The room temperatuer is $T$. Assume that Newton's law of cooling is applicable. The temperature of the body at the end of next 10 minutre will be
(1) $\frac{7}{4} T$
(2) $\frac{3}{2} T$
(3) $\frac{4}{3} T$
(4) $T$
17. One mole of an ideal monoatomic gas undergoes a process described by the equation $P V^{3}=$ constant. The heat capacity of the gas during this process is
(1) $\frac{3}{2} R$
(2) $\frac{5}{2} R$
(3) $2 R$
(4) $R$
18. The temperature inside a refrigerato is $t_{2}{ }^{\circ} \mathrm{C}$ and the room temperature is $t_{1}{ }^{\circ} \mathrm{C}$. The amount of heat delivered to the room for each joule of electrical energy consumed ideally will be
(1) $\frac{t_{1}}{t_{1}-t_{2}}$
(2) $\frac{t_{1}+273}{t_{1}-t_{2}}$
(3) $\frac{t_{2}+273}{t_{1}-t_{2}}$
(4) $\frac{t_{1}+t_{2}}{t_{1}+273}$
19. A given sample of an ideal gas occupies a volume V at a pressure P and absolute temperature T . The mass of each molecule of the gas is $m$. Which of the following gives the density of the gas?
(1) $\quad P /(k T)$
(2) $P m /(k T)$
(3) $P /(k T V)$
(4) $m k T$
(1) $\frac{3}{4}$
(2) $\frac{4}{3}$
(3) $\frac{16}{9}$
(4) $\frac{9}{16}$
21. The second overtone of an open organ pipe has the same frequency as the first overtone of a close pipe $L$ metre long. The length of the open pipe will be
(1) $L$
(2) $2 L$
(3) $\frac{L}{2}$ whose upper end is fixed. The spring has negligible mass. When the mass $m$ is slightly pulled down and released, it oscillates with a time period of 3 s . When the mass $m$ is increased by 1 kg , the time period of oscillations becomes 5 s . The value of $m$ in kg is
(4) $4 L$
22. Three sound waves of equal amplitudes have frequencies $(n-1), n,(n+1)$. They superimpose to give beats. The number of beats produced per second will be
(1) 1
(2) 4
(3) 3
(4) 2
23. An electric dipole is placed at an angle of $30^{\circ}$ wiht an electric field intensity $2 \times 10^{5} \mathrm{~N} / \mathrm{C}$. It experience a torque equal to $4 \mathrm{~N} / \mathrm{m}$. The charge on the dipole, if the dipole length is 2 cm , is
(1) 8 mC
(2) 2 mC
(3) 5 mC
(4) $7 \mu C$
24. A parallel-plate capacitor of area A, plate separation $d$ and 28. A bar magnet is hung by a thin cotton thread in a uniform
capacitance $C$ is filled with four dielectric materials having dielectric constants $k_{1}, k_{2}, k_{3}$ and $k_{4}$ as shown in the figure below. If a single dielectric material is to be used to have the same capacitance $C$ in this capacitor, then its dielectric constant $k$ is given by

(1) $k=k_{1}+k_{2}+k_{3}+3 k_{4}$
(2) $k=\frac{2}{3}\left(k_{1}+k_{2}+k_{3}\right)+2 k_{4}$
(3) $\frac{2}{k}=\frac{3}{k_{1}+k_{2}+k_{3}}+\frac{1}{k_{4}}$
(4) $\frac{1}{k}=\frac{1}{k_{1}}+\frac{1}{k_{2}}+\frac{1}{k_{3}}+\frac{3}{2 k_{4}}$
25. The potential difference $\left(V_{A}-V_{B}\right)$ between the points A and $B$ in the given figure is

(1) -3 V
(2) +3 V
(3) +6 V
(4) +9 V
26. A filament bulb $(500 \mathrm{~W}, 100 \mathrm{~V})$ is to be used in a 230 V main supply. When a resistance R is connected in series, it works perfectly and the bulb consumes 500 W . The value of $R$ is
(1) $230 \Omega$
(2) $46 \Omega$
(3) $26 \Omega$
(4) $13 \Omega$
27. A long wire carrying a steady current is bent into a circular loop of one turn. The magnetic field at the centre of the loop is B . It is then bent into a circular coil of $n$ turns. The magnetic field at the centre of this coil of $n$ turns will be
(1) $n B$
(2) $n^{2} B$
(3) $2 n B$
(4) $2 n^{2} B$
horizontal magnetic field and is in equilibrium state. The energy required to rotate it by $60^{\circ}$ is W . Now the torque required to keep the magnet in this new position is
(1) $\frac{W}{\sqrt{3}}$
(2) $\sqrt{3} W$
(3) $\frac{\sqrt{3} W}{2}$
(4) $\frac{2 W}{\sqrt{3}}$
29. An electron is moving in a circular path under the influence of a transverse magnetic field of $3.57 \times 10^{-2} T$. If the value of $e / m$ is $1.76 \times 10^{11} \mathrm{C} / \mathrm{Kg}$, the frequency of revolution of the electron is
(1) 1 GHz
(2) 100 MHz
(3) 62.8 MHz
(4) 6.28 MHz
30. Which of the following combinations should be selected for better tuning of an LCR circuit used for communicaiton?
(1) $R=20 \Omega, L=1.5 H, C=35 \mu F$
(2) $R=25 \Omega, L=2.5 H, C=45 \mu F$
(3) $R=15 \Omega, L=3.5 H, C=30 \mu F$
(4) $R=25 \Omega, L=1.5 H, C=45 \mu F$
31. A uniform magnetic field is restricted within a region of radius r . The magnetic field changes with time at a rate $\frac{d \vec{B}}{d t}$. Loop 1 of radius $\mathrm{R}>\mathrm{r}$ encloses the region r and loop 2 of radius R is outside the region of magnetic field as shown in the figure below. Then the e.m.f. generated is

(1) zero in loop 1 and zero in loop 2
(2) $-\frac{d \vec{B}}{d t} \pi r^{2}$ in loop 1 and $-\frac{d \vec{B}}{d t} \pi r^{2}$ loop 2
(3) $-\frac{d \vec{B}}{d t} \pi R^{2}$ in loop 1 and zero in loop 2
(4) $-\frac{d \vec{B}}{d t} \pi r^{2}$ in loop 1 and zero in loop 2
32. The potential difference across the resistance, capacitance 36 . The interference pattern is obtained with two coherent light and inductance are $80 \mathrm{~V}, 40 \mathrm{~V}$ and 100 V respectively in an LCR circuit. The power factor of this circuit is
(1) 0.4
(2) 0.5
(3) 0.8
(4) 1.0
33. A $100 \Omega$ resistance and a capacitor of $100 \Omega$ reactance are connected in series across a 220 V source. When the capacitor is $50 \%$ charged, the peak value of the displacement current is
(1) 2.2 A
(2) 11 A
(3) 4.4 A
(4) $11 \sqrt{2} A$
34. Two identical glass $\left(\mu_{g}=\frac{3}{2}\right)$ equiconvex lenses of focal length f each are kept in contact. The space between the two lenses is filled with water $\left(\mu_{w}=\frac{4}{3}\right)$. The focal length of the combination is
(1) $\frac{f}{3}$
(2) $f$
(3) $\frac{4 f}{3}$
(4) $\frac{3 f}{4}$
35. An air bubble in a glass slab with refractive index 1.5 (near normal incidence) is 5 cm deep when viewed from on surface and 3 cm deep when viewed from the opposite face. The thickness (in cm) of the slab is
(1) 8
(2) 10
(3) 12
(4) 16
sources of intensity ratio n . In the interference pattern, the ratio $\frac{I_{\text {max }}-I_{\text {min }}}{I_{\text {max }}-I_{\text {min }}}$ will be
(1) $\frac{\sqrt{n}}{n+1}$
(2) $\frac{2 \sqrt{n}}{n+1}$
(3) $\frac{\sqrt{n}}{(n+1)^{2}}$
(4) $\frac{2 \sqrt{n}}{(n+1)^{2}}$
37. A person can see clearly objects only when they lie between 50 cm and 400 cm from his eyes. In order to increase the maximum distance of distinct vision to inifinity, the type and power of the correcting lens, the person has to use, will be
(1) convex, +2.25 diopter
(2) concave, +0.25 diopter
(3) concave, -0.2 diopter
(4) convex, +0.15 diopter
38. A linear apeture whose width is 0.02 cm is placed immedeately in front of a lens of focal length 60 cm . The aperture is illuminated normally by a parallel beam of wavelength $5 \times 10^{-5} \mathrm{~cm}$. The distance of the first dark band of the diffraction pattern from the centre of the screen is
(1) 0.10 cm
(2) 0.25 cm
(3) 0.20 cm
(4) 0.15 cm
39. Electrons of mass $m$ with de-Broglie wavelength $\lambda$ fall on the target in an X-ray tube. The cutoff wavelength $\left(\lambda_{0}\right)$ of the emitted X -ray is
(1) $\lambda_{0}=\frac{2 m c \lambda^{2}}{h}$
(2) $\lambda_{0}=\frac{2 h}{m c}$
(3) $\lambda_{0}=\frac{2 m^{2} c^{2} \lambda^{3}}{h^{2}}$
(4) $\lambda_{0}=\lambda$
40. Photons with energy 5 eV are incident on a cathode C in a 45 . What is the output Y in the following circuit, when all the photoelectric cell. The maximum energy of emitted photoelectrons is 2 eV . When photons of energy 6 eV are incident on C , no photoelectrons will reach the anode A , if the stopthree inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are first 0 and then 1 ?
ping potential of A relative to C is
(1) +3 V
(2) +4 V
(3) -1 V
(4) -3 V
41. If an electron in a hydrogen atom jumps from the 3rd orbit to the 2 nd orbit, it emits a photon of wavelength $(\lambda)$. When it jumps from the 4th orbit to the 3rd orbit, the corresponding wavelength of the photon will be
(1) $\frac{16}{25} \lambda$
(2) $\frac{9}{16} \lambda$
(3) $\frac{20}{7} \lambda$
(4) $\frac{20}{13} \lambda$
42. The half-life of a radioactive substance is 30 minutes. The time (in minutes) taken between $40 \%$ decay and $85 \%$ decay of the same radiactive substance is
(1) 15
(2) 30
(3) 45
(4) 60
43. For CE transistor emplifier, the audio signal voltage across the collector resistance of $2 k \Omega$ is 4 V . If the current amplification factor of the transistor is 100 and the base resistance is $1 k \Omega$, then the input signal voltage is
(1) 10 mV
(2) 20 mV
(3) 30 mV
(4) 15 mV
44. The given circuit has two ideal diodes connected as shown in the figure below. The current flowing through the resistance $R_{1}$ will be

(1) 2.5 A
(2) 10.0 A
(3) 1.43 A
(4) 3.13 A

## CHEMISTRY

46. Which one of the following compounds shows the presence of intramolecular hydrogen bond ?
(1) $\mathrm{H}_{2} \mathrm{O}_{2}$
(2) HCN
(3) Cellulose
(4) Concentrated acetic acid
47. The molar conductivity of a $0.5 \mathrm{~mol} / \mathrm{dm}^{3}$ solution of $\mathrm{AgNO}_{3}$ with electrolytic conductivity of $5.76 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$ at 298 K is
(1) $2.88 \mathrm{~S} \mathrm{~cm}^{2} / \mathrm{mol}$
(2) $11.52 \mathrm{~S} \mathrm{~cm}^{2} / \mathrm{mol}$
(3) $0.080 \mathrm{~S} \mathrm{~cm}^{2} / \mathrm{mol}$
(4) $28.8 \mathrm{~S} \mathrm{~cm}^{2} / \mathrm{mol}$
48. The decomposition of phosphine $\left(\mathrm{PH}_{3}\right)$ on tungsten at low pressure is first-order reaction. It is becuase the
(1) rate is proportional to the surface coverage
(2) rate is inversely proportional to the surface converage
(3) rate is dedependent of the surface coverage
(4) rate of decomposition is very slow
49. The coagulation values in millimoles per litre of the electrolytes used for the coagulation of $\mathrm{As}_{2} \mathrm{~S}_{3}$ are given below:
I. $(\mathrm{NaCl})=52$, II. $\left(\mathrm{BaCl}_{2}\right)=0.69$, III $\left(\mathrm{MgSO}_{4}\right)=0.22$

The correct order of their coagulating power is
(1) I $>$ II $>$ III
(2) II $>$ I $>$ III
(3) III $>$ II $>$ I
(4) III $>$ I $>$ II
50. During the electrolysis of molten sodium chloride, the time required to produce 0.10 mol of chlorine gas using a current of 3 amperes is
(1) 55 minutes
(2) 110 minutes
(3) 220 minutes
(4) 330 minutes
51. How many electrons can fit in the orbital for which $\mathrm{n}=3$ and $l=1$ ?
(1) 2
(2) 6
(3) 10
(4) 14
52. For a sample of perfect gas when pressure is changed isothermally from $p_{i}$ to $p_{f}$, the entropy change is given by
$\Delta S=n R \ln \left(\frac{p_{f}}{p_{i}}\right)$
(2) $\Delta S=n R \ln \left(\frac{p_{i}}{p_{f}}\right)$
(3) $\Delta S=n R T \ln \left(\frac{p_{f}}{p_{i}}\right)$
(4)
$\Delta S=R T \ln \left(\frac{p_{i}}{p_{f}}\right)$
53. The van't Hoff factor (i) for a dulute aqueous solution of the strong electrolyte barium hydroxide is
(1) 0
(2) 1
(3) 2
(4) 3
54. The percentage of pyridine $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ that forms pyridinium ion $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}^{+} \mathrm{H}\right)$ in a 0.10 M aqueous pyridine solution ( $K_{b}$ for $C_{5} H_{5} N=1.7 \times 10^{-9}$ ) is
(1) $0.0060 \%$
(2) $0.013 \%$
(3) $0.77 \%$
(4) $0.6 \%$
55. In calcium fluoride, having the fluorite structure, the coordination numbers for calcium ion $\left(\mathrm{Ca}^{2+}\right)$ and fluoride ion $\left(F^{-}\right)$are
(1) 4 and 2
(2) 6 and 6
(3) 8 and 4
(4) 4 and 8
56. If the $E_{\text {cell }}^{o}$ for a given reaction has a negative value, which of the following gives the correct relationships for the value of $\Delta G^{\circ}$ and $K_{e q}$ ?
(1) $\Delta G^{0}>0 ; K_{e q}<1$
(2) $\Delta G^{\mathrm{o}}>0 ; K_{e q}>1$
(3) $\Delta G^{\mathrm{o}}<0 ; K_{e q}>1$
(4) $\Delta G^{\mathbf{o}}<0 ; K_{e q}<1$
57. Which one of the following is incorrect for ideal solution?
(1) $\Delta H_{\text {mix }}=0$
(2) $\Delta U_{\operatorname{mix}}=0$
(3) $\Delta P=P_{\text {obs }} P_{\text {calculated by Raoult's law }}=0$
(4) $\Delta G_{m i x}=0$
58. The solubility of AgCl (s) with solubility product $1.6 \times 10^{-10}$ in 0.1 M NaCl solution would be
(1) $1.26 \times 10^{-5} \mathrm{M}$
(2) $1.6 \times 10^{-9} \mathrm{M}$
(3) $1.6 \times 10^{-11} \mathrm{M}$
(4) zero
59. Suppose the elements X and Y combine to form two compounds $X Y_{2}$ and $X_{3} Y_{2}$. When 0.1 mole of $X Y_{2}$ weighs 10 g and 0.05 mole of $X_{3} Y_{2}$ weighs 9 g , the atomic weights of X and Y are
(1) 40,30
(2) 60,40
(3) 20,30
(4) 30,20
60. The number of electrons delivered at the cathode during electrolysis by a current of 1 ampere in 60 seconds is (charge on electron $=1.60 \times 10^{-19} \mathrm{C}$ )
(1) $6 \times 10^{23}$
(2) $6 \times 10^{20}$
(3) $3.75 \times 10^{20}$
(4) $7.48 \times 10^{23}$
61. Boric acid is an acid because its molecule
(1) contains replaceable $\mathrm{H}^{+}$ion
(2) gives up a proton
(3) accepts $\mathrm{OH}^{-}$from water releasing proton combines with proton from water molecule
63. Zinc can be coated on iron to produce galvarized iron but the reverse is not possible. It is because
(1) zinc is lighter than iron
(2) zinc has lower melting point than iron
(3) zinc has lower negative electrode potential than iron
(4) zinc has higher negative electrode potential than iron
64. The suspension of slaked lime in water is known as
(1) limewater
(2) quicklime
(3) milk of lime
(4) aqueous solution of slaked lime
65. The hybridizations of atomic orbitals of nitrogen in $\mathrm{NO}_{2}^{+}, \mathrm{NO}_{3}^{-}$and $\mathrm{NH}_{4}^{+}$respectively are
(1) $s p, s p^{3}$ and $s p^{2}$
(2) $s p^{2}, s p^{3}$ and $s p$
(3) $s p, s p^{2}$ and $s p^{3}$
(4) $s p^{2}, s p$ and $s p^{3}$
66. Which of the following fluoro-compounds is most likely to behave as a Lewis base?
(1) $B F_{3}$
(2) $P F_{3}$
(3) $C F_{4}$
(4) $\quad \mathrm{SiF}_{4}$
67. Which of the following pairs of ions is isoelectronic and isostructural?
(1) $\mathrm{CO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$
(2) $\mathrm{ClO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
(3) $\mathrm{SO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$
(4) $\mathrm{ClO}_{3}^{-}, \mathrm{SO}_{3}^{2-}$
68. In context with beryllim, which one of the following statements is incorrect?
(1) It is rendered passive by nitric acid.
(2) If forms $B e_{2} C$
(3) Its salts rarely hydrolyze
(4) Its hydride is electron-deficient and polymeric
62. $\mathrm{AlF}_{3}$ is soluble in HF only in presence of KF . It is due to the formation of
$K_{3}\left[\mathrm{AlF}_{3} \mathrm{H}_{3}\right]$
(2) $K_{3}\left[A l F_{6}\right]$
(3) $\mathrm{AlH}_{3}$
(4) $K\left[\mathrm{AlF}_{3} \mathrm{II}\right]$
69. Hot concentrated sulphuric acid is a moderately strong oxidizing agent. Which of the following reactions does not show oxidizing behaviour?
(1) $\mathrm{Cu}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(2) $3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 3 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{C}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CO}_{2}+3 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(4) $\mathrm{CaF}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{HF}$
70. Which of the following pairs of d-orbitals will have 76. Which of the following can be used as the halide
electron density along the axes ?
(1) $d_{z^{2}}, d_{x z}$
(2) $d_{x z}, d_{y z}$
(3) $d_{z^{2}}, d_{x^{2}-y^{2}}$
(4) $d_{x y}, d_{x^{2}-y^{2}}$
71. The correct geometry and hybridization for $\mathrm{XeF}_{4}$ are
(1) octahedral, $s p^{3} d^{2}$
(2) trigonal bipyramidal, $s p^{3} d^{3}$
(3) planar triangle, $s p^{3} d^{3}$
(4) square planar, $s p^{3} d^{2}$
72. Among the following, which one is a wrong statement ?
(1) $\mathrm{PH}_{5}$ and $\mathrm{BiCl}_{5}$ do not exist
(2) $p \pi-d \pi$ bonds are present in $\mathrm{SO}_{2}$
(3) $\mathrm{SeF}_{4}$ and $\mathrm{CH}_{4}$ have same shape
(4) $I_{3}^{+}$has bent geometry
(1) Chlorobenzene
(2) Bromobenzene
(3) Chloroethene
(4) Isopropyl chloride
77. In which of the following molecules, all atoms are coplanar?
(1)

(2)

(3)

(4)

78. Which one of the following structures represents nylon 6,6 polymer?
(1)

(1) Europium shows +2 oxidation state.
(2) The basicity decreases as the ionic radius decreases from Pr to Lu
(3) All the lanthnons are much more reactive than aluminium
(4) $\mathrm{Ce}(+4)$ solutions are widely used as oxidizing agent in volumetric analysis.
75. Jahn-Teller effect is not observed in high spin complexes of
(1) $d^{7}$
(2) $d^{8}$
(3) $d^{1}$
(4) $d^{9}$


(3)

79. In pyrroic

the electron density is maximum on
(1) 2 and 3
(2) 3 and 4
(3) 2 and 4
(4) 2 and 5
83. The correct corresponding order of names of four aldoses with configuration given below




respectively is
(1) L-erythrose, L-threose, L-erythrose, D-threose
(2) D-threose, D-erythrose, L-threose, L-erythrose,
(3) L-erythrose, L-threose, D-erythrose, D-threose
(4) D-erythrose, D-threose, L-erythrose, L-threose
80. Which of the following compounds shall not produce propene by reaction with HBr followed by elimination or direct only elimination reaction?
(1)

(2)
$\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{OH}$
(3)
(4)
$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{O}$
$\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{Br}$

1. Which one of the following nitro-compounds does not react with nitrous acid?
(1)

(2)

(4)

(3)


(3)


(1)
2. A given nitrogen-containing aromatic compound A reacts with $\mathrm{Sn} / \mathrm{HCl}$, followed by $\mathrm{HNO}_{2}$ go give an unstable compound B. B, on treatment with phenol, forms a beautiful coloured compound C with the molecular formula $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$. The structure of compound A is
 genetic information flows from
(1) Amino acisd $\rightarrow$ Proteins $\rightarrow$ DNA
(2) DNA $\rightarrow$ Carbohydrates $\rightarrow$ Proteins
(3) DNA $\rightarrow$ RNA $\rightarrow$ Proteins
(4)

DNA $\rightarrow$ RNA $\rightarrow$ Carbohydrates
(2)

(3)

(4)

86. Consider the reaction
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{NaCN} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}+\mathrm{NaBr}$
This reaction will be the fastest in
(1) ethanol
(2) methanol
(3) $\mathrm{N}, \mathrm{N}^{\prime}$-dimethylformamide (DMF)
(4) water
89. The correct order of strengths of the carboxylic acids.


I


II
(1) I $>$ II $>$ III
(2) II $>$ III $>$ I
(3) III $>$ II $>$ I
(4) II $>$ I $>$ III
87. The correct structure of the product A formed in the reaction

90. The compound that will react most readily with gaseous bromine has the formula
(1)

(2)

(3)

(4)

88. Which among the given molecules can exhibit tautomerism?


I


II


III
(1) III only
(2) Both I and III
(3) Both I and II
(4) Both II and III

## BIOLOGY

91. Which one of the following is wrong for fungi?
(1) They are eukaryotic
(2) All fungi possess a purely cellulosic cell wall.
(3) They are heterotrophic
(4) They are both unicellular and multicellular.
92. Methanogens belong to
(1) Eubacteria
(2) Archaebacteria
(3) Dinoflagellates
(4) Slime moulds
93. How many plants among Indigofera, Sesbania, Salvia, Allium, Aloe, mustard, groundnut, radish, gram and turnip have stamens with different lengths in their flowers?
(1) Three
(2) Four
(3) Five
(4) Six
94. Radial symmetry is found in the flowers of
(1) Brassica
(2) Trifolium
(3) Pisum
(4) Cassia
95. Select the wrong statement
(1) The walls of diatoms are easily destructible.
(2) 'Diatomaceous earth' is formed by the cell walls of diatoms.
(3) Diatoms are chief producers in the oceans.
(4) Diatoms are microscopic and float passively in water.
96. Free central placentation is found in
(1) Dianthus
(2) Argemone
(3) Brassica
(4) Citrus
97. The label of a herbarium sheet does not carry information on
(1) date of collection
(2) name of collector
(3) local names
(4) height of the plant
98. Cortex is the region found between
(1) epidermis and stele
(2) pericycle and endodermis
(3) endodermis and pith
(4) endodermis and vascular bundle
99. Conifers are adapted to tolerate extreme environmental conditions because of
(1) broad hardy leaves
(2) superficial stomata
(3) thick cuticle
(4) presence of vessels
100. Which one of the follwoing statements is wrong
(1) Algae increase the level of dissolved oxygen in the immediate environment.
(2) Algin is obtained from red algae and carrageenan from brown algae.
(3) Agar-agar is obtained from Gelidium and Gracilaria.
(4) Laminaria and Sargassum are used as food.
101. The term 'polyadelphous' is related to
(1) gynoecium
(2) androecium
(3) corolla
(4) calyx
102. The balloon-shaped structures called tyloses
(1) originate in the lumen of vessels
(2) characterize the sapwood
(3) are extensions of xylem parenchyma cells into vessels
(4) are linked to the ascent of sap through xylem vessels
103. A non-proteinaceous enxyme is
(1) lysozyme
(2) ribozyme
(3) ligase
(4) deoxyribonuclease
104. Select the mismatch
(1) Gas vacuoles - Green bacteria
(2) Lartge central vacuoles - Animal cells
(3) Protists - Eukaryotes
(4) Mcthanogens - Prokaryotes
105. Select the wrong statement
(1) Bacterial cell wall is made up of peptidoglycan.
(2) Pili and fimbriae are mainly involved in motility of bacterial cells.
(3) Cyanobacteria lack flagellated cells.
(4) Mycoplasma is a wall-less microorganism.
106. A cell organelle containing hydrolytic enzymes is
(1) lysosome
(2) microsome
(3) ribosome
(4) mesosome
107. During cell growth, DNA synthesis takes place in
(1) S phase
(2) $\mathrm{G}_{1}$ phase
(3) $\mathrm{G}_{2}$ phase
(4) M phase
108. Phytochrome is a
(1) flavoprotein
(2) glycoprotein
(3) lipoprotein
(4) chromoprotein
109. Which is essential for the growth of root tip?
(1) Zn
(2) Fe
(3) Ca
(4) Mn
110. The process which makes major difference between $\mathrm{C}_{3}$ and $\mathrm{C}_{4}$ plants is
(1) glycolysis
(2) Calvin cycle
(3) photorespiration
(4) respiration
111. Which of the following biomolecules is common to respiration-mediated breakdown of fats, carbohydrates and proteins?
(1) Glucose-6-phosphate
(2) Fructose 1,6-bisphosphate
(3) Pyruvic acid
(4) Acetyl CoA
112. A few drops of sap were collected by cutting across a plant stem by a suitable method. The sap was tested chemically. Which one of the following test results indicates that it is phloem sap?
(1) Acidic
(2) Alkaline
(3) Low refractive index
(4) Absence of sugar
113. You are given a tissue with its potential for differentiation in an artificial culture. Which of the following pairs of hormones would you add to the medium to secure shoots as well as roots?
(1) IAA and gibberellin
(2) Auxin and cytokinin
(3) Auxin and abscisic acid
(4) Gibberellin and abscissic acid
114. Which one of the following statements is not correct?
(1) Offspring produced by the asexual reproduction are called clones.
(2) Microscopic, motile asexual reproductive structures are called zoospores.
(3) In potato, banana and ginger, the plantlets arise from the internodes present in the modified stem.
(4) Water hyacinth, growing in the standing water, drains oxygen from water that leads to the death of fishes.
115. Which one of the following generates new genetic combinations leading to variation?
(1) Vegetative reproduction
(2) Parthenogenesis
(3) Sexual reproduction
(4) Nucellar polyembryony
116. Match column - I with column - II and select the correct option using the codes given below:

## Column - I

a. Pistils fused together
b. Formation of gametes.
c. Hyphae of higher

Ascomycetes
d. Unisexual female flower

## Codes

|  | a | b | c | d |
| :--- | :--- | :--- | :--- | :--- |
| (1) | (iv) | (iii) | (i) | (ii) |
| (2) | (ii) | (i) | (iv) | (iii) |
| (3) | (i) | (ii) | (iv) | (iii) |
| (4) | (iii) | (i) | (iv) | (ii) |

117. In majority of angiosperms,
(1) egg has a filiform apparatus
(2) there are numerous antipodal cells
(3) reduction division occurs in the megaspore mother cells
(4) a small central cell is present in the embryo sac.
118. Pollination in water hyacinth and water lily is brought about by the agency of
(1) water
(2) insects or wind
(3) birds
(4) bats
119. Which of the following rRNA acts as structural RNA as well as ribozyme in bacteria?
(1) 5 S rRNA
(2) 18 S rRNA
(3) 23 S rRNA
(4) 5.8 S rRNA
120. The ovule of an angiosperm is technically equivalent to
(1) megasporangium
(2) megasporophyll
(3) megaspore mother cell
(4) megaspore
121. Taylor conducted the experiments to prove semiconservative mode of chromosome replication on
(1) Vinca rosea
(2) Vicia faba
(3) Drosophila melanogaster
(4) E. coli
122. The mechanism that causes a gene to move from one linkage group to another is called
(1) inversion
(2) duplication
(3) translocation
(4) crossing-over
123. The equivalent of a structural gene is
(1) muton
(2) cistron
(3) operon
(D) recon
124. A true breeding plant is
(1) one that is able to breed on its own
(2) produced due to cross-pollination among unrelated plants
(3) near homozygous and produces offspring of its own kind
(4) always homozygous recessive in its genetic constitution
125. Stirred-tank bioreactors have been designed for
(1) purification of product
(2) addition of preservatives to the product
(3) availability of oxygen throughout the process
(4) ensuring anaerobic conditions in the culture vessel
126. A foreign DNA and plasmid cut by the same restriction endonuclease can be joined to form a recombinant plasmid using
(1) Eco RI
(2) Taq polymerase
(3) Polymerase III
(4) ligase
127. Which of the following is not a component of downstream processing?
(1) Separation
(2) Purification
(3) Preservation
(4) Expression
128. Which of the following restriction enzymes produces blunt ends?
(1) $\operatorname{Sal}$ I
(2) Eco RV
(3) Xho I
(4) Hind III
129. Which kind of therapy was given in 1990 to a four-year old girl with adenosine deaminase (ADA) deficiency?
(1) Gene therapy
(2) Chemotherapy
(3) Immunotherapy
(4) Radiation therapy
130. How many hot spots of biodiversity in the world have been identified till date by Norman Myers?
(1) 17
(2) 25
(3) 34
(4) 43
131. The primary producers of the deep-sea hydrothermal vent 137. Match Column - I with Column - II for housefly
classification and select the correct option using the codes
given below:
exosystem are
(1) green algae
(2) chemosynthetic bacteria
(3) blue-green algae
(4) coral reefs

## Column - I

a. Family
b. Order
c. Class
d. Phylum

## Codes

132. Which of the following is correct for $r$-selected species?
(1) Large number of progeny with small size
(2) Large number of progeny with large size
(3) Small number of progeny with small size
(4) Small number of progeny with large size

## Codes

## Column - II

(i) Diptera
(ii) Arthropoda
(iii) Muscidae
(iv) Insecta

|  | a | b | c | d |
| :--- | :--- | :--- | :--- | :--- |
| (1) | (iii) | (i) | (iv) | (ii) |
| (2) | (iii) | (ii) | (iv) | (i) |
| (3) | (iv) | (iii) | (ii) | (i) |
| (4) | (iv) | (ii) | (i) | (iii) |

133. If ' + ' sign is assigned to beneficial interaction ' - ' sign to detrimental and ' 0 ' sign to neutral interaction, then the population interaction represented by ' + ' ' - ' refers to
134. Choose the correct statement
(1) All mammals are viviparous.
(1) mutualism
(2) All cyclostomes do not posscss jaws and paired fins.
(3) All reptiles have a three-chambered heart.
(4) All Pisces have gills covered by an operculum
(3) commensalism
(4) parasitism
135. Which of the following is correctly matched?
(1) Aerenchyma - Opuntia
(2) Age pyramid - Biome
(3) Parthenium hysterophorus Thrcat to biodiversity
(4) Stratification - Population
136. Study the four statements (A-1) given below and select the two correct ones out of them:
A. Definition of biological species was given by Ernst Mayr.
B. Photoperiod does not affect reproduction in plants.
C. Binomial nomenclature system was given by R.H. Whittaker.
D. In unicellular organisms, reproduction is synonymous with growth.
The two correct statements are
(1) B and C
(2) C and D
(C) A and D
(D) A and B
137. Which of the following sets of diseases is caused by bacteria?
(1) Cholera and tetanus
(2) Typhoid and smallpox
(3) Tetanus and mumps
(4) Herpes and influenza
138. In male cockroaches, sperms are stored in which part of the reproductive system?
(1) Seminal vesicles
(2) Mushroom glands
(3) Testes
(4) Vas deferens
139. Smooth muscles are
(1) involuntary, fusiform, non-straited
(2) voluntary, multinuclcate, cylindrical
(3) involuntary, cylindrical, striated
(4) voluntary, spindle-shaped, uninucleate
140. Oxidative phosphorylation is
(1) formation of ATP by transfer of phosphate group from a substrate to ADP
(2) oxidation of phosphate group in ATP
(3) addition of phosphate group to ATP
(4) formation of ATP by energy released from a electrons removed during substrate oxidation.
141. Which of the following is the least likely to be involved in stabilizing the three dimensional folding of most proteins?
(1) Hydrogen bonds
(2) Electrostatic interaction
(3) Hydrophobic interaction
(4) Ester bonds
142. Match the stages of meiosis in column - I to their characteristic features in column -II and select the correct option using the codes given below:

## Column-I

(1) Pachytene
(2) Metaphase I
(3) Diakinesis
(4) Zygotene

## Codes :

144. Which of the following describes the given graph correctly?

(1) Endothermic reaction with energy $A$ in presence of enzyme and B in absence of enzyme.
(2) Exothermic reaction with energy A in presence of enzyme and B in absence of enzyme.
(3) Endothermic reaction with energy $A$ in absence of enzyme and B in presence of enzyme.
(4) Exothermic reaction with energy $A$ in absence of enzyme and B in presence of enzyme
145. Which hormones do stimulate the production of pancreatic juice and bicarbonate?
(1) Angiotensin and epinephrine
(2) Gastrin and insulin
(3) Cholecystokinin and secretin
(4) Insulin and glucagon

148 The partial pressure of oxygen in the alveoli of the lungs is
(1) Equal to that in the blood
(2) More than that in the blood.
(3) Less than that in the blood
(4) Less than that of carbon dioxide
149. Choose the correct statement.
(1) Nociceptors respond to changes in pressure.
(2) Meissner's corpuscles are thermoreceptors.
(3) Photoreceptors in the human eye are depolarized during darkness and become hyperpolarized in response to the light stimulus.
(4) Receptors do not produce graded potentials.
(2) $\mathrm{G}_{2} / \mathrm{M}$
(3) M
(4) Both $G_{2} / M$ and $M$

## Column -II

1 Pairing of homologous chromosomes
2 Terminalization of chiasmata
3 Crossing-over takes place
4 Chromosome align at equatorial plate

|  | a | b | c | d |
| :---: | :---: | :---: | :---: | :---: |
| (1) | (iii) | (iv) | (ii) | (i) |
| $(2)$ | (i) | (iv) | (ii) | (iii) |
| (3) | (ii) | (iv) | (iii) | $($ i $)$ |
| $(4)$ | (iv) | (iii) | (ii) | (i) |

(1) (iii) (iv) (ii) (i)
(2) (i) (iv) (ii) (iii)
(3) (ii) (iv) (iii) (i)
(4) (iv) (iii) (ii) (i)
152. Name the blood cells, whose reduction in number can cause 158. The part of nephron involved in active reabsorption of clotting disorder, leading to excessive loss of blood from the body.
(1) Erythrocytes
(2) Leucocytes
(3) Neutrophils
(4) Thrombocytes
153. Name a peptide hormone which acts mainly on hepatocytes , adipocytes and enhances cellular glucose uptake and utilization.
(1) Insulin
(2) Glucagon
(3) Secretin
(4) Gastrin
154. Osteoporosis, an age-related discase of skeletal, system may occur due to
(1) Immune disorder affecting neuromuscular junction leading to fatigure.
(2) High concentration of $\mathrm{Ca}^{++}$and $\mathrm{Na}^{+}$
(3) Decreased level of estrogen.
(4) Accumulation of uric acid leading to inflammation of joints.
155. Serum differs from blood in
(1) Lacking globulins
(2) Lacking albumins
(3) Lacking clotting factors
(4) Lacking antibodies sodium is
(1) Distal convoluted tubule
(2) Proxmal convoluted tubule
(3) Bowman's capsule
(4) Descending limb of Henle's loop.
159. Which of the following is hormone releasing IUD?
(1) LNG - 20
(2) Multiload 375
(3) Lippes loop
(4) Cu 7
160. Which of the following is incorrect regarding vasectomy?
(1) No sperm occurs in seminal fluid
(2) No sperm occurs in epididymis
(3) Vasa deferentia is cut and tied
(4) Irreversible sterility
161. Embryo with more than 16 blastomeres formed due to in vitro fertilization, is transferred into
(1) Uterus
(2) Fallopian tube
(3) Fimbriae
(4) Cervix
162. Which of the following depicts the correct pathways of transport of sperms?
(1) Rete testis $\rightarrow$ Efferent ductules $\rightarrow$ Epididymis $\rightarrow$ Vas deferens
(2) Rete testis $\rightarrow$ Epididymis $\rightarrow$ Efferent ductules $\rightarrow$ Vas deferens
(3) Rete testis $\rightarrow$ Vas deferens $\rightarrow$ Efferent ductules $\rightarrow$ Epididymis
(4) Efferent ductules $\rightarrow$ Rete testis $\rightarrow$ Vas deferens $\rightarrow$ Epididymis
163. Match Column- I with Column - II and select the correct option using the codes given below:

## Column - I

(1) Mons pubis
(2) Antrum
(3) Trophectoderm
(4) Nebenkern

## Codes :

(1) (iii) (iv) (ii) (i)
(2) (iii) (iv) (i) (ii)
(3) (iii) (i) (iv) (ii)
(4) (i) (iv) (iii) (ii)
164. Several hormones like hCG, hPL, estrogen, progesterone are produced by
(1) Ovary
(2) Placenta
(3) Fallopian tube
(4) Pituiltary
170. A molecules that can act as a genetic material must fulfill the traits given below, except
(1) It should be able to express itself in the form of Mendelian characters'
(2) It should be able to generate its replica
(3) It should be unstable structurally and chemically
(4) It should provide the scope for slow changes that are required for evolution.
171. DNA- dependent RNA polymease catalyzes transcription on one strand of the DNA which is called the
(1) Template strand
(2) Coding strand
(3) Alpha strand
(4) Antistrand
166. Genetic drift operates in
(1) small isolated population
(2) Large isolated population
(3) Non -reproductive population
(4) Slow reproductive population
167. In Hardy- Weinberg equation, the frequency of heterozygous individual is represented by
(1) $\mathrm{p}^{2}$
(2) $2 p q$
(3) pq
(4) $\mathrm{q}^{2}$
172. Intersepcific hybridization is the mating of
(1) Animals within same breed without having common ancestors
(2) Two different related species
(3) Superior males and females of different breeds
(4) More closely related individulas within same breed for 46 generations
173. Which of the following is correct regarding AIDS causative agent HIV?
(1) HIV is enveloped virus containing one molecule of single stranded RNA and one molecule of reverse transcriptase.
(2) HIV is enveloped virus that contains two identical molecules of single- stranded RNA and two molecules of reverse transcriptase.
(3) HIV is unenveloped retrovirus.
(4) HIV does not escape but attacks the acquired immune response.
174. Among the following edible fishes, which one is a marine fish having rich source of omega -3 fatty acids?
(1) Mystus
(2) Mangur
(3) Mrigala
(4) Mackerel
169. Which of the following is the correct sequence of events in the origin of life?
I. Formation of protobionts
II. Synthesis of organic monomers
III. Synthesis of organic polymers
IV. Formation of DNA based genetic systems
(1) I, II, III, IV
(2) I, III, II, IV
(3) II, III, I, IV
(4) II, III, IV, I
175. Match Column- I with Column- II and select the correct option using the codes given below:

## Column- I

## Column -II

(1) Citric acid 1 Trichoderma
(2) Cyclosporin A

2 Clostridium
(3) Statins 3 Aspergillus
(4) Butyric acid 4 Monascus

## Codes :

a b c d
(1) (iii) (i) (ii) (iv)
(2) (iii) (i) (iv) (ii)
(3) (i) (iv) (ii) (iii)
(4) (iii) (iv) (i) (ii)
176. Biochemical Oxygen Demand (BOD) may not be a good index for pollution for water bodies receiving effluents from
(1) Domestic sewage
(2) Dairy industry
(3) Petroleum industry
(4) Sugar industry
177. The principle of competitive exclusion was stated by
(1) C. Darwin
(2) G. F. Gause
(3) MacArthur
(4) Verhulst and Pearl
178. Which of the following National Park is home to the famous musk deer or hangul?
(1) Keibul Lamjao National Park, Manipur
(2) Bandhavgarh Nation Park, Madhya Pradesh
(3) Eaglenest Wildlife Sanctuary, Arunachal Pradesh
(4) Dachigam National Park, Jammu and Kashmir
179. A lake which is rich in organic waste may result in
(1) Increased population of aquatic organisms due to minerals
(2) Drying of the lake due to algal bloom
(3) Increased population of fish due to lots of nutrients
(4) Mortality of fish due to lack of oxygen.
180. The highest DDT concentration in aquatic food chain shall occur in
(1) Phytoplankton
(2) Seagull
(3) Crab
(4) Eel

